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Francisco López Jiménez, Sergio Pellegrino∗

Graduate Aerospace Laboratories, California Institute of Technology
1200 E. California Blvd., Pasadena CA 91125

Abstract

This paper presents an experimental and numerical study of unidirectional

carbon fiber composites with a silicone matrix, loaded transversally to the fibers.

The experiments show nonlinear behavior with significant strain softening under

cyclic loading. The numerical study uses a plane-strain finite element continuum

model of the composite material in which the fiber distribution is based on

experimental observations and cohesive elements allow debonding to take place

at the fiber/matrix interfaces. It is found that accurate estimates of the initial

tangent stiffness measured in the experiments can be obtained without allowing

for debonding, but this feature has to be included to capture the non-linear and

strain-softening behavior.
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1. Introduction

New designs for all-composite lightweight deployable structures require the

material to undergo severe stowage curvatures without damage and a variety

of schemes for achieving this behavior have been proposed. Two of the most

promising approaches make use of materials that either remain in the elastic
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range while undergoing such extreme deformations (Mejia-Ariza et al., 2006;

Rehnmark et al., 2007; Datashvili et al., 2010) or have a weakly linked matrix

that becomes much softer above its transition temperature (Campbell et al.,

2005; Barrett et al., 2006). These composite materials are often described as

memory matrix composites. In this paper we will focus on the first of these

two approaches and specifically on composites of unidirectional carbon fibers

embedded in a silicone matrix.

One of the problems of greatest practical importance is determining the

stresses and strains that occur when thin sheets of these materials are folded.

This problem was considered by Murphey et al. (2001) and then by Francis et al.

(2007). For memory matrix composites they found that fiber microbuckling

provides a key stress relief mechanism that allows the fibers to survive without

damage when a sheet is folded to extreme curvatures.

The folding behavior of fiber composites with a soft hyperelastic matrix

was recently studied by López Jiménez and Pellegrino (2011), who showed that

during folding the matrix may be subject to very large strains, with maximum

principal strains in excess of 200% near the fibers in sheets with a thickness on

the order of 100 µm and a fiber volume fraction of around 50%. Cyclic bending

tests carried out by López Jiménez and Pellegrino (2011) also showed significant

strain softening, meaning that the bending moment needed to impose a given

curvature decreases during the first few cycles. The measured loss of stiffness

for a given curvature was largest after the first cycle and gradually decreased in

subsequent cycles. The details of the damage mechanisms were not investigated.

Instead of considering the folding behavior, as in previous studies, this paper

focuses on the behavior under transverse tension, i.e. tension perpendicular to

the fibers. This loading case is of particular interest because it does not pro-

duce fiber microbuckling, thus eliminating the effects of geometric nonlinearity,

but instead emphasizes the effects of material nonlinearity including any effects

related to material damage. It will be shown that experimental results obtained

for this type of loading can be used to calibrate simulations in which a source

of material damage, such as fiber debonding, is considered. Hence, both exper-
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imental and numerical studies of such tensile behavior under repeated loading

will be presented in this paper.

The paper is laid out as follows. Section 2 presents a review of the relevant

literature. Section 3 describes the construction of the test specimens and the test

procedures, and presents the experimental results. Section 4 presents the finite

element model that was set up to capture the behavior of the test specimens,

with the specifics of the fiber arrangements used in the simulations presented

in Section 5. The results of the numerical simulations are then presented and

compared with experimental data in Section 6. Section 7 compares the behavior

of fiber composites with a soft hyperelastic matrix with the behavior of compos-

ites with a standard epoxy matrix; it is shown that the incompressibility of the

matrix is responsible for important differences in behavior. Finally, Section 8

summarizes the findings of this research and concludes the paper.

2. Background

There is an extensive literature on the large strain behavior of fiber rein-

forced composites. Merodio and Ogden (2002, 2003) produced a model based

on Spencer (1972), using two invariants to model the effect of the incompressible

fibers on the strain energy of the material. Several biological materials, such as

the cornea and blood vessels, fit the description of stiff fibers in a very soft ma-

trix and models based on such an approach have been used by Holzapfel et al.

(2000); Pandolfi and Manganiello (2006); Pandolfi and Holzapfel (2008). The

second order homogenization theory developed by Ponte Castañeda (2002) has

also been applied to fiber-reinforced hyperelastic materials. This approach is

still under development, see for example Lopez-Pamies and Ponte Castañeda

(2006), Agoras et al. (2009) and Lopez-Pamies and Idiart (2010); a comparison

to numerical results has been presented in Moraleda et al. (2009b).

The models outlined above neglect the strain softening observed in mate-

rials composed of a soft matrix with hard inclusions, such as biological tissue,

particle-reinforced rubbers, or solid rocket fuel. In rubbers strain softening is
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usually known as Mullins effect and in general the degree of strain softening

increases with the concentration of reinforcement. Different mechanisms have

been proposed to explain this effect, including debonding of particle and ma-

trix, rupture of the filler, chain disentanglement or an increase of the rubber

crystallization due to stress concentration (Diani et al., 2009).

Silicone rubber is more stable than other elastomers and shows very lit-

tle to no strain softening when pure (Meunier et al., 2008), however strain

softening is still observed in reinforced silicone rubber (Machado et al., 2010;

López Jiménez and Pellegrino, 2011). López Jiménez and Pellegrino (2011) car-

ried out bending tests on silicone specimens uniaxially reinforced with carbon

fibers and found that an irreversible softening of the moment-curvature relation-

ship takes place every time the curvature applied to the specimen is increased

beyond the maximum value achieved in its prior history, see Figure 1. The pro-

cess is also characterized by a marked hysteretic behavior under cyclic loading.
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Figure 1: Moment-curvature relationship for a specimen with Vf = 55%, showing strain

softening under cycling loading, taken from López Jiménez and Pellegrino (2011).

In the present paper it is assumed that the main reason for strain softening
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is debonding/dewetting between matrix and reinforcement. This approach was

explored by Tong and Ravichandran (1994) and Ravichandran and Liu (1995),

who provided expressions for the elastic properties of particle composites under-

going damage by dewetting, assuming a linear response of the material. Debond-

ing was incorporated in the finite element analysis of elastomers reinforced with

particles (Zhong and Knauss, 1997, 2000) and fibers (Moraleda et al., 2009) by

introducing cohesive elements. The results were in good qualitative agreement

with the behavior observed experimentally, but to the authors’ knowledge no

direct comparison of experimental results and predictions has been published.

