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Abstract

Multi-stable structures can provide desired reconfigurability and require rela-
tively simple actuation. This paper considers general bar and plate structures
connected by frictionless hinges that are to be made locally stable in a set of cho-
sen target configurations by attaching extensional and rotational, linear-elastic
springs to the structure. The unstressed lengths and angles of the springs, as
well as their stiffnesses, are the unknown design parameters to be determined.
A set of equilibrium and stability conditions to be satisfied in each of the target
configurations of the structure are derived. Solutions of these equations provide
specific values of the spring properties that correspond to local energy minima
in all of the target configurations. The formulation is fully general and is ap-
plicable to structures of any complexity. A simple example is used to illustrate
the design process for a bi-stable origami structure and a physical prototype is
also presented.

1. Introduction

Structures that operate in multiple configurations have wide-ranging appli-
cations. Examples include the control surfaces for the wings of aircraft (Niu,
2011; Arrieta et al., 2013; Daynes et al., 2010) and morphing air inlets (Daynes
et al., 2011) that are required to change their geometric shapes to accommodate
different operational requirements. Also, mechanical reconfiguration of reflec-
tor antennas is used to achieve beam steering and beam shaping (Clarricoats
and Zhou, 1991; Washington, 1996). Variable geometry “morphing” structures
can achieve multiple geometric configurations through an overall deformation
process, without the addition of separate flaps, RF surfaces, mechanisms and
actuators.

The literature on morphing structures, also called adaptive structures, is
extensive. Adaptive structures for space infrastructure were the focus of many
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early studies (Rhodes and Mikulas, 1985; Miura et al., 1985; Chen and Wada,
1993) and a comprehensive review was published (Wada et al., 1990). More re-
cent research has considered a broader range of applications, including vibration
energy harvesting, vibration reduction, adaptive aeroelastic structures (Wagg et
al., 2008).

The focus of the present paper is on applications that require structures
with multiple, static operational configurations, which are called target config-
urations. In each of these configurations, the structure is locally stable and its
stiffness is sufficient for the operation of the structure. The paper presents a
general theory to design structures with local energy minima in the chosen tar-
get configurations, allowing the structures to be easily reconfigured between the
target configurations with simple actuation. Kinematically determinate (Pelle-
grino and Calladine, 1986) rod-like truss structures consisting of bistable ele-
ments were studied in Schioler and Pellegrino (2007); they are an example of
morphing structure that uses bistability at the component level. A constant
force mechanism consisting of six curved beams ( Venkiteswaran and Su, 2018)
is an example of a planar structure optimized at the system level.

Consider a kinematically indeterminate assembly of rigid bars and plates
connected by frictionless pin-joints, with one or more zero-energy deformation
modes (inextensional mechanisms) (Pellegrino and Calladine, 1986). It will be
called the skeleton of the morphing structure, and it is assumed that there exists
a continuous deformation of the structure that connects all of the specified target
configurations. This skeleton can be transformed into a multi-stable structure
by means of linear-elastic torsional and/or translational springs attached to
the skeleton. The general problem is to find an elastic strain energy for the
structure which, for the restricted motion space allowed by the zero-energy
mechanisms of the skeleton, creates an energy landscape with multiple local
minima. The energy landscape is controlled by two parameters for each spring,
the rest length/angle and the stiffness. This paper presents a general formulation
to compute the spring parameters that provide a specific set of local energy
minima.

Previous research has been done to create such structures by attaching pre-
stressed linear springs to single-degree-of-freedom mechanisms, and extensive
studies of bi-stable four-bar linkages have made. Intuitive designs based on sym-
metry and snap-through behavior were proposed in Jensen and Howell (2004).
Based on the complete kinematics of the planar four-bar linkage, the strain
energy was expressed analytically in terms of one kinematic variable and other
design parameters. By taking derivatives with respect to the kinematic variable,
the corresponding equilibrium and stability constraints were formed. Solutions
of these highly nonlinear equations were found with a homotopy solver (Su and
McCarthy, 2007), substituting different design parameters into the equations
until the constraints were satisfied (Jensen et al., 1999). A genetic algorithm
was also used (King et al., 2005). Su and McCarthy (2007) specified the tar-
get equilibrium configurations, although their stability could not be guaranteed.
The stability of another one degree of freedom mechanism, a three-dimensional
Miura-ori unit with linear springs attached, was demonstrated in Waitukaitis
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et al. (2015). Instead of formulating the constraint equations and solving them
to find the spring parameters, random sampling of the design parameter space
was employed to search for desired designs. This approach does not require
analytical knowledge of the mechanism kinematics but becomes impractical for
mechanisms with many degrees of freedom.

A method that allows specification of the target equilibrium configurations
and only requires linearized kinematics has been proposed by the present authors
(Li and Pellegrino, 2018) and a similar multi-equilibrium design method has
been proposed in Stern et al. (2019). These latest studies can determine the
spring design parameters that achieve specified equilibrium configurations, but
without any guarantee regarding stability.

This paper is laid out as follows. Section 2 presents an introductory ex-
ample for which designs with two stable configurations are obtained with a
simple graphical construction. Section 3 formulates the general design prob-
lem. Section 4 presents the kinematic formulation to derive the first-order and
second-order zero-energy mechanisms of the skeleton structure near the target
configurations. Section 5 derives the equilibrium and stability conditions. A
simple example that uses these conditions to design a bi-stable structure is pre-
sented in Section 6. Section 7 concludes the paper. A nomenclature list is
also provided, followed by an Appendix with the matrices for the example in
Section 6.

2. Introductory Example

A simple bistable example will be used to introduce the proposed theory.
Consider the four-bar linkage ABCD shown in Fig. 1, consisting of rigid bars of
length AB = 0.8, BC = 1.16, CD = 1.3, and AD = 0.95. Two torsional springs
of equal stiffness, k, are introduced at A and D. The relative rotations at A and
D are denoted by θA and θD. These rotations are positive in the sense defined
in the figure. Note that the chosen example skeleton has a single inextensional
mechanism, i.e. there is only one way for it to move, in any given configuration.
Also note that, by introducing only two elastic springs, we are setting up an
example in which the strain energy function can be plotted as a two-dimensional
contour plot. This will greatly aid the visualization of our results. Finally, note
that there would be no difficulty to generalize the present example to springs
of different stiffness and, indeed, use of different springs may be necessary to
achieve some particular local energy minima.

It is assumed that the springs have rest angles, for which the spring mo-
ments are zero, respectively for (θA, θD) = ( 32π, 3π), which have been chosen
arbitrarily.

The strain energy of the linkage is given by:

E =
1

2
k(θA − 3

2
π)2 +

1

2
k(θD − 3π)2. (1)

This quadratic function has a global minimum of exactly zero at ( 32π, 3π), as
shown in Fig. 2. However, this configuration, where the energy is a global min-
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Figure 1: Four-bar linkage with two linear-elastic torsional springs.

imum, is not kinematically admissible because a four-bar linkage has only one
degree of freedom and hence there is only one value of θD compatible with any
given value of θA. All kinematically admissible configurations for the structure
are solutions of the equations (McCarthy and Soh, 2010):

θD = π − arctan

(
A2

A1

)
± arccos

(
−A3√
A2

1 +A2
2

)
(2)

where

A1 = 2AB · CD cos θA − 2AD · CD, (3)

A2 = 2AB · CD sin θA, (4)

A3 = AD2 + CD2 +AB2 −BC2 − 2AB ·AD cos θA. (5)

This solution describes the kinematic path that has been plotted in Fig. 2 for
the range θA = −2π,+2π.

Coupling the kinematics of the four-bar linkage with the elastic strain energy
in Eq. (1) excludes the global minimum of the energy. Therefore, instead of
focusing on the global minimum of the energy, we search for local minima on
the kinematically admissible path. The conditions for a kinematically admissible
configuration to also be a local minimum of the energy are that (Thompson and
Hunt, 1984):

Condition 1 The gradient of the energy should be orthogonal to the kinematic path for
the energy to be locally stationary along the path.

Condition 2 The energy should locally increase on either side of this configuration
for the stationary point to be a local minimum or, in other words, the
kinematic path should lie on the opposite side of the tangent than the
global energy minimum.

