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This paper presents an experimental and numerical study of the folding, stowage,

and deployment behavior of viscoelastic tape springs. Experiments show that during

folding the relationship between load and displacement is nonlinear and varies with

rate and temperature. In particular, the limit and propagation loads increase with the

folding rate but decrease with temperature. During stowage, relaxation behavior leads

to a reduction in internal forces that signi�cantly impacts the subsequent deployment

dynamics. The deployment behavior starts with a short, dynamic transient that is

followed by a steady deployment and ends with a slow creep recovery. Unlike elastic

tape springs, localized folds in viscoelastic tape springs do not move during deployment.

Finite element simulations based on a linear viscoelastic constitutive model with an

experimentally determined relaxation modulus are shown to accurately reproduce the

experimentally observed behavior, and to capture the e�ects of geometric nonlinearity,

time and temperature dependence.
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Nomenclature

aT = temperature shift factor

c1, c2 = constants in WLF equation

E = uniaxial relaxation modulus

E∞ = uniaxial long-term modulus

G = shear relaxation modulus

h = tape spring thickness

h̄ = average tape spring thickness

I = second moment of area

K = bulk relaxation modulus

L = tape spring length

M = bending moment

P = reaction force

R = tape spring radius

r = longitudinal radius of curvature of localized fold

T = temperature

T0 = reference temperature

t = time

t' = reduced time

u = vertical displacement

u̇ = vertical displacement rate

v = horizontal displacement

x = horizontal coordinate

α = tape spring subtended angle

ϵ = strain

κl = longitudinal curvature

ν = Poisson's ratio

ρ = relaxation times

σ = stress

θ = rotation angle 2



I. Introduction

Stored strain energy deployable structures built around the concept of the steel tape measure

are known as tape springs. Tape springs are thin shells with a curved section, typically of uniform

curvature and subtending angles smaller than 180◦, as shown in Fig. 1. They are particularly suitable

for packaging because their curved transverse cross-section can be �attened and then the structure

can be easily coiled longitudinally. This process is nearly inextensional and hence dominated by

bending strain energy, which is small in a thin structure. Tape springs have been extensively used

in deployable booms [1, 2]; also, their ability to form localized elastic folds, as shown in Fig. 2, has

been exploited in various deployable structures concepts able to self-deploy and self-lock.
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Fig. 1 (a) Tape spring geometry, and (b) neutral axis of cross section.

(a) (b)

Fig. 2 Tape spring made of LDPE having a radius of 19 mm and a subtended angle of 150◦:

(a) deployed and (b) folded.

Tape-springs used in deployable space structures have traditionally been made of metallic mate-

rials, but recently there has been rising interest in designing tape springs made of reinforced polymer

composites because of their low thermal expansion and high speci�c sti�ness [3, 4]. In this case the

deployment behavior is dependent on time and temperature due to the viscoelasticity of the matrix.

For example, the initial deployment anomaly of the composite booms forming the antennas of the
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Mars Express Spacecraft was attributed to the loss of deployment moment after long term stowage

[5, 6]. Related experimental studies found that the deployed shape precision and vibration charac-

teristics are also a�ected by time and temperature e�ects [7, 8]. As deployable space structures are

stowed for extended periods and subjected to varying temperature environments, viscoelastic e�ects

need to be considered for designing deployable structures with predictable deployment behavior and

�nal shape precision.

The present study examines the time and temperature dependent behavior of homogeneous

linear viscoelastic tape springs during the folding, stowage and deployment processes. The broad

objective is to gain a fundamental understanding of viscoelastic behavior of polymer-based deploy-

able structures and to establish methods of analysis for viscoelastic thin shells.

The material chosen is low density polyethylene (LDPE). While the mechanical properties of

polymers depends on their particular molecular structure that gives rise to the distinction between

thermosets and thermoplastics, their phenomenological viscoelastic behavior is adequately repre-

sented by the same constitutive model above the glass transition temperature. In other words, the

moduli of LDPE and epoxies commonly used in composites relax with time in a similar manner

provided that the behavior of each material is referenced to its respective glass transition temper-

ature, although in epoxies aging may also need to be modeled.[9, 10] Typical epoxies have glass

transition temperatures above 100◦C and performing experiments involving large displacements,

such as dynamic deployment, at such temperatures is challenging. By choosing LDPE, whose glass

transition is below 0◦ [11], we can study viscoelastic e�ects near room temperature and the results

are indicative of thermosets above the glass transition.