3. Experiments

This section details the specimen fabrication and characterization. In partic-

ular, the fiber distribution in three sets of specimens with different fiber volume

fractions is characterized through micrographs and the results are used in Sec-

tion 5 to set up finite element models. The section also presents a set of tension

tests that show nonlinear behavior and link strain softening to fiber volume

fraction.

3.1. Test Specimen Fabrication

The fibers used were HTS40-12K, produced by Toho Tenax (retrieved August 2010)

and supplied by the Itochu Corporation as a uniaxial dry fabric with an areal

weight of 40 g/m2 for a single ply. This fabric had been made by spreading each

tow to a width of approximately 20 mm, leaving no visible separation between

the individual tows. The properties of the fibers are listed in Table 1.

The matrix used was CF19-2615, produced by NuSil Silicone Technology

(March 2007). It is a two part, optically clear silicone chosen for its low vis-

cosity, see Table 1, in order to facilitate flow between the fibers. The modulus

and elongation properties provided by the manufacturer were verified experi-

mentally through uniaxial tests (López Jiménez and Pellegrino, 2011). Failure

typically occurs at elongations in the range 120-140% and for a Cauchy stress of
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Fiber properties: HTS40

Diameter 7 µm

Tensile modulus 240 GPa

Density 1.77 g/cm3

Matrix properties: CF19-2615

Viscosity (part A) 1300 mPa s

Viscosity (part B) 800 mPa s

Density 0.96 g/cm3

Manufacturer supplied tensile modulus 0.8 MPa

Manufacturer supplied elongation at failure 100%

Table 1: Material properties

approximately 1.25 MPa. Failure criteria for silicone rubber under multi-axial

loading conditions have yet to be developed. In particular there is no informa-

tion about cavitation (Gent and Lindley, 1959), a failure mechanism consisting

of the sudden appearance of internal flaws, which is often associated with the

failure of rubbers. For this reason, the value of the stretch at failure cannot

be readily applied to other loading conditions, although it will be used as an

indication that the material may be close to failure.

In the fabrication process, the two parts of the silicone were mixed and

placed under vacuum to extract any air bubbles. The mixture was then poured

over the fibers and the material was cured for 30 minutes at 150◦C. Internal

vacuum and external pressure (up to 85 psi, 0.586 MPa) were applied during

curing to increase the fiber volume fraction and to help consolidate the material.

No significant porosity was observed in the specimens. More details on the

fabrication process are provided in López Jiménez and Pellegrino (2011).

3.2. Specimen Characterization

The actual distribution of the fibers in a thin sheet of composite material

is different from the regular lattices that have been used as idealizations for
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finite element or analytical modeling (López Jiménez and Pellegrino, 2011). To

set up a high fidelity model it is necessary to ensure that the fiber distribution

captures the main attributes of the actual microstructure.

The first step in this process is obtaining micrographs of the cross section of

a specimen. A standard micrograph would require a perfectly flat surface, which

is traditionally achieved by embedding the specimen in epoxy, and then grinding

and polishing it. However, this is not possible in the case of fiber composites

with a soft matrix. Instead, the material was cut with a razor blade and then

placed end-on under a Nikon Eclipse LV100 microscope set at an amplification

of 50x and attached to a Nikon DS-Fi1 digital camera. The cut surface was not

sufficiently flat to lie within the depth of field of the lens, hence several images of

the cross section were taken at different focus distances and were then processed

as an image stack using Adobe Photoshop CS4 (2008). A sharp image of the

whole cross-section was thus obtained.

Next, a characterization of the fiber distribution in the cross-section was ob-

tained. Several studies have proposed parameterizations based on the Voronoi

tessellation of the fibers and Figure 2 shows such a tessellation obtained with

the voronoi command in Matlab after providing the centroids of the fibers as an

input. Different authors have used the distance from the fiber to the boundary

of the cell (Davy and Guild, 1988) or the topological entropy of the polygonal

network (Pyrz and Bochenek, 1998). Other researchers have suggested func-

tions based on the position of the inclusions, such as the power spectral den-

sity of the indicator function (Povirk, 1995) or the radial distribution function

(RDF), which measures the probability of, given the position of a fiber, finding

another fiber in an annulus of radius r and r + dr centered on the first one

(Rintoul and Torquato, 1997).

The function used in the present work was the second-order intensity func-

tion K(r) (Pyrz, 1994a,b), defined as the number of fibers expected to lie within

a radial distance r from an arbitrary fiber, normalized by the overall fiber den-

sity. This function is proportional to the integral over the radius of the RDF

and the two functions provide the same information. The algorithm used to
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50 µm

Figure 2: Micrograph showing Voronoi tessellation of fibers.

construct a finite element model based on the value of K(r) observed in the

micrographs is detailed in Section 5.

The Voronoi tessellation can also be used to study in more detail the fiber

volume fraction, which will be denoted as Vf . In particular, the difference

between global and local volume fractions can be established by calculating the

volume fraction of each of the Voronoi cells. Figure 3 shows its histogram, with

a vertical line marking the average value (55%, for a three ply specimen), which

agrees with the value obtained from weight measurements. This figure shows

that the most common values of Vf are in the range 60% - 65%. The peak

at very low volume fractions corresponds to fibers next to the surface of the

material, whose Voronoi cells extend to infinity.

Three different sets of specimens made from three plies were characterized

and the same specimens, with Vf equal to 65%, 50%, and 22%, were studied

by means of experiments and simulations. Note that because the total number

of fibers in a unit width of each ply is the same in all cases, specimens with

lower fiber volume fraction are thicker and hence have a lower homogenized

longitudinal modulus. Figure 4 shows micrographs of the two extreme cases:

note that the fiber distribution in the specimen with Vf = 22% is very irregular

and there is a high degree of fiber clustering.