By drawing radial lines through the global energy minimum, it can be seen
in Fig. 2 that there are only two configurations of the present linkage that
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Figure 2: Strain energy contours and kinematically admissible path of four-bar linkage of
Fig. 1.

satisfy these two conditions. These configurations correspond to the points
P1, P2 marked with a black ‘x’ in Fig. 2, and which have angles (θA, θD)1 =
(0.52, 2.15) and (θA, θD)2 = (3.87, 3.03). At this point it should be noted that
by assigning arbitrary rest angles to the two springs we have obtained a bistable
structure but the particular configurations in which the structure is bistable
could not be chosen arbitrarily.

Next, consider the following design problem: to move the two local minima
(black ‘x’ in Fig. 2) to general, specifically chosen configurations such as the
points C1 and C2 marked by two red ‘x’ in Fig. 3, by finding suitable values for
the spring rest angles. A possible approach, based on Waitukaitis et al. (2015), is
to use an iterative scheme that searches for specific values of the spring parame-
ters until the desired configurations of stable equilibrium are achieved. However,
an alternative approach can be derived by focusing directly on Conditions 1 and
2.

Since the rest angles of the springs define the position of the energy min-
imum, a simple graphical solution can be obtained as follows. Let the two
target configurations be C1 = (−0.80, 2.71) and C2 = (3.22, 3.02), as shown in
Fig. 3. Consider the normal lines to the kinematic path through C1 and C2,
shown in red. Consider a new global minimum for the energy, at the intersec-
tion (−0.08, 5.6) of the two lines. This newly defined energy is stationary at
C1 and C2 by construction, hence satisfying Condition 1. For the particular
example considered here, it can also be verified that the kinematic path lies on
the opposite side of the tangent from the energy minimum, for both C1 and C2,
thus satisfying Condition 2.

If the kinematic path had curved towards the global energy minimum, with
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a curvature larger than the local curvature of the energy contour, the corre-
sponding configuration would have been a local energy maximum, and hence
the equilibrium would have been unstable. Satisfying Condition 2 requires the
curvature of the energy contour to be compared with the curvature of the kine-
matic path.

−2π −π 0 π 2π

3π

2π

π

0

C1
C2

O

θD

θA

Figure 3: Graphical solution of design problem with new global energy minimum at
(−0.08, 5.6).

For this example a simple graphical solution has been possible because there
were only two unknown spring rest angles, and hence the whole design space
could be analyzed by means of a two-dimensional plot. For more general prob-
lems, with larger numbers of degrees of freedom, springs, and target configu-
rations, the obvious questions is how to find solutions in a higher-dimensional
space. A general formulation that addresses this questions requires an extension
of the ideas introduced in this section to the analysis of a convex (quadratic)
energy combined with a non-convex kinematic manifold (McCarthy and Soh,
2010).

In summary, the design of multistable morphing structures consists in trans-
lating (changing the rest angles of the springs) and shaping (changing the stiff-
ness of the springs) of a convex (quadratic) strain energy such that energy
minima are achieved at specific points on the kinematic manifold. This requires
considering simultaneously both first-order and second-order variations of the
strain energy near each of the required configurations, within a fully general
computational formulation.
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3. Definition of Design Problem

Consider a bar and hinge structure consisting of a skeleton with nb rigid bars
and nh rigid hinges, with p linear elastic extensional springs and q linear elastic
torsional springs. Note that any three-dimensional bar-and-plate skeleton can
be modeled in this way, by modeling the bars directly with pin-jointed bars,
and subdividing the plates into triangles. Then, the edges of each triangle are
modeled with pin-jointed bars and the planarity of the triangles that belong to
the same plate is modeled by means of a no-rotation constraint (rigid hinge)
along the common edges.

The number of unconstrained nodes of the structure is n and hence the total
number of degrees of freedom is 3n.

It is assumed that the structure is kinematically indeterminate (Pellegrino
and Calladine, 1986), with m independent zero-energy mechanisms. nt geomet-
ric configurations of the structure are defined and a kinematic simulation (not
included in this paper) is carried out to verify that there is at least one contin-
uous kinematic path connecting these nt configurations. These are chosen as
the target configurations of the structure, and it is desired that the structure is
stable in each of these configurations. The target configurations of the structure
are fully defined and, in particular, all nodal coordinates and hinge angles in
each configuration are known.

For simplicity, it is assumed that the number of independent mechanisms
is equal to m in all target configurations. This assumption excludes configura-
tions of kinematic bifurcation (Kumar and Pellegrino, 2000), where the num-
ber of mechanisms may be locally larger, and also the possibility that, due to
unilateral contacts, the number of mechanisms may be smaller in some target
configurations.

Linear-elastic springs are added to the rigid bar-and-plate structure, trans-
forming this “floppy” skeleton into an elastic structure. There are two types of
springs: torsional springs at the hinges and extensional springs between pairs
of nodes. An example consisting of 4 torsional and 2 extensional springs at-
tached to a rigid four-bar linkage is shown in Fig. 4. For each spring, two design
variables are introduced: the rest position (stress-free angle or length) and the
stiffness.

Figure 4: Planar rigid four-bar linkage with 4 torsional and 2 translational springs.
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For the structure to be in stable equilibrium in each of the nt target configu-
rations, it is required that all target configurations correspond to local minima
of the total potential energy. No external loads will be considered, and hence the
total potential energy is equal to the strain energy of the springs. Therefore, for
any infinitesimally small perturbation along all kinematically admissible paths
from all target configurations (Thompson and Hunt, 1984):

1. all first-order variations of the energy should be zero, and

2. all second-order variations of the energy should be positive.

Consider a general target configuration, i, with i = (1, . . . , nt). A kinematic
analysis of the structure is carried out in this configuration, to determine a
full set of m independent, infinitesimal first-order mechanisms, with which an
analysis of the equilibrium and stability of the structure near the target config-
uration can be carried out. Hence, a general first-order infinitesimal zero-energy
deformation of the structure is defined by a linear combination of the m inde-
pendent mechanisms in configuration i, where each mechanism is multiplied by
the amplitude αi

j with j = (1, . . . ,m). The mechanism amplitudes are collected
in the vector:

αi =

⎡⎢⎢⎢⎢⎣
αi
1

. . .
αi
j

. . .
αi
m

⎤⎥⎥⎥⎥⎦ (6)

The variation of the total potential energy in the vicinity of configuration
i is then analyzed for all possible mechanisms. The first derivatives of the
energy with respect to the mechanisms’ amplitudes are all set equal to zero.
Hence, the above condition 1 is equivalent to m independent conditions for each
configuration and therefore, for configuration i:

∂E

∂αi
1

∣∣∣
config i

= 0 , . . . ,
∂E

∂αi
m

∣∣∣
config i

= 0 for i = (1, . . . , nt) (7)

These conditions were previously stated in Li and Pellegrino (2018) and
Stern et al. (2019).

Regarding the positive definiteness of the second-order variations of the en-
ergy for target configuration i a quadratic form expresses the second-order vari-
ation of the energy for all possible mechanisms in configuration i:

(αi)T

⎡⎢⎢⎢⎣
∂2E

∂(αi
1)

2

∣∣∣
config i

. . . ∂2E
∂αi

1∂α
i
m

∣∣∣
config i

...
. . .

...
∂2E

∂αi
m∂αi

1

∣∣∣
config i

. . . ∂2E
∂(αi

m)2

∣∣∣
config i

⎤⎥⎥⎥⎦αi > 0 for i = (1, . . . , nt) (8)

This quadratic form has to be positive-definite in order to meet condition 2.
Equations (7)-(8) can be obtained directly if an analytical expression for the

energy along the kinematically admissible path is available (Su and McCarthy,

8



2007), but this is only feasible for simple structures. In the next two sections
equations (7)-(8) will be obtained numerically for a general structure.

4. Kinematic Analysis

As already mentioned in Section 3, the kinematic analysis detailed in this
section is carried out for each target configuration, which can be reached through
a purely kinematic motion of the bar-and-hinge skeleton structure.