The paper is laid out as follows. Section II reviews the relevant literature. Section III describes

the experimental procedures and presents the results of two experiments that were conducted.

The �rst experiment examined the quasi-static folding and stowage processes, while the second

investigated the dynamic deployment of shells that had been stowed for a period of time. The

results of these experiments demonstrate clear evidence of viscoelastic e�ects on folding, stowage,

and deployment. Section IV presents the �nite element model used for studying the time and

temperature dependent behavior of these shells. The analyses are based on a linear viscoelastic con-
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stitutive model with an experimentally determined master curve. Section V compares the predicted

load-displacement relationship, relaxation over time, and deployed displacement with the measured

responses. Section VI discusses the �ndings of the study and concludes the paper.

II. Background

The present study involves two related areas of literature, namely geometric nonlinearity in thin

shells and viscoelasticity.

The geometrically nonlinear behavior of elastic tape springs subject to bending has been ex-

ploited in many deployable structures and is therefore well studied. The key e�ect, in a tape spring

of �nite length, is that a gradually increasing bending moment, which induces tension on the edges

and compression in the middle, causes the cross section to ovalize. This results in a gradual re-

duction in the bending sti�ness of the tape spring, de�ned as the slope of the equilibrium path

in moment-rotation space. The sti�ness becomes zero when a limit moment is reached and at this

point the deformation of the tape spring suddenly localizes as it changes shape from smoothly curved

to almost straight with an elastic fold in the middle. The fold region is curved longitudinally but

straight transversally, Fig. 3, and it is surrounded by regions that are almost straight longitudinally

and have the original curvature transversally. Biaxially curved transition regions connect the fold

region to the straight parts[12].

r

transition

Fig. 3 Con�guration of a bent tape spring with three distinct zones of deformation.

The folded tape spring has zero sti�ness, as the length of the fold region can be varied under

a constant bending moment; the value of this steady-state moment is much lower than the limit

moment [13]. This is a characteristic feature of steady-state propagating instabilities in elastic

structures and can be captured using a simple energy balance [13�15].
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Throughout the entire bending process, the deformation remains elastic and is completely re-

versible upon removal of the applied moment; this is the principle behind the longitudinal coiling

and localized folding of tape springs. Three-dimensional folding, in which tape springs are both

bent and twisted, has been proposed for small satellite missions [16, 17].

Polymer-based tape springs exhibit viscoelastic properties and hence their behavior is compli-

cated by time and temperature dependence. The well established and widely used phenomenological

theory of viscoelasticity describes the constitutive behavior of polymers with respect to time and

temperature [18�21]. In the simplest form of this theory, linear viscoelasticity, the stress-strain

relation for uniaxial deformation is expressed in terms of the Boltzmann superposition integral,

σ(t) =

∫ t

0

E(t− τ)
dϵ

dτ
dτ, (1)

where σ is stress, ϵ is strain, and E is the relaxation modulus that expresses the time variation of

the modulus.

For analysis of real materials over a wide range of time scales, an exponential series known as

the Prony series is often used to represent the relaxation modulus. The Prony series representation

is given by

E(t) = E∞ +
n∑

i=1

Eie
−t/ρi , (2)

where t is time, E∞ is the long-term modulus, Ei are the Prony coe�cients, and ρi are the corre-

sponding relaxation times. Each exponential term e�ectively represents the variation of the relax-

ation modulus within 1 decade of time. The terms in the Prony series that are required for a speci�c

analysis depend upon the time range of interest. Relaxation and creep tests are the fundamental

characterization methods for obtaining the relaxation modulus, however, extended testing periods

are required for measuring the long-term response if the tests are conducted at a single temperature.