3.3. Experimental Results

100 mm long by 25 mm wide specimens made from either three or four plies

were made and tested, see Figure 5, with an Instron 5569 materials testing
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Figure 3: Histogram of volume fractions of Voronoi cells produced from micrographs. The

vertical line marks the average value.
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Figure 4: Specimens with three plies and: (a) Vf = 65% and 150 µm average thickness, (b)

Vf = 22% and 300 µm average thickness.
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machine with a 10 N load cell at a uniform diplacement rate of 0.1 mm per

minute.

Loading

direction

Fiber

direction

y

x

Figure 5: Experimental setup for tension test in direction transverse to the fibers.

The extension, δ, of a gauge length defined by two retro-reflecting strips at a

distance L ≈ 25 mm was measured using an Epsilon LEO1 laser extensometer.

The corresponding average engineering strain was computed from

ϵy =
δ

L
(1)

The average Piola-Kirchhoff stress σy was obtained by dividing the load F

by the initial cross-sectional area A of the specimen

σy =
F

A
(2)

Figures 6-7 show a series of stress vs. strain plots from these experiments.

Figure 6 shows the response of four nominally identical specimens, subjected

to three cycles of increasing maximum strain followed by further extension un-

til failure. The maximum strains applied in the three cycles corresponded to

ϵy = 0.01, 0.02, and 0.03 over the whole specimen, as measured by the testing
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machine. The corresponding strains measured with the laser extensometer were

similar.

The responses of the four specimens were similar during the first two cycles.

Failure typically began to occur towards the end of the second cycle and hence

the behavior of the specimens varied widely from the third cycle. The second

specimen, Figure 6 b, was so damaged that the third cycle could not even be

started. The other three specimens survived the three cycles, although with

noticeable damage in the case of the fourth specimen. The first and fourth

specimens failed after the first three cycles; the larger failure strain of the first

specimen is explained by the position of the main crack producing failure, which

was inside the laser gauge for the first specimen, and outside for the fourth one,

leading to a higher measured strain. Tests carried out 24 hours after a previous

test showed no signs of recovery.

The observed variability in the failure behavior shows an essential difference

between composites with a silicone matrix vs. those with a standard epoxy

matrix. In the latter case failure is sudden, whereas in the former case stable

cracks form in the matrix and a load increase is needed for the cracks to grow.

Hence composites with a silicone matrix often retain much of their stiffness even

after visible cracks have formed; physically this behavior can be explained by a

small misalignment of the fibers that results in a few fibers bridging across the

crack. These fibers become aligned with the loading direction and, since the

fibers are much stiffer than the matrix, even a small number of fibers is then

able to sustain the same loads as the rest of the specimen.

In the case of specimens with a lower fiber volume fraction, the behavior

is approximately linear for a much larger range of strains and the hysteresis is

also much lower. These specimens reach a much higher strain at failure, see

Figure 7, because the matrix is less constrained by the fibers. This results in

lower stress concentrations, which are the main source of strain softening and

nonlinearity.
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Figure 6: Stress vs. strain under transverse loading for four different three-ply specimens

with Vf = 65%. The specimens were tested until failure occurred: (a) the first specimen

failed after the three cycles, inside the measurement gauge, (b) the second specimen failed

during the second cycle, (c) the third specimen failed after the three cycles and outside the

measurement gauge and (d) the fourth specimen failed after the three cycles, with noticeable

damage occurring during the third cycle.
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Vf = 22% subject to three load-unload cycles with a maximum strain ϵy = 0.1, followed

by monotonic extension up to failure.

4. Finite Element Model

A finite element model of the test configuration was created using the package

ABAQUS/Standard (2007). Plane strain conditions and non-linear geometry

were assumed and both matrix and fibers were modeled as elastic continua,

using plane strain elements. In order to reduce the computational effort, only

a representative volume element (RVE) was modeled using periodic boundary

conditions. The size of the RVE, the fiber arrangement and the mesh size were

varied during the analysis, as discussed in detail in Section 5.

The RVE is defined with periodic boundary conditions such that the faces

of a rectangular piece of composite material of size L1×L2 deforms periodically

in the x and y directions, where both x and y are perpendicular to the direction

of the fibers and y is aligned with the direction of extension of the specimens

tested in Section 3. The meshing of opposite faces of the RVE is identical, and

hence the boundary conditions can be applied directly on the edge nodes using

the EQUATION command in ABAQUS. The boundary conditions are expressed
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mathematically as:

u(x, 0) = u(x, L2) (3)

v(x1, 0)− v(x1, L2) = v(x2, 0)− v(x2, L2) (4)

v(0, y) = v(L1, y) (5)

u(0, y1)− u(L1, y1) = u(0, y2)− u(L1, y2) (6)

where u and v are the displacements in the x and y direction, respectively. The

above boundary conditions imply that the dimensions of the RVE are allowed to

change with respect to the undeformed configuration, but they have to remain

uniform through the model. The loading of the element was imposed as a

prescribed relative displacement between two opposite faces. No constraint was

applied in the direction of the fibers.

Two different sets of elements were used to model the fibers and the matrix.

In the case of the fibers, which are modeled as linearly elastic materials, the

elements used were CPE3, linear triangular elements for plane strain. The

matrix was modeled as a hyperelastic purely incompressible material, which

requires the use of elements with hybrid formulation. The elements chosen in

this study were the linear quadrilateral hybrid elements CPE4H, with a mesh

sufficiently fine to provide at least two elements between each fiber. Several other

types of elements were investigated and were excluded for the following reasons.

The linear hybrid triangular elements (CPE3H) resulted in lack of convergence

and hence no analysis could be carried out to completion. The quadratic version,

CPE6H, gave macroscopic results in agreement with the quadrilateral elements

but resulted in high stress concentrations and a check-board stress pattern, see

Figure 8. This was the case even for much finer meshes than those used for

quadrilateral elements, and so the CPE6H elements were discarded.

The second order quadrilateral elements (CPE8H) gave no problems for a

sufficiently fine mesh, but the linear version of these elements (CPE4H) pro-
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Figure 8: Distribution of stress σx in a model with Vf = 50% and CPE6H elements, showing

check-board pattern.

duced better results for the same number of nodes. Generalized strain elements

(CPEG3 and CPEG4H) were also tested, in order to allow deformation in the

out-of-plane direction but the linear response was found to be practically the

same as for plane strain elements, due to the high stiffness of the fibers.