4.1. Basic Equations

Consider a general bar k of length Lk and connecting node i to node j.
Taking the target configuration under study as the reference configuration, the
position of node i is denoted by xi with cartesian components xi, yi, zi. The
current position of node i, after imposing an infinitesimal deformation to the
structure, is denoted by xi+di with cartesian components xi+ui, yi+vi, zi+wi.

The following vectors and notation are defined:

rji = xj − xi =

⎡⎣xj − xi

yj − yi
zj − zi

⎤⎦ =

⎡⎣xji

yji
zji

⎤⎦ (9)

and

dji = dj − di =

⎡⎣uj − ui

vj − vi
wj − wi

⎤⎦ =

⎡⎣uji

vji
wji

⎤⎦ (10)

The extension of bar k, defined as its length in the infinitesimally deformed
configuration minus the length in the target configuration (note that the exten-
sion is different from the Green-Lagrange strain derived in Kumar and Pellegrino
(2000) and Liu and Paulino (2017)) is given by:

ek = ‖rji + dji‖ − ‖rji‖ (11)

=
√
(xji + uji)2 + (yji + vji)2 + (zji + wji)2 − ‖rji‖ (12)

=
√
(xji)2 + 2xjiuji + (uji)2 + . . .− ‖rji‖ (13)

=

(√
1 +

2xjiuji + . . .

‖rji‖2 +
(uji)2 + . . .

‖rji‖2 − 1

)
‖rji‖ (14)

=

⎛⎝√
1 +

2Cb
kdk

‖rji‖ +
(dk)TH̃dk

‖rji‖2 − 1

⎞⎠ ‖rji‖ (15)

where
Cb

k =
[
xi−xj

Lk

yi−yj

Lk

zi−zj
Lk

xj−xi

Lk

yj−yi

Lk

zj−zi
Lk

]
(16)
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is the compatibility matrix of the bar,

H̃ =

[
I3×3 −I3×3

−I3×3 I3×3

]
(17)

and

dk =

⎡⎢⎢⎢⎢⎢⎢⎣
ui

vi
wi

uj

vj
wj

⎤⎥⎥⎥⎥⎥⎥⎦ (18)

The second and third terms inside the square root in equation (15) are
infinitesimal quantities and hence the binomial expansion for the square root
can be used. Including infinitesimal terms up to the second order, the expansion
gives:

ek ≈
(
1 +

Cb
kdk

‖rji‖ +
(dk)

TH̃dk

2‖rji‖2 − (dk)
T(Cb

k)
TCb

kdk

2‖rji‖2 − 1

)
‖rji‖ (19)

simplifying this equation gives:

ek ≈ Cb
kdk +

(dk)
TH̃dk

2‖rji‖ − (dk)
T(Cb

k)
TCb

kdk

2‖rji‖ (20)

where it should be noted that ‖rji‖ = Lk.
In conclusion, up to second-order infinitesimals, the extension induced by

the displacement dk of the nodes connected to bar k has the expression:

ek = Cb
kdk +

1

2Lk
(dk)

THb
kdk (21)

where
Hb

k = H̃− (Cb
k)

TCb
k (22)

is the Hessian matrix for bar k.
Next, consider a general hinge connection, r, between the triangles con-

necting nodes i, j, k, l. The triangles may have been obtained by subdividing
a square plate, in which case the triangles are initially coplanar and have to
be constrained to remain coplanar. The general case of non-coplanar triangles
connected by a hinge at an angle θ, as shown in Fig. 5, is considered here. θ = 0
corresponds to coplanar triangles.

It has been shown in Liu and Paulino (2017) that, up to second-order in-
finitesimal quantities, the hinge rotation θr induced by the displacements dr of
nodes i, j, k, l is given by:

θr = Ch
rdr +

1

2
dT
r H

h
rdr, (23)

10



k n

Hinge r

θ

l

i
m

r
kj

r
ij

r
kl

j

Figure 5: General hinge connection, based on Liu and Paulino (2017).

where Ch
r is the 1× 12 compatibility matrix for the hinge. Its components are

given by
∂θ

∂xi
= −‖rkj‖

‖m‖2m, (24)

∂θ

∂xl
=

‖rkj‖
‖n‖2 n, (25)

∂θ

∂xj
= −

(rij · rkj
‖rkj‖2 − 1

) ∂θ

∂xi
+

rkl · rkj
‖rkj‖2

∂θ

∂xl
, (26)

and
∂θ

∂xk
= −

(rkl · rkj
‖rkj‖2 − 1

) ∂θ

∂xl
+

rij · rkj
‖rkj‖2

∂θ

∂xi
, (27)

where
rpq = xp − xq, (28)

and the normal vectors m,n are

m = rij × rkj and n = rkj × rkl. (29)

The matrix in the second term, Hh
r , is the Hessian matrix for the hinge. It

has size 12 × 12 and consists of 4 × 4 sub-matrices of size 3 × 3. This matrix
is symmetric, and hence there are only 10 independent sub-matrices, which are
provided in Appendix A of Liu and Paulino (2017) (equations A (10) to A (20)).
As an example, the 1,1 block is given by:

∂2θ

∂(xi)2
=

‖rkj‖
‖m‖4 (m⊗ (rkj ×m) + (rkj ×m)⊗m). (30)

where ⊗ denotes a tensor product.
Note that in Liu and Paulino (2017) the initial angle between the triangles,

θ, is defined as the dihedral angle of the triangle pair. This is different from the
present definition and hence the signs of all entries in Ch

r and Hh
r provided in

Liu and Paulino (2017) need to be swapped.
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4.2. Zero-Energy Mechanisms

This section derives a general expression for the infinitesimal deformations
of the skeleton structure that induce no extension of the bars and no distortion
of the plates, up to second-order infinitesimal quantities.

The first-order equations of geometric compatibility for the structure are
obtained by setting ek = 0 in equation (21) and considering the first-order term
only on the right-hand-side. Similarly, setting θr = 0 in equation (23) and
again considering the first-order term only on the right-hand-side. This gives
nb+nr equations in 3n unknown displacement components, d. These first-order
compatibility equations can be arranged in the form:[

Cb

Ch

]
d = 0 (31)

where Cb, Ch, are the compatibility matrices for the rigid bars and the rigid
hinges, respectively.

The singular value decomposition (SVD) of the compatibility matrix for the
structure (Pellegrino, 1993) is then computed and it is given by:[

Cb

Ch

]
= UVWT (32)

and the rank of the compatibility matrix is then given by the number of non-
zero singular values, rC . In general, the compatibility equations may not be
independent, in which case:

rC < nb + nh (33)

The right-singular-vector matrix, W, has size 3n×3n. It is divided into two
submatrices:

W = [WrCWm] (34)

where the subscripts denote the number of columns of the submatrices.
The columns of Wm form an orthonormal set of zero-energy (to the first

order) deformation modes for the structure. Therefore, a general zero-energy
deformation mode has the expression

dm = Wmα, (35)

where α contains m arbitrary coefficients.
The accuracy of the zero-energy deformation modes is increased to the sec-

ond order by determining a correction, dc, for the displacement components.
dc is obtained by finding the second-order displacements that make the second-
order bar extensions and hinge rotations equal to zero.

Determining this correction is easier if a specific zero-energy mechanism and
hence a specific vector α has been chosen. In this case, let this specific vector
be α. The specific first-order inextensional displacement is then

dm = Wmα (36)
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The extension of bar k associated with the first-order inextensional displace-
ment dm is obtained from equation (20), where the first term on the right-hand-
side vanishes (Cb

kdk = 0) because the displacement is first-order inextensional.
The third term in equation (20) also vanishes ( (dk)

T(Cb
k)

TCb
kdk = 0 ) and

therefore the Hessian matrix in equation (22) is simply:

Hb
k = H̃ (37)

Then, substituting equations (37) and (36) into equation (21) gives

ek =
1

2Lk
αT(WT

m)kH̃(Wm)kα (38)

where the subscript k denotes a submatrix of Wm containing only the 6 dis-
placement components for the nodes of bar k. Defining the m × m matrix:

Ab
k =

1

2Lk
(WT

m)kH̃(Wm)k (39)

equation (38) can be written as:

ek = αTAb
kα (40)

Similarly, the second-order hinge rotations are obtained from equation (23).
The first term on the right-hand-side vanishes because the nodal displacements
are already first-order inextensional. Substituting equation (36) gives

θr =
1

2
αT(WT

m)rH
h
r (Wm)rα (41)

where the subscript r denotes a submatrix of Wm containing only the 12 dis-
placement components for the nodes of hinge r. Defining the m × m matrix:

Ah
r =

1

2
(WT

m)rH
h
r (Wm)r (42)

equation (41) can be written as:

θr = αTAh
rα (43)

Collecting all of the second-order bar extensions and hinge rotations in a
single column vector

[
e

θ

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

...
ek
...