For polymers, there exists a remarkable relationship between time and temperature, known as

the time-temperature superposition principle, which provides a means to study long-term behavior

of viscoelastic materials using short-term characterization tests. The key idea is to postulate a shift

factor aT which is the ratio of relaxation times at two di�erent temperatures [20],

aT =
ρ(T )

ρ(T0)
, (3)

6



where ρ is the relaxation time and T0 is some reference temperature. As indicated earlier, a polymer

has many relaxation times. If the same shift factor applies to all relaxation times, the polymer is

termed thermorheologically simple. A widely used empirical relation for aT is the Williams-Landel-

Ferry (WLF) equation [22],

log aT = − c1(T − T0)

c2 + (T − T0)
, (4)

in which c1 and c2 are material constants that depend on the particular polymer and the logarithm

is of base ten.

To relate the e�ects of time and temperature, the concept of reduced time t′ is introduced. It

is given by,

t′ =

∫ t

0

dτ

aT (T )
. (5)

In the simple case of constant temperature over time, the reduced time becomes

t′ =
t

aT
, (6)

and it follows that

ET (t) = ET0(t
′). (7)

In essence, the time-temperature superposition principle suggests that the modulus at temper-

ature T and time t is the same as the modulus at the reference temperature T0 and reduced time t′.

Therefore, one can relate the relaxation modulus at one temperature to that at another temperature

by a shift in the time scale.

Based on this principle, a master curve for a thermorheologically simple material can be con-

structed at any arbitrary reference temperature by shifting the relaxation moduli at all other tem-

peratures to the reference temperature. On a log-log plot of relaxation versus time, this is equivalent

to a horizontal shift by log aT (T ). The resulting master curve is a plot of relaxation modulus that

describes both the time and temperature dependence of the material behavior. In terms of reduced

time, the constitutive relation, Eq. (1), is given by

σ(t) =

∫ t′

0

E(t′ − τ ′)
dϵ

dτ
dτ. (8)
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III. Experiments

This section �rst describes the specimen fabrication and characterization processes, and then

presents the procedures and results of two experiments. The �rst experiment investigated the

folding-stowage process with careful control and measurement of load and displacement over time.

This test helped develop an understanding of the tape spring deformation prior to deployment. The

second experiment measured continuously the response of the tape spring during folding, stowage

and deployment, but focused on analyzing the �nal deployment and shape recovery behavior.

A. Fabrication of Tape Springs

Tape spring specimens were fabricated from a single �at LDPE sheet obtained from the United

States Plastic Corporation, through a thermal remolding process. The LDPE sheet stock had a

length of 610 mm, a width of 914 mm, and a thickness of 0.79 mm. A strip of LDPE was cut to

the required length, sandwiched between two release fabric layers, wrapped around a cylindrical

steel mandrel, restrained with heat shrink tape, and subject to a thermal cycle. The assembly

was heated to 120◦C, maintained at this temperature for 4 hours, and then allowed to cool to room

temperature in 8 hours at a constant cooling rate inside an oven with a temperature control precision

of ±2◦C. The long heating and cooling periods allowed enough time for LDPE to recrystallize and

to minimize the e�ect of physical aging, respectively. To further eliminate the e�ects of physical

aging, the fabricated specimen was kept at room temperature for another 24 hours before any tests

were performed. After this procedure, it was assumed that temporally stable mechanical properties

had been achieved in the remolded material.

The specimen was cut into two pieces and di�erent experiments were conducted on each piece,

see Table 1, in which h̄ denotes the average thickness of the shell. The measured radius was higher

than that of the steel mandrel because the shells recoiled by a consistent amount after release from

the mold. The thickness variation was measured using an Elcometer 456 coating thickness gauge

with a resolution of 10 microns. A rectangular grid was drawn on each specimen and the thickness

at the grid points was measured. The grid spacing was 16 mm along the length and 10 mm along the

circumference of the tape spring. The thickness contours of the specimen used in the folding-stowage
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experiment are shown in Fig. 4.