The fibers were modeled as a linear elastic, orthotropic material. The trans-

verse modulus was given a value of 20 GPa, typical of carbon fiber. It is roughly

one order of magnitude lower than the axial modulus provided in Table 1. The

value of the transverse modulus was varied by up to an order of magnitude to

study the influence of this parameter, and was found to be negligible.

The matrix was modeled as a hyperelastic solid using a Gent (2005) po-

tential modified to avoid singularities at large stretches. Although physically

unrealistic, large stretches may occur in the course of an equilibrium itera-

tion (López Jiménez and Pellegrino, 2011). This model was implemented in

ABAQUS as a user-defined material, using the user subroutine UHYPER. The

potential is defined in terms of the principal stretches λi and is given by:

W = −C1Jm ln

(
1− J1

Jm

)
(7)

+ C2 ln

(
J2 + 3

3

)
if J1 ≤ 0.9Jm
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W = −C1Jm ln(0.1) +
C1 (J1 − 0.9Jm)

0.1
(8)

+ 0.5
J1 (J1 − 0.9Jm)

2

0.01Jm

+ C2 ln

(
J2 + 3

3

)
if J1 > 0.9Jm

where

J1 = λ2
1 + λ2

2 + λ2
3 − 3 (9)

J2 = λ−2
1 + λ−2

2 + λ−2
3 − 3 (10)

with the parameters C1 = 0.1015 mJ, C2 = 0.1479 mJ and Jm = 13.7870

obtained by fitting the model to uniaxial tests on pure silicone specimens. It has

been shown by Ogden et al. (2004) that the parameters of the Gent potential

can be predicted quite accurately from only unixaxial data, which is not the

case with other hyperelastic potentials, such as the Ogden or Mooney-Rivlin

potentials.

The model described so far includes no source of damage or dissipation.

In order to capture the stress softening observed in the experiments, cohesive

elements were introduced between the fibers and the surrounding matrix, as a

way to model fiber debonding. The standard two-dimensional cohesive elements

in ABAQUS/Standard, COH2D4, were used. The behavior of these elements is

described in Figure 9. In tension, these elements keep their initial stiffness until

a traction t0 is reached, corresponding to a separation δ0. The stiffness then

decreases until it reaches a value of zero for a deformation δf . The behavior of a

damaged element can follow a straight line, as in the figure, or an exponential. In

the case of unloading, the relationship follows a straight line passing through the

origin. More details on the implementation of cohesive elements are provided

in Section 6.2. Note that in compression the elements available in ABAQUS

always retain the initial stiffness.
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Figure 9: Typical traction-separation response in a cohesive element.

5. Geometry Details

This section details the geometry of the RVEs used in this study. It includes

the reconstruction process that generates the fiber distribution and a sensitivity

study of key geometric parameters such as the fiber density and the minimum

distance between fibers.

5.1. Fiber Arrangement

The Random Sequential Adsortion algorithm by Rintoul and Torquato (1997)

was used to generate the microstructure of the composite material. It is an

iterative process that tries to minimize a potential E that quantifies the dif-

ference between a trial microstructure and an actual microstructure observed

experimentally. E is usually defined using the parametrization function f (r)

as E =
∑

k (f (rk)− f0 (rk))
2
, where f0 (r) is the value of the function for the

reference configuration, and the sum is made over the discretization intervals.

The algorithm works as follows. In every iteration a fiber is picked randomly

and a random displacement is applied. The potential E′ is calculated for this

new configuration. The displacement is accepted according to the probability

P =

1 if ∆E ≤ 0

e
E−E′

A if ∆E > 0

(11)
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where ∆E = E′ − E and A is a parameter that controls how fast the system

should evolve (a value of 0.05 was used). This means that the algorithm would

accept some of the displacements in which the energy increases slightly, but

almost none implying a large increment. The iterations are repeated until the

system converges to a stable value of E.

Two different potentials were used in this research, and the algorithm finally

implemented is described in the next sections.

5.1.1. Initial Mesh

First, the fibers were randomly distributed with a hard-core process. This

is a Poisson random process in which a limitation on the minimum distance

between the centers of fibers is introduced. In cases with high fiber volume

fraction not all the fibers can be located randomly as a jamming condition is

reached. The jamming limit is given by Tanemura (1979) as 0.547 and this value

is lowered if the imposed distance is higher than the fiber diameter. This is the

case here as we need to make space for at least a small amount of matrix between

neighboring fibers. In practice, jamming is observed when Vf approaches 50%.

If after 1000 attempts a fiber has not been accepted, the last attempted

position is accepted even if the fiber overlaps with other fibers. In such cases

the Random Sequential Adsortion algorithm is used, with the potential energy

E =
∑
i

∑
j

((
100

dij
+ 10

)
δij + 100δi

)
(12)

where dij is the distance between fibers i and j, δij is equal to one if the distance

between these fibers is less than the minimum imposed and zero otherwise, and

δi is one if fiber i is too close to the edges of the RVE and zero otherwise.

The minimization of this potential until its value is zero will ensure that the

geometric rules are satisfied.

This process only depends on the overall volume fraction assigned to the

RVE and the geometric conditions imposed to avoid defective meshing, see Sec-

tion 5.2.
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5.1.2. Reconstruction of Actual Microstructure

Once an initial mesh has been obtained, the next step is to make it evolve

to a configuration that is statistically equivalent to the actual microstructure

observed in a micrograph. It is at this point that the second-order intensity

function K(r) is used, in a potential of the form:

E =
∑
k

(K (rk)−K0 (rk))
2

(13)

+
∑
i

∑
j

((
100

dij
+ 10

)
δij + 100δi

)
Here, the large weights assigned to the penalty terms enforcing the minimum

distance between the fibers ensure that fulfilment of the geometric constraints

dominates over the term depending on K.

This process leads to two different types of RVE’s: purely random i.e. ob-

tained purely through the hard-core process, and reconstructed i.e. obtained

from actual micrographs. Two examples are shown in Figure 10.