θr
...

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

...
αTAb

kα
...

αTAh
rα

...

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(44)
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Then, the displacement correction for the first-order inextensional displace-
ment in equation (36) can be computed by solving the compatibility equations[

Cb

Cr

]
dc = −

[
e

θ

]
(45)

Using the SVD of the compatibility matrix, equation (32), and denoting
by (VrC )

−1 the diagonal matrix with the reciprocals of the (non-zero) singular
values, the solution orthogonal to the inextensional displacements is

dc = −WrC (VrC )
−1(UrC )

T

[
e

θ

]
(46)

and then, up to the second-order, the inextensional displacement is

d = dm + dc (47)

This expression completes the solution for the case of a specific zero-energy
displacement. In order to consider the case of a general zero-energy displace-
ment the previous analysis can be repeated but, because no specific set of in-
extensional displacements has been chosen, the combined effects of all possible
independent inextensional deformations have to be considered. Therefore, the
calculation of the second-order bar extensions and hinge rotations has to ac-
count for all possible linear combinations of the independent mechanisms in the
matrix Wm.

As a first step, consider general amplitudes of an arbitrary pair (i, j) of inde-
pendent mechanisms, corresponding to columns i and j of Wm. This combined
deformation mode can be obtained also from equation (36), for a specific choice
of α:

αi,j =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
. . .

αi �= 0
0
. . .

αj �= 0
0
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(48)

Each entry in the vector of second-order bar extensions and hinge rotations
for this particular combined mechanism is obtained by adding four quadratic
terms:

[
e
θ

]
i,j

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

...
αi(A

b
k)i,iαi + αi(A

b
k)i,jαj + αj(A

b
k)j,iαi + αj(A

b
k)j,jαj

...
αi(A

h
r )i,iαi + αi(A

h
r )i,jαj + αj(A

h
r )j,iαi + αj(A

h
r )j,jαj

...

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(49)
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Hence, the displacement corrections for the first-order inextensional displace-
ment

(dm)i,j = Wmαi,j (50)

are calculated, in analogy with equation (46), from

(dc)i,j = −WrC (VrC )
−1(UrC )

T

[
e
θ

]
i,j

(51)

Finally, consider the fully general case where the independent mechanisms
are multiplied by the general coefficients in the vector α and hence the first-order
inextensional displacement has the expression in equation (35). In this case, the
second-order bar extensions and hinge rotations have to be expressed in terms
of the general components of α. The resulting expression is a generalization of
equation (49):

[
e
θ

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

...
ek
...
θr
...

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

...∑
i,j αi(A

b
k)i,jαj

...∑
i,j αi(A

h
r )i,jαj

...

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(52)

where the summations are extended over the range 1 = 1,m and j = 1,m.
The following compact notation

αTAα =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

...∑
i,j αi(A

b
k)i,jαj

...∑
i,j αi(A

h
r )i,jαj

...

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(53)

is defined, and thus [
e
θ

]
= αTAα, (54)

where A is the m ×m × (nb + nr) third-order tensor consisting of the second-
order extensions and rotations of the skeleton, due to unit amplitudes of all
inextensional mechanisms, as shown in Fig. 6(a).

An equivalent expression is in terms of the base vectors[
ei,j
θi,j

]
(55)

that contain the second-order extensions and hinge rotations due to unit ampli-
tudes of the mechanisms pair (i, j), as shown in Fig. 6(b). Then,[

e
θ

]
=

∑
i,j

[
ei,j
θi,j

]
αiαj , (56)
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where

[
ei,j
θi,j

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

...
(Ab

k)i,j
...

(Ah
r )i,j
...

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (57)

j
i

l

Ar

Ak

nb+nr

m

m j
i

l

ei,j

m

m

nb+nr

b

h

(a) (b)

θi,j

Figure 6: Two visualizations of the tensor A as (a) a stack of matrices and (b) a set of base
vectors.

Lastly, the correction for the first-order displacements can be obtained by
computing the displacements corresponding to each base vector. In analogy
with equation (51), it is given by

(dc)i,j = −WrC (VrC )
−1(UrC )

T

[
ei,j
θi,j

]
(58)

And then the complete set of correcting displacements is given by:

dc =
∑
i,j

(dc)i,jαiαj (59)

The compact notation

αTWcα =
∑
i,j

(dc)i,jαiαj (60)

is defined and hence
dc = αTWcα (61)

where Wc is a rank 3 tensor with m×m× 3n components.
In conclusion, the second-order compatible zero-energy deformation modes

of the skeleton structure can be expressed as

dn = dm + dc = Wmα+αTWcα. (62)
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4.3. Extensions and Rotations of the Springs

The elastic springs attached to the skeleton structure, as in the example
shown in figure 4, undergo elastic deformation when a zero-energy deformation
is imposed to the skeleton. The second-order spring extensions and rotations
for a general second-order compatible deformation can be obtained by substi-
tuting the relevant nodal displacement components in dn (equation (62)) in the
corresponding compatibility equations (equations (21) and (23)):

Consider a general translational spring k. Denoting by (dn)k the components
of dn that correspond to the nodes connected to spring k, equation (21) becomes

ek = Ces
k (dn)k +

1

2Lk
(dn)

T
kH

es
k (dn)k (63)

where Ces
k and Hes

k (the superscript es denotes extensional springs) are the
compatibility matrix and the Hessian matrix for an extensional spring.

Expanding dn in equation (63) with equation (62) and neglecting terms
higher than second order gives:

ek = Ces
k (Wm)kα+Ces

k

⎛⎝∑
i,j

(dc)i,jαiαj

⎞⎠
k

+αT 1

2Lk
(Wm)TkH

es
k (Wm)kα

(64)
The derivation can be repeated for a general torsional spring r to obtain:

θr = Cts
r (Wm)rα+Cts

r

⎛⎝∑
i,j

(dc)i,jαiαj

⎞⎠
r

+αT 1

2
(Wm)Tr H

ts
r (Wm)rα (65)

where Cts
r and Hts

r (the superscript ts denotes torsional springs) are the com-
patibility matrix and the Hessian matrix for a torsional spring.

Considering all extensional and rotational springs yields:[
e
θ

]s
= CsWmα+αTBsα (66)

where

CsWm =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

...
Ces

k (Wm)k
...

Cts
r (Wm)r

...

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(67)
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and

αTBsα =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

Ces
k

(∑
i,j(dc)i,jαiαj

)
k
+αT 1

2Lk
(Wm)TkH

es
k (Wm)kα

...

Cts
r

(∑
i,j(dc)i,jαiαj

)
r
+αT 1

2 (Wm)Tr H
ts
r (Wm)rα

...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(68)

Here Bs is a rank 3 tensor with m×m× (p+ q) components. For any given
configuration of the skeleton structure, all components of Bs are known.

5. Conditions for Energy Minima

In the initial, reference configuration of the structure (denoted by the sub-
script 0) the springs have initial extensions and rotations:[

e
θ

]s
0

(69)

which set up a state of prestress in the structure. Note that the the sign of
the initial extensions/rotations is opposite to the sign of the rest lengths/angles
considered in Section 2. For example, a spring whose rest length is 1 mm too
long has an initial extension of −1 mm in the reference configuration.