5.2. Minimum Distance between Fibers

The minimum distance between the fibers is a very important parameter in

the process described earlier. It affects the jamming limit at high fiber volume

fractions and it also has a significant influence on the second-order intensity

function of the initial configuration. Figure 11 shows the linear stiffness obtained

from random models in which this distance varies from 0.1 µm to 1 µm (1.43%

to 14.3% of the fiber diameter). Five different cases were considered for each

distance and it was found that the minimum stiffness is approximately the same

for all distances, while the maximum stiffness increases by nearly 30% as the

distance decreases. Unless stated otherwise, a minimum separation of 0.25 µm

(i.e. 3.57% of the fiber diameter) was used for all simulations presented in this

paper, in order to facilitate meshing. The same distance was also introduced as

a limit on the distance to the edges of the unit cell. This condition does not

have a physical interpretation: it has been included only to facilitate meshing.
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a

b

Figure 10: Fiber distribution in 50 µm ×50 µm RVE with Vf = 50%: (a) original random

arrangement and (b) subsequent reconstruction of microstructure observed in micrographs.
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5.3. Mesh Density

The mesh density is another key parameter of the model. Due to the in-

compressible nature of the matrix, coarse meshes introduce very high stress

concentrations and can also result in the presence of a checker-board pattern in

the stress field.

Standard approaches to study mesh related convergence issues analyze the

evolution of the stress at a given point with respect to the mesh size in terms

of the maximum local stress divided by the homogenized stress, and to con-

sider the evolution of an overall parameter, such as the homogenized stiffness.

Results of these studies are presented in Figure 12, which shows that meshes

with stress concentrations of up to two orders of magnitude only increased the

overall stiffness by 10%. It was found that extreme stress concentrations could

be avoided by including at least two elements between each pair of fibers and

hence most of the results presented in this paper were obtained from models

with 50.000 - 70.000 nodes, unless stated otherwise.
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Figure 12: Effects of mesh density: (a) linear stiffness and (b) stress concentrations. The RVE

is purely random and fixed, with Vf = 50%
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5.4. Size of RVE

The RVE needs to include enough particles to capture the behavior of the

material (Monetto and Drugan, 2004) and this effect was investigated by consid-

ering four different values of L1 = L2; For each of these values of L1 = L2 five

different fiber arrangements were analyzed and the resulting linear stiffnesses

are compared in Figure 13. According to the figure, there is a wider range of

values for the smallest RVE, while for the other RVE’s there is broadly similar

behavior for all fiber arrangements.
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Figure 13: Linear stiffness for different sizes of the RVE. Purely random distribution, Vf =

50%.

The transverse stiffnesses in the x and y directions were also compared,

to assess the orthotropy of the RVE’s. Differences on the order of 0.2% were

obtained, even for the case L1 = L2 = 25 µm. A value of L1 = L2 = 50 µm

was chosen, except for the case Vf = 22%, in which case L1 = L2 = 75 µm was

chosen. The size and number of fibers of the different RVE’s considered in the

present study are summarized in Table 2.

It is important to mention that these conclusions do not extend automati-

cally to the case of large strains. Müller (1987) showed that the use of a RVE

may lead to incorrect solutions in non-linear elasticity.
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Vf (%) Side length (µm) Number of fibers

22 75 32

30 50 19

40 50 26

50 25 8

50 50 32

50 75 73

50 100 130

50 50 32

55 50 35

60 50 38

65 50 42

Table 2: Number of fibers included in each finite element model, as a function of fiber volume

fraction and size of RVE.

6. Simulation Results

Two different sets of simulations were obtained. The objective of the first

set was to study the initial response of the material, hence the bonding between

fibers and matrix was assumed to be perfect and only the tangent homogenized

modulus of the material was calculated. These simulations explored the de-

pendence on the volume fraction and the difference between purely random vs.

reconstructed RVE’s. As it will be shown, this approach fails to capture the

behavior of the material once the strain increases.

In the second set of simulations cohesive elements were included, to capture

the softening due to debonding between the fibers and the matrix. In this set

of simulations the different parameters controlling the behavior of the cohesive

elements were explored and the results were compared with the large strain

response of the composite. The effect of the cohesive elements on the microscopic

stress and strain fields was also addressed.
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6.1. Perfect Bonding

The linear responses of several RVE’s were calculated for both purely random

and reconstructed fiber distributions, see Figure 14. Since only three different

volume fractions could be produced experimentally, due to the limitations in

controlling the amount of silicone in the material, the microstructure regenera-

tion process could be carried out only for three values of Vf . For each value of

Vf five different configurations were generated and analyzed.

It can be seen in Figure 14 that the homogenized linear response is signifi-

cantly different between the two sets of RVE’s and, particularly for larger Vf ,

the reconstructed RVE’s can be as much as 50% stiffer.
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Figure 14: Linear stiffness obtained from simulations on purely random and reconstructed

RVE’s. Five different RVE’s of each type were considered for each value of Vf .

The results of the simulations on reconstructed RVE’s are compared to the

experimental results in Figure 15. The experimental results show an elastic

modulus that is up to 25% higher than the corresponding simulations; this dif-

ference can be attributed to the presence of slightly misaligned fibers, which

carry part of the load and so increase the overall stiffness of the material. Ex-

perimental observations of the material after failure also indicated the presence
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of misaligned fibers, see Section 3.3. Another possible source of disagreement

is the fact that the matrix model was based on tests done on pure silicone

specimens. The mechanical response of the silicone in the composite might be

different, due to changes occurring in the fabrication process.
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Figure 15: Comparison of experimental results with linear stiffness obtained from simulations

on reconstructed RVE’s.

The simulation results allow the study of the details of the stress and strain

fields within the material. The strain remains basically zero in the fibers but

reaches very high concentrations in the matrix, particularly between fibers that

are very close. For the case Vf = 65% there are several regions where the strain

is 10 to 50 times higher than the homogenized applied strain, ϵy, see Figure 16.

The corresponding distribution of σy is shown in Figure 17. This plot shows

two load transmission paths with high stress concentrations in matrix regions

closely surrounded by fibers, due to incompressibility.

Another example, in Figure 18, shows the differences in the major principal

strain between a reconstructed and a purely random RVE , both with Vf = 50%.