Defining the diagonal matrix K with the elastic spring stiffnesses along the
main diagonal, the strain energy in the reference configuration has the expres-
sion:

E0 =
1

2

([
eT θT

]s
0

)
K

[
e
θ

]s
0

(70)

The structure is required to have local energy minima in nt specified target
configurations. The changes in spring extensions and rotations from the refer-
ence configuration to a general target configuration i, which can be obtained
from a kinematic simulation of the type described in Kumar and Pellegrino
(2000), are denoted by [

e
θ

]s
i

(71)

Consider the target configuration i. The strain energy is:

Ei =
1

2

([
eT θT

]s
i
+

[
eT θT

]s
0

)
K

([
e
θ

]s
i

+

[
e
θ

]s
0

)
(72)

Next, compute the independent infinitesimal zero-energy deformation modes
in configuration i and the corresponding extensions and rotations for the elastic
springs. They have the general expression given by equation (66).
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The strain energy near this configuration of the structure for general inex-
tensional deformations of the skeleton is obtained by multiplying the current
forces and moments by the extensions and rotations given by equation (66),
and adding the change in the springs’ strain energy due to these extensions and
rotations. Therefore, the energy expression is:

E = Ei +
([

eT θT
]s
i
+

[
eT θT

]s
0

)
K

(
Cs|iWm|iαi + (αi)TB|iαi

)
+
1

2
(αi)T(Wm|i)T(Cs|i)TKCs|iWm|iαi (73)

and the energy change can be expanded into infinitesimal terms of different
order.

The first-order infinitesimal change is:

Δ1Ei =
([

eT θT
]s
i
+

[
eT θT

]s
0

)
K Cs|iWm|iαi (74)

The second-order infinitesimal change is:

Δ2Ei =
([

eT θT
]s
i
+

[
eT θT

]s
0

)
K (αi)TB|iαi

+
1

2
(αi)T(Wm|i)T(Cs|i)TKCs|iWm|iαi (75)

Comparing equation (74) to equation (7), the equilibrium equations for con-
figuration i are: ([

eT θT
]s
i
+

[
eT θT

]s
0

)
K Cs|iWm|i = 0 (76)

and, comparing equation (75) to equation (8), the condition for the stability of
configuration i is: ([

eT θT
]s
i
+

[
eT θT

]s
0

)
K (αi)TB|iαi

+
1

2
(αi)T(Wm|i)T(Cs|i)TKCs|iWm|iαi > 0 (77)

This quadratic form has to be positive definite. This condition imposes m in-
equality constraints on the spring variables (stiffnesses and/or initial extensions
or angles), for each target configuration.

For the structure to have an energy minimum in nt target configurations
there are nt×m equality constraints (equilibrium) in addition to nt×m inequal-
ities (stability constraints) to be satisfied. Constrained optimization techniques
can be employed to determine suitable designs of the springs.

6. An Example

The application of the theory is demonstrated for the design of a simple bi-
stable structure based on the Miura-ori folding pattern for a flat sheet (Miura,
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1970). Miura-ori is an origami pattern widely used in engineering and has been
studied extensively (Schenk and Guest, 2013).

The design of a Miura-ori unit cell with two stable configurations using four
torsional springs of equal stiffness is considered. Since the hinge stiffness matrix
K = I , the only design variables are the four initial rotations of the torsional
springs.

All computations were carried out with Matlab (2018) and the main results
are presented here to highlight the key steps of the analysis. See the section
Research Data for details on the Matlab codes to carry out the computations.

6.1. Reference Configuration

The Miura-ori unit cell flat configuration, chosen as the reference configura-
tion, is shown in Fig. 7a. A simplified structure is shown and labeled in Fig. 7b.
The numbering of nodes and bars is defined in the figure. Note that the outer
triangles of the cell have been removed, for simplicity, and hence the rigid hinges
that would be needed to hold the quadrilaterals planar in the original unit cell
have also been removed. The inner acute angle of the unit cell is β = 80◦ and
the coordinates of the nodes in the reference configuration are:⎡⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

⎤⎥⎥⎥⎥⎦
0

=

⎡⎢⎢⎢⎢⎣
0 0 0

1.0000 0 0
−0.1736 0.9848 0
−1.0000 0.0000 0
−0.1736 −0.9848 0

⎤⎥⎥⎥⎥⎦ , (78)

Note that nodes 1, 2, and 3 are pinned to the ground. The displacement
components of these constrained nodes are not included in the analysis.

The connections of the nodes by means of rigid bars and the bar lengths are
respectively: ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2
1 3
1 4
1 5
2 3
3 4
4 5
5 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.0000
1.0000
1.0000
1.0000
1.5321
1.2856
1.2856
1.5321

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(79)

However bars 1, 2 and 5 are not included in the analysis because both end nodes
are constrained.

The initial angles of the four torsional springs, θs
0, are the four design vari-

ables to be determined.

6.2. Target Configurations

Two target configurations are chosen, nt = 2. Configuration 1 is shallowly
folded and configuration 2 is deeply folded as shown in Fig. 8, where black dots
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(a) Miura-ori unit cell.

y

x

(6) (5)

(3) (1)

(4)

(2)

(8)(7)

1

3

4

5

2

(b) Simplified and labeled.

Figure 7: Reference configuration of Miura-ori unit cell.

indicate pinned foundations. The nodal coordinates of the two configurations
are respectively: ⎡⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

⎤⎥⎥⎥⎥⎦
1

=

⎡⎢⎢⎢⎢⎣
0 0 0

1.0000 0 0
−0.1736 0.9848 0
−0.5645 0.0768 −0.8219
−0.1736 −0.9678 −0.1824

⎤⎥⎥⎥⎥⎦ (80)

and ⎡⎢⎢⎢⎢⎣
x1

x2

x3

x4

x5

⎤⎥⎥⎥⎥⎦
2

=

⎡⎢⎢⎢⎢⎣
0 0 0

1.0000 0 0
−0.1736 0.9848 0
0.9226 0.3390 −0.1843
−0.1736 0.5354 −0.8265

⎤⎥⎥⎥⎥⎦ . (81)

The hinge rotations between the target configurations and the reference con-
figuration are respectively:

θs
1 =

⎡⎢⎢⎣
−0.1863
−0.9873
0.1863
−0.9873

⎤⎥⎥⎦ rad and θs
2 =

⎡⎢⎢⎣
−2.1456
−2.9533
2.1456
−2.9533

⎤⎥⎥⎦ rad. (82)

6.3. Kinematic Analysis

Since there are no rigid hinges in the skeleton structure, the compatibility
matrix consists of Cb only. This matrix is computed in the target configurations
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(a) Target configuration 1.
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(b) Target configuration 2.

Figure 8: Two target configurations.

to obtain:

Cb|1 =

⎡⎢⎢⎢⎢⎣
−0.5645 0.0768 −0.8219 0 0 0

0 0 0 −0.1736 −0.9678 −0.1824
−0.3040 −0.7063 −0.6393 0 0 0
−0.3040 0.8125 −0.4974 0.3040 −0.8125 0.4974

0 0 0 −0.7660 −0.6317 −0.1191

⎤⎥⎥⎥⎥⎦ , (83)

Cb|2 =

⎡⎢⎢⎢⎢⎣
0.9226 0.3390 −0.1843 0 0 0

0 0 0 −0.1736 0.5354 −0.8265
0.8527 −0.5024 −0.1434 0 0 0
0.8527 −0.1528 0.4996 −0.8527 0.1528 −0.4996

0 0 0 −0.7660 0.3495 −0.5395

⎤⎥⎥⎥⎥⎦ . (84)

The SVD’s of Cb|1 and Cb|2 are then computed and the following W ma-
trices are obtained:

W|1 =
[
WrC Wm

]
1

=

⎡⎢⎢⎢⎢⎢⎣
−0.2627 0.4192 −0.0815 −0.1964 0.2575 −0.8023
0.3854 0.2208 −0.6859 0.5052 −0.2386 −0.1415
−0.4141 0.6995 −0.1905 −0.1128 −0.0316 0.5379
−0.0406 −0.3046 −0.5575 −0.7215 −0.2724 0.0000
−0.7622 −0.4231 −0.2584 0.4137 0.0198 −0.0401
0.1683 −0.1204 −0.3301 −0.0416 0.8951 0.2130

⎤⎥⎥⎥⎥⎥⎦(85)
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and

W|2 =
[
WrC Wm

]
2

=

⎡⎢⎢⎢⎢⎢⎣
0.6265 −0.7549 −0.1595 0.0601 −0.0838 −0.0401
−0.0926 0.0727 −0.3026 0.9412 −0.0927 −0.0071
0.1491 0.1188 0.5299 0.0963 −0.7924 −0.2138
−0.5463 −0.3051 −0.5194 −0.2490 −0.5261 −0.0000
0.2366 0.3102 −0.3981 −0.1319 0.0298 −0.8192
−0.4715 −0.4706 0.4171 0.1477 0.2807 −0.5307

⎤⎥⎥⎥⎥⎥⎦(86)

The SVD’s also provide 5 non-zero singular values and hence rC |1 = rC |2 =
5. This result confirms that there is a single inextensional mechanism in each
configuration. Therefore, the inextensional mechanisms are provided by the last
columns of W|1 and W|2:

Wm|1 =

⎡⎢⎢⎢⎢⎢⎢⎣
−0.8023
−0.1415
0.5379
0.0000
−0.0401
0.2130

⎤⎥⎥⎥⎥⎥⎥⎦ and Wm|2 =

⎡⎢⎢⎢⎢⎢⎢⎣
−0.0401
−0.0071
−0.2138
−0.0000
−0.8192
−0.5307

⎤⎥⎥⎥⎥⎥⎥⎦ . (87)

The next step is finding the second-order extensions of the skeleton structure
(there are no second-order rotations because in this example there are no rigid
hinges) associated with each mechanism, using equation (52). The matrices
involved in the calculation are shown in the Appendix and the outcome of this
calculation is:

e1 =

⎡⎢⎢⎢⎢⎣
0.4765
0.0235
0.3707
0.2954
0.0153

⎤⎥⎥⎥⎥⎦ (α1)2 and e2 =

⎡⎢⎢⎢⎢⎣
0.0237
0.4763
0.0184
0.2962
0.3109

⎤⎥⎥⎥⎥⎦ (α2)2 (88)

The correcting displacements are then obtained from equation (58), where:

Wc|i = −WrC |i(VrC )
−1
i (UrC )

T
i ei (89)

with

UrC |1 =

⎡⎢⎢⎢⎢⎣
0.3160 −0.6138 0.1315 0.4655 −0.5380
0.4354 0.3742 0.3573 −0.5137 −0.5281
0.0441 −0.5644 0.5538 −0.4320 0.4314
0.7864 −0.0808 −0.4928 −0.0957 0.3507
0.3003 0.3978 0.5526 0.5690 0.3499

⎤⎥⎥⎥⎥⎦ , (90)

UrC |2 =

⎡⎢⎢⎢⎢⎣
0.2824 −0.5328 −0.5090 0.6041 0.1110
0.3326 0.4670 −0.6854 −0.2530 −0.3708
0.3044 −0.5355 −0.0878 −0.7371 0.2637
0.7402 −0.0406 0.5109 0.1251 −0.4168
0.4111 0.4578 0.0494 0.1100 0.7790

⎤⎥⎥⎥⎥⎦ , (91)
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(VrC )
−1
1 =

⎡⎢⎢⎢⎢⎣
0.6098 0 0 0 0

0 0.7725 0 0 0
0 0 0.8777 0 0
0 0 0 1.9201 0
0 0 0 0 3.9063

⎤⎥⎥⎥⎥⎦ , (92)

and

(VrC )
−1
2 =

⎡⎢⎢⎢⎢⎣
0.5442 0 0 0 0

0 0.7681 0 0 0
0 0 1.4654 0 0
0 0 0 1.6932 0
0 0 0 0 2.9735

⎤⎥⎥⎥⎥⎦ . (93)

WrC |1 and WrC |2 are given in Eq. (85) and (86).
The results of this calculation are:

Wc|1 =

⎡⎢⎢⎢⎢⎢⎢⎣
0.2529
0.0446
0.4103
−0.0000
0.0332
−0.0476

⎤⎥⎥⎥⎥⎥⎥⎦ (α1)2 and Wc|2 =

⎡⎢⎢⎢⎢⎢⎢⎣
−0.0332
−0.0058
−0.0482
0.0000
−0.2529
0.4124

⎤⎥⎥⎥⎥⎥⎥⎦ (α2)2 (94)

6.4. Matrices for Equilibrium and Stability Constraints
The compatibility matrices for the torsional springs are needed to form the

equilibrium equations in the target configurations, equation (76). They are:

Cs|1 =

⎡⎢⎢⎣
0 0 0 0 −0.1881 0.9978

−0.8345 −0.1472 0.5594 0 0 0
0.2898 0.0184 −0.1973 −0.8345 0.0410 0.5770
−0.8345 0.0410 0.5770 0.1449 −0.0398 0.0731

⎤⎥⎥⎦ , (95)

and

Cs|2 =

⎡⎢⎢⎣
0 0 0 0 −0.8522 −0.5521

−0.1871 −0.0330 −0.9975 0 0 0
0.0650 −0.1365 0.0742 −0.1871 0.8192 0.5700
−0.1871 0.8192 0.5700 0.0325 −0.2902 −0.1949

⎤⎥⎥⎦ . (96)

The second-order compatibility matrices for the torsional springs are needed
to evaluate equation (77). From equation (68), they can be written and calcu-
lated as follows:

Bs|1 = Cs|1Wc|1 + 1

2

⎡⎢⎢⎣
...

(Wm|1)Tr Hts
r |1(Wm|1)r
...

⎤⎥⎥⎦

=

⎡⎢⎢⎣
−0.0538
0.0119
−0.0330
0.0227

⎤⎥⎥⎦+

⎡⎢⎢⎣
−0.0000

0
0.0868
−0.0108

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−0.0538
0.0119
0.0538
0.0119

⎤⎥⎥⎦ (97)
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and

Bs|2 = Cs|2Wc|2 + 1

2

⎡⎢⎢⎣
...

(Wm|2)Tr Hts
r |2(Wm|2)r
...

⎤⎥⎥⎦

=

⎡⎢⎢⎣
−0.0122
0.0545
0.0230
−0.0330

⎤⎥⎥⎦+

⎡⎢⎢⎣
0.0000
−0.0000
−0.0108
0.0876

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−0.0122
0.0545
0.0122
0.0545

⎤⎥⎥⎦ (98)

Details on the calculation of (Wm|i)Tr Hts
r |i(Wm|i)r for the four torsional springs

are provided in the Appendix.

6.5. Equilibrium and Stability Conditions

Substituting equations (87), (95) and (96) into (76) gives the equilibrium
equations in the two target configurations. Then, moving all known quantities
to the right hand side of equation (76) gives:[

0.2201 0.9913 −0.2201 0.9913
0.9911 0.2210 −0.9911 0.2210

]
θs
0 =

[
2.0394
5.5584

]
(99)

The stability conditions are obtained by substituting equations (87), (95),
(96), (A.13) and (98) with K = I into equation (77). Then, moving all known
quantities to the right hand side of the inequality gives:[−0.0538 0.0119 0.0538 0.0119

−0.0122 0.0545 0.0122 0.0545

]
θs
0 >

[−1.0276
−0.7612

]
(100)

A unique design solution of equations (99)–(100) can be obtained by choosing
to minimize |θs

0|2 and solving a quadratic programming problem, which has been
done with the function quadprog in Matlab:

θs
0 =

⎡⎢⎢⎣
2.7089
0.4273
−2.7089
0.4273

⎤⎥⎥⎦ rad =

⎡⎢⎢⎣
155.2095◦

24.4834◦

−155.2095◦

24.4834◦

⎤⎥⎥⎦ (101)

The rest angles of the springs are −θs
0. Note that different designs can be

obtained if one does not choose to minimize the norm of the initial spring
rotations.

The variation of the hinge rotations for the range θs(3) = (0, π) rad has been
computed using the algorithm in Kumar and Pellegrino (2000) and has been
plotted in Fig. 9. Assigning the spring stiffness as 1 N·m/rad, the corresponding
variation of the strain energy variation is shown in Fig. 10. It shows that both
target configurations correspond to a local minimum.
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6.6. Proof of Concept Model

An important aspect of building physical models of the structures described
in this paper is the construction of hinges with the required initial angles. A sim-
ple design concept was borrowed from post-stressed door spring hinges (Global,
2018), shown in Fig. 11. In Fig. 11a, two shafts are connected by a torsional
spring; the top shaft is connected to the left plate while the bottom is connected
to the right plate. The initial angle of the hinge can be set to an accuracy of
10◦. A low-friction version, with a thinner and polished shaft with a PTFE
coated bearing is shown in Fig. 11b.