In the case of the reconstructed RVE the fibers tend to cluster more than in the

random microstructure and this produces a higher strain concentration between

the fibers, leading to a higher overall stiffness.
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Figure 16: Major principal strain distribution due to ϵy = 0.01; reconstructed RVE with

Vf = 65%: (a) complete 50× 50 µm2 RVE and (b) close up view.
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Figure 17: Distribution of stress component σy due to ϵy = 0.01; reconstructed RVE with

Vf = 65%.

The simulations presented in this section are unable to capture the softening

behavior, see Figure 19. In order to capture this effect cohesive elements were

introduced between the fibers and the matrix, as discussed in the next section.

6.2. Debonding Allowed

Cohesive elements were introduced to model the debonding between the

fibers and the matrix. In order to reduce the influence of the cohesive elements

before damage takes place, their initial stiffness was set to 100 GPa. This

guarantees almost perfect initial bonding between matrix and fibers.

The failure behavior of the cohesive elements available in ABAQUS is con-

trolled by three main parameters. The first parameter controls damage initia-

tion, which in the present study was defined by a quadratic combination of the

traction components. Hence, it was assumed that damage will occur when:(
tn
tn0

)2

+

(
ts
ts0

)2

= 1 (14)

where tn and ts are the normal and shear components of the nominal traction
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Figure 18: Major principal strain distribution due to ϵy = 0.01; reconstructed RVE with

Vf = 50%: (a) reconstructed RVE and (b) purely random RVE.

29



0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
0

0.05

0.1

0.15

0.2

 

 

Experiment

Simulation, perfect bonding

y

 (
M

P
a

)
y

 

Figure 19: Plot of average longitudinal stress vs. average longitudinal strain: experiment and

simulation (reconstructed RVE, Vf = 65%) with perfect bonding.

stress vector and tn0, ts0 are normalizing factors. In the present study the same

factor was used for all tractions, i.e. tn0 = ts0 = t0, however different values were

used in a set of preliminary analyses to determine the relative importance of each

term. It was found that tn tends to control damage initiation, as the models

that considered only tn showed practically no difference in damage initiation

from the models that took both tractions into account. However, those parts

of the simulations in which damage growth occurred were numerically more

stable when both tractions were included, which suggested that ts becomes

more important once damage has been initiated.

The second parameter is the separation δf , for which two main effects were

found. For separations ranging from 1 µm to values much larger than the fiber

diameter, such as 100 µm, the response was fairly independent of the actual

value chosen for δf , see Figure 20. The reason is that the cohesive elements limit

the stress in the material and also allow the formation of small gaps between

the fibers and the matrix, which relax the constraint on deformation due to

matrix incompressibility. For values of δf much smaller than the fiber radius,

the formation of a gap between fiber and matrix is enough to produce a large

decay in the stress, which in some cases resulted in complete debonding.
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Figure 20: Stress vs. strain under transverse loading for different values of δ0, t0 = 0.2 MPa,

reconstructed RVE, Vf = 65%.

The model shows a better agreement with the experimental results for low

values of δf and the dependence of the solution on t0 for this case is shown

in Figure 21. As expected, an increase in t0 delays the start of non-linear

behavior and increases the total stress. The simulation with t0 = 0.2 MPa

shows a decrease in stress for strains higher than 0.015, which indicates that the

initiation of failure in the composite is not an instantaneous process, as already

seen in Section 3.3.

The third parameter is the type of damage evolution, which in ABAQUS

can be linear or exponential with respect to the separation. The results shown

previously were all produced from models with linear damage growth, because

using an exponential did not lead to significant changes.

Figure 22 shows a comparison between experiments and simulations, all

for Vf = 65% and for reconstructed RVE’s. The numerical results provide a

very good approximation of the test results. The response predicted by the

simulations is not completely smooth due to the relatively small number of

fibers included in the RVE: when a single fiber debonds, the force carried by
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Figure 21: Stress vs. strain under transverse loading for different values of t0, δ0 = 0.1 µm,

reconstructed RVE, Vf = 65%.

the material drops, and then rises again as more strain is applied. This effect

could be reduced by using larger RVE’s.
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Figure 22: Stress vs. strain under transverse loading for experiments and simulations using

different reconstructed RVE’s, Vf = 65%.
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If a loading-unloading cycle is applied, the model shows permanent damage

due to the degradation of the cohesive elements, see Figure 23. There are

several differences from the behavior observed in the experiments, mainly due

to the fact that as long as no damage is being generated the cohesive elements

behave linearly and therefore neither hysteresis nor permanent deformation are

predicted by the simulation. Also, the unloading-reloading path is basically a

straight line until new damage occurs. Despite these limitations the model is

still able to provide a good prediction of the experimental behavior.
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Figure 23: Stress vs. strain under cyclic transverse loading for experiment and simulation

using reconstructed RVE, Vf = 65%.

The simulations can be used again to look at the microscopic stress and

strain fields. Figures 24-25 show the maximum principal strains and the stress

components in the loading direction when cohesive elements are introduced in

the simulations originally presented in Figures 16-17, for the case of perfect

bonding. The same scale has been kept for ease of comparison: the strains

have approximately the same values, although the distribution is different, and

the stresses are much lower, as expected, due to the inclusion of the cohesive

elements.
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Figure 24: Distribution of maximum principal strain due to ϵy = 0.01. Reconstructed RVE,

Vf = 65%, cohesive elements introduced between fibers and matrix.
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Figure 25: Distribution of stress σy due to ϵy = 0.01. Reconstructed RVE, Vf = 65%, cohesive

elements introduced between fibers and matrix. The scale is the same as in Figure 17.
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The stresses are not only lower, but their distribution is significantly different

from the case of perfect bonding. If the scale is changed according to the new

stress levels, Figure 26, it can be seen that the highest stress no longer occurs

between the fibers that are closest, because the cohesive elements degrade more

in regions where the fibers are closer than where they are more spread out.
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Figure 26: Distribution of stress σy due to ϵy = 0.01. Reconstructed RVE, Vf = 65%, cohesive

elements introduced between fibers and matrix.

As it was noted in Section 3.1, the values of the principal strain observed in

the simulations are well beyond the failure point observed in uniaxial testing.