(a) Basic design of hinge.

PTFE coated bearing

3D printed steel shaft

Polished steel shaft

(b) Low-friction version.

Figure 11: Hinge design with adjustable angle.

A plastic model was printed with a CraftUnique CraftBot Plus 3D printer.
The steel torsional springs were TO-1027 from Century Spring Corp. and the
PTFE bearings were model 2706T14 from McMaster-Carr. Based on the design

in equation (101), the initial spring rotations were set to θs
0 =

[
160◦ 20◦ −160◦ 20◦

]T
.

The assembled structure is shown in Fig. 12 held by its top-right panel. The
existence of the two target stable configurations was verified with the model.

(a) Target configuration 1. (b) Target configuration 2.

Figure 12: Two stable configurations of the prototype.
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7. Conclusion

This paper has presented a new, general formulation for the design of mor-
phing bar and plate structures which are rendered multi-stable in a set of chosen
target configurations, through extensional and rotational linear-elastic springs
whose stiffness and initial length/angle are specifically chosen to achieve this
desired behavior.

The design process starts with a skeleton structure, i.e. a mechanism consist-
ing of rigid bars and plates that can achieve the required target configurations
through a continuous kinematic deformation. It is emphasized that the syn-
thesis of skeleton structures with practically useful target configurations that
are also connected by a continuous kinematic manifold is a separate and chal-
lenging problem in itself. An example of achieving desired shapes for a specific
three-dimensional skeleton structure can be found in Liao and McCarthy (2001).
Currently, there are no general methods to carry out this task.

At the beginning of the analysis, a reference configuration of the structure as
well as the chosen target configurations are defined. The compatibility matrix
of the structure and its singular value decomposition are computed in each tar-
get configuration, and from these decompositions the rank of the compatibility
matrix and a set of independent zero-energy mechanisms are computed for each
target configuration. Then, the second-order extensions of the bars and the
rotations of the hinges that are associated with unit amplitudes of the indepen-
dent mechanisms are computed using equation (52). The second-order nodal
displacements that correct these extensions/rotations are computed using equa-
tions (58), (59) and (61). This calculation yields the independent second-order
zero-energy mechanisms of the skeleton structure, according to equation (62).
Then, extensional and torsional springs are introduced in the structure and the
compatibility and Hessian matrices for these springs are computed. With these
matrices, the second-order extensions and rotations of the springs are computed
for each independent mechanism of the skeleton structure, using equations (66)-
(68). Lastly, a set of equilibrium equations and stability inequalities are com-
puted for each target configuration, using equations (76)-(77).

This final step completes the formulation of the design problem, whose solu-
tion —consisting of the stiffness and initial length/angle of each spring— is in
general not unique. At this point a cost function can be introduced and the min-
imization of this function, subject to the constraint equations, is a constrained
optimization problem that can be solved numerically. A key advantage of the
developed method is its full generality.

Follow-on research suggested by the present research includes the explicit
trade-off between the number and position of extensional and rotational springs.
Are the two types of springs equivalent in terms of the features of energy surface
that can be created? Also, in some specific applications it may be desirable that
the local energy minima are separated by a high energy maximum, to prevent
accidental triggering of a shape change. What determines the highest energy
barrier that can be achieved? Lastly, a theory to design multi-stable morphing
structures using nonlinear springs would be an obvious next step.
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Another open research topic is the development of efficient manufacturing
techniques to build structures with the required spring properties, as the ap-
proach used for the proof-concept model in section 6 would not be suitable for
larger structures.
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Research Data

Matlab codes for the example in Section 6 can be downloaded from ????Ed-
itor, please add link to Mendeley Data??. Download all files and put them in
the same folder. Run the script "RUN ME miura phi0" in Matlab and the design
parameters (rest angles for the torsional springs) will be computed.

Nomenclature

A m×m× (nb + nr) third-order tensor of second-order
extensions and rotations of the skeleton structure, due
to unit amplitudes of all inextensional mechanisms

Ab
k m×m matrix of second-order extension of bar k, due

to unit amplitudes of all inextensional mechanisms

Ah
r m×m matrix of second-order rotation of hinge r, due

to unit amplitudes of all inextensional mechanisms

Bs m × m × (p + q) third-order tensor of second-order
spring extensions and rotations due to unit amplitudes
of all inextensional mechanisms

Cb nb × 3n compatibility matrix for all bars

Cb
k 1× 6 compatibility matrix for bar k

Ch nh × 3n compatibility matrix for all hinges

Ch
r 1× 12 compatibility matrix for hinge r

Ces
k 1× 6 compatibility matrix for extensional spring k

Cs (p+ q)× 3n compatibility matrix for all springs
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Cts
r 1× 12 compatibility matrix for torsional spring r

d, dc, dm, dn 3n-component vectors of nodal displacements, correc-
tion displacements, first-order zero-energy displace-
ments, second-order zero-energy displacements

di, dij 3-dimensional vector of displacements of node i, rela-
tive displacement of node j with respect to node i

dk 6-component vector of displacements for bar k

dr 12-component vector of displacement for hinge r

e nb-dimensional vector of extensions of all bars

ek extension of bar k

E0, Ei, Δ
1Ei, Δ

2Ei strain energy in reference configuration, configuration
i, first-order and second-order energy variations near
configuration i

Hb
k 6× 6 Hessian matrix for bar k

Hes
k 6× 6 Hessian matrix for extensional spring k

Hh
r 12× 12 Hessian matrix for hinge r

Hts
r 12× 12 Hessian matrix for torsional spring r

H̃ 6× 6 constant matrix

K (p+ q)× (p+ q) diagonal matrix with stiffnesses of all
springs

m number of inextensional mechanisms

m, n normal vectors for hinge element

n, nb, nh, nt number of nodes, number of rigid bars, number of rigid
hinges, number of target configurations

p number of extensional springs

q number of torsional springs

rC rank of compatibility matrix

rij 3-dimensional vector along bar ij

xi 3-dimensional position vector for node i

U (nb + nh)× (nb + nh) matrix of left singular vectors

UrC (nb + nh) × rC matrix of left singular vectors corre-
sponding to non-zero singular values

V (nb + nh)× 3n matrix of singular values
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VrC rC × rC diagonal matrix of non-zero singular values

W 3n× 3n matrix of right singular vectors

Wc m × m × 3n third-order tensor of second-order cor-
rection displacements due to unit amplitudes of all
inextensional mechanisms

Wm 3n×m matrix of first-order zero-energy displacements

WrC 3n×rC matrix of right singular vectors corresponding
to non-zero singular values

αi m-dimensional vector of mechanisms’ amplitudes for
configuration i

β acute inner angle of Miura-ori unit cell

θ nh-dimensional vector of rotations of all hinges

θr rotation of hinge r

θts q-dimensional vector of rotations of all torsional
springs

θtsr rotation of torsional spring r
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Appendix A. Appendix

This appendix provides further details on the results presented in Section 6.
The matrices Ab

k to calculate equation (52) for the two target configurations

are computed from equation (38) with H̃ defined in equation (17). Note that
the compatibility matrices of bars 1, 2 and 5 are not calculated because both
end nodes are constrained.
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For the first configuration:

Ab
3|1 =

1

2× 1

⎡⎢⎢⎢⎣
−0.8023

−0.1415

0.5379

⎤⎥⎥⎥⎦
T

H̃

⎡⎢⎢⎢⎣
−0.8023

−0.1415

0.5379

⎤⎥⎥⎥⎦ = 0.4765 (A.1)

Ab
4|1 =

1

2× 1

⎡⎢⎢⎢⎣
0.0000

−0.0401

0.2130

⎤⎥⎥⎥⎦
T

H̃

⎡⎢⎢⎢⎣
0.0000

−0.0401

0.2130

⎤⎥⎥⎥⎦ = 0.0235 (A.2)

Ab
6|1 =

1

2× 1.2856

⎡⎢⎢⎢⎣
−0.8023

−0.1415

0.5379

⎤⎥⎥⎥⎦
T

H̃

⎡⎢⎢⎢⎣
−0.8023

−0.1415

0.5379

⎤⎥⎥⎥⎦ = 0.3707 (A.3)