Although these results cannot be used to assess quantitatively the integrity of

the material, they suggest that debonding is sufficient to capture the observed

softening.

7. Comparison with Analytical Bounds

Several approximations for the transverse stiffness of a fiber reinforced ma-

terial have been proposed (Jones, 1999). The rule of mixtures gives a transverse
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stiffness of

E2 =
E2fE

′
m

(1− Vf )E2f + VfE′
m

(15)

where E2f is the transverse stiffness of the fibers and E′
m is equal to

E′
m =

Em

1− νm
(16)

where Em and νm are the properties of the matrix, which is assumed to be

isotropic. This expression provides a rough lower bound.

A semi-empirical approximation can be obtained through the Halpin-Tsai

equations (Halpin and Kardos, 1976), which give a transverse stiffness of

E2 = Em
1 + ηξVf

1− ηVf
(17)

where the parameter η is defined as

η =
E2f − Em

E2f + ξEm
(18)

and ξ is a parameter to be fitted experimentally, and whose value usually ranges

from 1 to 2.

It is interesting to study the validity of these approximations in the case of

composites with a hyperelastic matrix. Figure 27 shows a comparison between

the numerical results from Section 6, the rule of mixtures, and the Halpin-

Tsai prediction. The value used for the matrix stiffness was the initial tangent

modulus of the silicone under uniaxial tension, obtained by differentiation of

Equation 8 that gives Em = 6C1 + 2C2 = 0.9048 MPa, and the Poisson’s ratio

was that of incompressible materials, νm = 0.5. The results were produced with

purely random RVE’s, i.e. no information from the micrographs was used. The

simulations were repeated using the same fiber arrangement and finite element

mesh, but giving the matrix the properties of a typical epoxy, with Em = 4.5

GPa and νm = 0.2. In both cases the response was normalized by the elastic

modulus of the matrix.
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Figure 27: Comparisons of transverse stiffness of two types of fiber-reinforced composites

with (a) silicone matrix and (b) epoxy matrix. The simulations assumed random RVE’s. The

crosses show the values of the five different configurations for each value of Vf .

The results show two main differences. The first difference relates to the

magnitude of the increase in normalized stiffness and its dependence on the

volume fraction. The normalized stiffness of the composite with the silicone

matrix increases rapidly with Vf and reaches a value of over 20. This behavior

is also different from the Halpin-Tsai predictions; attempts to increase the value

of ξ were still not able to reproduce the dependence on volume fraction observed

in the simulations. The second difference is a much greater spread in stiffness

values obtained from the simulations in the case of composites with silicone

matrix than in the case of composites with epoxy matrix. For example, in the

case of Vf = 60% the extreme values differ by up to ±20% from the mean value.

There are two possible explanations for this difference of behavior: the ex-

treme disparity of stiffness between fibers and silicone matrix, and the incom-

pressible nature of silicone. In order to study both options, two new sets of

simulations were produced using the same RVE’s but different matrix proper-

ties, see Figure 28. The first set of simulations modeled the matrix as a linear

37



material with νm = 0.2 and modulus equal to the tangent modulus of the sil-

icone, Em = 0.9048 MPa. In this case the material behavior could be fitted

with the Halpin-Tsai equation using ξ = 1.5, which lies in the usual range of

this parameter. In the second case the matrix retained the elastic modulus of

epoxy, Em = 4.5 GPa, but incompressibility was also included. In this case

the stiffness gain was much higher than in the case of compressible epoxy, and

the Halpin-Tsai equation with ξ = 2 gave a poor prediction. By using a value

of ξ = 25 the prediction was much improved and the dependence on Vf was

captured. However, this value of ξ is well outside the usual range.

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
1

2

3

4

5

6

7

Vf

E
2
 /
 E

2
m

 

 

Halpin−Tsai (ξ = 1.5)

Rule of mixtures

Simulations

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
1.5

2

2.5

3

3.5

Vf

E
2
 /
 E

2
m

 

 Halpin−Tsai (ξ = 2)

Halpin−Tsai (ξ = 25)

Rule of mixtures

Simulations

Figure 28: Comparison of transverse stiffness from simulations and analytical predictions.

Matrix properties: (a) Em = 0.9048 MPa, νm = 0.35 and (b) Em = 4.5 GPa, νm = 0.5. The

crosses show the value of each of the five different configurations considered for each Vf .

Therefore, it can be concluded that incompressibility alone is enough to

produce some deviation from the behavior of standard, epoxy based composites

but the effect is much more significant when combined with a matrix that is

several orders of magnitude softer than the fibers. In particular, a large spread
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in stiffness values will be seen only when both effects are present.

Finally, the stiffness predictions from the simulations were also compared to

the Hashin-Rosen bounds (Hashin and Rosen, 1964), which include the effects

of the bulk modulus of the matrix. The bounds were calculated using the

linear stiffness of the silicone and different values for its Poisson’s ratio (νm =

0.4, 0.49, 0.499 and 0.4999). The results have been plotted in Figure 29, which

shows that the upper bounds are highly dependent on the value of νm, although

they tend to converge for values very close to the incompressibility limit; the

lower bound, on the other hand, show no dependency. The upper bounds for

νm > 0.49 bound all numerical results, see Figure 29, however the disparity

between higher and lower bounds is too high for these estimates to be useful in

design applications.
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Figure 29: Comparison of transverse stiffness from simulations and Hashin-Rosen analytical

bounds, for Em = 0.9048 MPa and different values of the Poisson’s ratio.

8. Conclusions

A composite material consisting of unidirectional carbon fibers in a silicone

matrix was fabricated and tested under tension in a direction transverse to the
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fibers. Its behavior was found to be nonlinear and a marked strain softening

was observed. Failure occurred due to tearing of the matrix, a process which

was stabilized by slight misalignments of the fibers.

A 2D finite element model was created in order to study the micro-mechanics

of this material, using a representative volume element with periodic bound-

ary conditions. Two different fiber arrangements were considered: a random

hard-core process and a reconstruction method using the second-order intensity

function obtained from actual micrographs of the material.

In a first set of simulations perfect bonding between the fibers and the ma-

trix was assumed and the modulus of the matrix was taken to be constant.