Ab
7|1 =

1

2× 1.2856

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.8023

−0.1415

0.5379

0.0000

−0.0401

0.2130

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

H̃

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.8023

−0.1415

0.5379

0.0000

−0.0401

0.2130

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0.2954 (A.4)

Ab
8|1 =

1

2× 1.5321

⎡⎢⎢⎢⎣
0.0000

−0.0401

0.2130

⎤⎥⎥⎥⎦
T

H̃

⎡⎢⎢⎢⎣
0.0000

−0.0401

0.2130

⎤⎥⎥⎥⎦ = 0.0153 (A.5)

For the second configuration:

Ab
3|2 =

1

2× 1

⎡⎢⎢⎢⎣
−0.0401

−0.0071

−0.2138

⎤⎥⎥⎥⎦
T

H̃

⎡⎢⎢⎢⎣
−0.0401

−0.0071

−0.2138

⎤⎥⎥⎥⎦ = 0.0237 (A.6)

Ab
4|2 =

1

2× 1

⎡⎢⎢⎢⎣
−0.0000

−0.8192

−0.5307

⎤⎥⎥⎥⎦
T

H̃

⎡⎢⎢⎢⎣
−0.0000

−0.8192

−0.5307

⎤⎥⎥⎥⎦ = 0.4763 (A.7)
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Ab
6|2 =

1

2× 1.2856

⎡⎢⎢⎢⎣
−0.0401

−0.0071

−0.2138

⎤⎥⎥⎥⎦
T

H̃

⎡⎢⎢⎢⎣
−0.0401

−0.0071

−0.2138

⎤⎥⎥⎥⎦ = 0.0184 (A.8)

Ab
7|2 =

1

2× 1.2856

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0401

−0.0071

−0.2138

−0.0000

−0.8192

−0.5307

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

H̃

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0401

−0.0071

−0.2138

−0.0000

−0.8192

−0.5307

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0.2962 (A.9)

Ab
8|2 =

1

2× 1.5321

⎡⎢⎢⎢⎣
−0.0000

−0.8192

−0.5307

⎤⎥⎥⎥⎦
T

H̃

⎡⎢⎢⎢⎣
−0.0000

−0.8192

−0.5307

⎤⎥⎥⎥⎦ = 0.3109 (A.10)

The calculation of the second-order compatibility matrices for the torsional
springs involves a separate calculation for each spring. The Hessian matrices for
the rotational springs are obtained from equations A(10) to A(20) in Appendix A
of Liu and Paulino (2017). Nodes pinned to the ground are not included in the
calculation.

For the first configuration:

spring 1: (1/2)(Wm|1)T1 Hts
1 |1(Wm|1)1 =

=
1

2

⎡⎢⎢⎢⎣
0.0000

−0.0401

0.2130

⎤⎥⎥⎥⎦
T ⎡⎢⎢⎢⎣

0 0 0

0 −0.3754 0.9603

0 0.9603 0.3754

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

0.0000

−0.0401

0.2130

⎤⎥⎥⎥⎦ = 0 (A.11)

spring 2: (1/2)(Wm|1)T2 Hts
2 |1(Wm|1)2 =

=
1

2

⎡⎢⎢⎢⎣
−0.8023

−0.1415

0.5379

⎤⎥⎥⎥⎦
T ⎡⎢⎢⎢⎣

−0.9196 −0.1621 −0.3990

−0.1621 −0.0286 −0.0704

−0.3990 −0.0704 0.9482

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
−0.8023

−0.1415

0.5379

⎤⎥⎥⎥⎦ = 0 (A.12)
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spring 3: (1/2)(Wm|1)T3 Hts
3 |1(Wm|1)3 =

=
1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.8023

−0.1415

0.5379

0.0000

−0.0401

0.2130

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1931 −0.0204 0.2181 −0.4485 0.2101 −0.6878

−0.0204 0.1917 0.0543 0.1692 −0.0175 −0.0680

0.2181 0.0543 −0.3848 0.3238 −0.1460 0.4660

−0.4485 0.1692 0.3238 −0.1302 −0.8410 0.0108

0.2101 −0.0175 −0.1460 −0.8410 0.0829 0.5854

−0.6878 −0.0680 0.4660 0.0108 0.5854 0.0473

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.8023

−0.1415

0.5379

0.0000

−0.0401

0.2130

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0.0868 (A.13)

spring 4: (1/2)(Wm|1)T4 Hts
4 |1(Wm|1)4 =

=
1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.8023

−0.1415

0.5379

0.0000

−0.0401

0.2130

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.9196 0.2333 −0.3620 0.0148 −0.0334 0.1631

0.2333 −0.0207 −0.1123 −0.8481 0.0432 0.5779

−0.3620 −0.1123 0.9403 −0.0894 0.0270 −0.0580

0.0148 −0.8481 −0.0894 −0.4233 0.3504 −0.6613

−0.0334 0.0432 0.0270 0.3504 −0.1212 0.0915

0.1631 0.5779 −0.0580 −0.6613 0.0915 0.5445

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.8023

−0.1415

0.5379

0.0000

−0.0401

0.2130

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= −0.0108 (A.14)

And for the second configuration:

spring 1: (1/2)(Wm|2)T1 Hts
1 |2(Wm|2)1 =

=
1

2

⎡⎢⎢⎢⎣
0.0000

−0.0401

0.2130

⎤⎥⎥⎥⎦
T ⎡⎢⎢⎢⎣

0 0 0

0 0.9410 −0.4215

0 −0.4215 −0.9410

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

0.0000

−0.0401

0.2130

⎤⎥⎥⎥⎦ = 0 (A.15)

spring 2: (1/2)(Wm|2)T2 Hts
2 |2(Wm|2)2 =

=
1

2

⎡⎢⎢⎢⎣
−0.8023

−0.1415

0.5379

⎤⎥⎥⎥⎦
T ⎡⎢⎢⎢⎣

0.3677 0.0648 0.9443

0.0648 0.0114 0.1665

0.9443 0.1665 −0.3791

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
−0.8023

−0.1415

0.5379

⎤⎥⎥⎥⎦ = 0 (A.16)
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spring 3: (1/2)(Wm|2)T3 Hts
3 |2(Wm|2)3 =

=
1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.8023

−0.1415

0.5379

0.0000

−0.0401

0.2130

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.2527 0.3827 −0.2081 0.1950 −0.0015 −0.0419

0.3827 −0.2897 0.6422 −0.8207 −0.1379 0.0831

−0.2081 0.6422 0.5423 −0.5333 −0.2611 −0.0571

0.1950 −0.8207 −0.5333 −0.1288 0.3740 0.0429

−0.0015 −0.1379 −0.2611 0.3740 −0.8051 0.3910

−0.0419 0.0831 −0.0571 0.0429 0.3910 0.9340

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.8023

−0.1415

0.5379

0.0000

−0.0401

0.2130

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= −0.0108 (A.17)

spring 4: (1/2)(Wm|2)T4 Hts
4 |2(Wm|2)4 =

=
1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.8023

−0.1415

0.5379

0.0000

−0.0401

0.2130

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.3677 −0.7573 −0.5678 −0.0963 0.2738 0.1976

−0.7573 −0.4156 −0.1102 0.2317 −0.3665 −0.2861

−0.5678 −0.1102 0.0479 −0.0561 0.6962 0.4628

−0.0963 0.2317 −0.0561 0.2007 −0.0189 −0.0151

0.2738 −0.3665 0.6962 −0.0189 0.1809 −0.2300

0.1976 −0.2861 0.4628 −0.0151 −0.2300 −0.3816

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.8023

−0.1415

0.5379

0.0000

−0.0401

0.2130

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 0.0876 (A.18)

The complete matrices are therefore:⎡⎢⎢⎢⎢⎢⎢⎣
−0.0000

0

0.0868

−0.0108

⎤⎥⎥⎥⎥⎥⎥⎦ and

⎡⎢⎢⎢⎢⎢⎢⎣
0.0000

−0.0000

−0.0108

0.0876

⎤⎥⎥⎥⎥⎥⎥⎦ (A.19)
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