This approach produced a linear response, and the analyses in which the fiber

distribution had been based on direct measurements from micrographs showed

a higher stiffness for low fiber volume fractions, due to fiber clustering. No sig-

nificant difference in initial stiffness could be observed for fiber volume fractions

of 55% or higher. These numerical predictions provided an adequate match to

the measured initial stiffness but did not (attempt to) capture strain softening,

which resulted in microscopic strains up to 50 times higher than the macroscopic

average strain being obtained.

In a second set of simulations debonding between the fibers and the matrix

was allowed to occur by introducing cohesive elements in the finite element

model. This modification allowed the simulations to capture strain softening

and thus replicate the observed nonlinear behavior as well as the damage under

cyclic loading. Although these simulations were still not able to fully capture the

observed hysteresis and permanent deformation, since the unloading-reloading

behavior of the cohesive elements is elastic (a more refined model of debonding

and crack propagation could be adopted for more realistic predictions), this

approach was able to reduce the microscopic strains to values well below the

failure stretch of the silicone matrix observed under uniaxial conditions.

It is concluded that the transverse loading test provides a very useful measure

of the damage taking place in a uniaxial fiber composite with a soft matrix. By

comparing experimental results and simulations that assume perfect bonding,
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parametric studies of different types of silicones, fiber sizing, etc. could be carried

out in the future, to find the best combination of materials and processing

techniques.

An additional result of this study is the fact that uniaxial fiber composites

with a soft matrix show a much higher transverse stiffness than composites

with traditional epoxy, once the results are normalized by the elastic modulus

of the matrix. Numerical simulations have shown that the main reason is the

incompressibility of the matrix; the high difference in stiffness between fibers and

matrix is less important. Hence it is noted that traditional analytical tools like

the Halpin-Tsai equations should not be used with this new type of composites.
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experimental characterization and numerical modelling of an unfilled silicone

rubber. Polymer Testing 27, 765–777.

Monetto, I., Drugan, W.J., 2004. A micromechanics-based nonlocal constitu-

tive equation for elastic composites containing randomly oriented spheroidal

heterogeneities. Journal of the Mechanics and Physics of Solids 52, 359–393.

Moraleda, J., Segurado, J., Llorca, J., 2009. Effect of interface fracture on the

tensile deformation of fiber-reinforced elastomers. International Journal of

Solids and Structures 46, 4287–4297.

Moraleda, J., Segurado, J., Llorca, J., 2009b. Finite deformation of incompress-

ible fiber-reinforced elastomers: A computational micromechanics approach.

Journal of the Mechanics and Physics of Solids 57, 1596–1613.

Müller, S., 1987. Homogenization of nonconvex integral functionals and cellular

elastic materials. Arch. Rational Mech. Anal. 99, 189–212.

Murphey, T.W., Meink, T., Mikulas, M.M., 2001. Some micromechanics

considerations of the folding of rigidizable composite materials, in: 42nd

AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Ma-

terials Conference.

NuSil Silicone Technology, March 2007. http://www.nusil.com/library/products/CF19-2615P.pdf.

Ogden, R.W., Saccomandi, G., Sgura, I., 2004. Fitting hyperelastic models to

experimental data. Computational Mechanics 34, 484–502.

Pandolfi, A., Holzapfel, G.A., 2008. Three-dimensional modeling and compu-

tational analysis of the human cornea considering distributed collagen fibril

orientations. Journal of Biomechanical Engineering 130.

Pandolfi, A., Manganiello, F., 2006. A model for the human cornea: consti-

tutive formulation and numerical analysis. Biomechanics and Modeling in

Mechanobiology 5, 237–246.

44



Ponte Castañeda, P., 2002. Second-order homogenization estimates for non-

linear composites incorporating field fluctuations: I - theory. Journal of the

Mechanics and Physics of Solids , 737-757.

Povirk, G., 1995. Incorporation of microstructural information into models of

two-phase materials. Acta Metallurgica et Materialia 43, 3199–3206.

Pyrz, R., 1994a. Correlation of microstructure variability and local stress field

in two-phase materials. Materials Science and Engineering 177, 253–259.

Pyrz, R., 1994b. Quantitative description of the microstructure of composites.

Part I: Morphology of unidirectional composite systems. Composites Science

and Technology 50, 197–208.

Pyrz, R., Bochenek, B., 1998. Topological disorder of microstructure and its

relation to the stress field. International Journal of Solids and Structures 35,

2413–2427.

Ravichandran, G., Liu, C.T., 1995. Modeling constitutive behavior of partic-

ulate composites undergoing damage. International Journal of Solids and

Structures 32, 979–990.

Rehnmark, F., Pryor, M., Holmes, B., Schaechter, D., Pedreiro, N., Carrington,

C., 2007. Development of a deployable nonmetallic boom for reconfigurable

systems of small spacecraft, in: 48th AIAA/ASME/ASCE/AHS/ASC Struc-

tures, Structural Dynamics, and Materials Conference, Honolulu, Hawaii.

Rintoul, M., Torquato, S., 1997. Reconstruction of the structure of dispersions.

Journal of Colloid and Interface Science 186, 467–476.

Spencer, A.J.M., 1972. Constitutive theory of strongly anisotropic solids, in:

for Mechanical Sciences, I.C. (Ed.), Continuum theory of the mechanics of

fibre-reinforced composites.

Tanemura, M., 1979. On random complete packing by disks. Annals of the

Institute of Statistical Mathematics 31, 351–365.

45



Toho Tenax, retrieved August 2010. http://www.tohotenax.com/tenax/en/products/st_property.php.

Tong, W., Ravichandran, G., 1994. Effective elastic moduli and characterization

of a particle metal-matrix composite with damaged particles. Composites

Science and Technology 52, 247–252.

Zhong, X.A., Knauss, W.G., 1997. Analysis of interfacial failure in particle-filled

elastomers. Transactions of the ASME 119, 198–204.

Zhong, X.A., Knauss, W.G., 2000. Effects of particle interaction and size vari-

ation on damage evolution in filled elastomers. Mechanics of Composite Ma-

terials and Structures 7, 35–53.

46