Experiment L [mm] R [mm] h̄ [mm] α [deg]

Folding-Stowage 272.0 19.0 0.73 150

Deployment-Recovery 398.0 19.0 0.73 150

Table 1 Dimensions of tape springs.
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Fig. 4 Thickness distribution, in millimeters, of tape spring specimen used in folding-stowage

experiment. The vertical coordinate is the cross-sectional arc-length.

B. Master Curve of LDPE

The relaxation modulus of LDPE was characterized through a series of uniaxial tension relax-

ation tests. Three rectangular test coupons with a length of 165 mm and a width of 40.0 mm were

cut from a LDPE sheet with a thickness of 1.56 mm, which had been previously subjected to the

same remolding process of the tape springs. Tests were performed inside an environmental chamber

(Instron Heatwave Model 3119-506) utilizing a built-in thermocouple to control the temperature

with a precision of ±1◦C. A type-T thermocouple made of Copper/Constantan was attached to

the surface of a dummy LDPE coupon close to the test coupon. The stability of the temperature

conditioning inside the environmental chamber was measured by prescribing a temperature impulse

and recording the subsequent temperature variation over time both with the built-in thermocouple

and the dummy coupon thermocouple. It was found that the temperature readings from the two

thermocouples became identical 30 minutes after the impulse. This indicates that thermal equilib-

rium is established within such time frame, and this thermal conditioning time was allowed prior to

each test.
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Before testing, the temperature was brought to the speci�ed value and the coupon was thermally

conditioned for 30 minutes at the test temperature. Because of the viscoelastic nature of LDPE, the

observed load changed over time after the application of the preload. Therefore, the test coupon

was allowed to rest until the observed load reached a steady value.

The coupons were tested at 0◦C, 10◦C and 22◦C, and at each of these temperatures the test on

the same coupon was repeated three times. Each test consisted in stretching the coupon to a strain

of 0.005 in 1 second and this strain was held constant for 3 hours. The longitudinal and transverse

strains in the coupon were measured using two laser extensometers (Electronic Instrument Research

Ltd LE-05) with a recording rate of 5 Hz.

The averages of the measured relaxation moduli are presented in Fig. 5. The initial portion of

the relaxation test data after loading with a �nite strain rate deviates from that in the case of ideal

instantaneous straining. The di�erence becomes negligible in about 10 times the loading time[24].

For this reason, the data obtained during the �rst 10 s after loading were discarded. The individual

relaxation moduli at T = 0◦C and T = 10◦C were shifted with respect to the reference temperature

of T0 = 22◦C to form a master curve. The corresponding shift factors were determined so that the

shifted relaxation moduli and the unshifted one at T0 lie along a single smooth curve. Figure 6

shows the master curve of LDPE at the reference temperature.
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Fig. 5 Relaxation moduli versus time at test temperatures

The long term modulus, Prony coe�cients and relaxation times were determined by �tting the
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Fig. 6 Master curve for LDPE at 22◦C

i Ei [MPa] ρi [s]

∞ 136.2 ��

1 150.6 2.43× 10−2

2 74.81 2.17× 10−1

3 68.26 1.52

4 65.22 1.24× 10

5 62.85 1.49× 102

6 49.83 1.69× 103

Table 2 Prony series parameters for LDPE

Prony series representation, Eq. (2), to the master curve using the Levenberg-Marquardt optimiza-

tion algorithm in Matlab. Table 2 lists the parameters of the 6-term Prony series that was obtained.

Similarly, the material constants c1 and c2 were found by �tting the temperature shift data to the

WLF equation, Eq. (4), and the values obtained were

c1 = −8.74 and c2 = −40.41◦C

C. Folding-Stowage Experiments

The folding-stowage sequence was implemented by bending a tape spring to a prescribed end

rotation and holding the rotation angle �xed over time. The tape spring was bent in an opposite
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sense (i.e. the longitudinal and transverse curvature changes have opposite signs) by applying an

eccentric compression on the end cross sections. To allow the end cross sections to deform and

freely rotate during folding, the mid-point of each end cross section was placed in contact with a

thin aluminum plate attached to the load frame. Prior to starting the test, the tape spring was held

upright by means of a small compressive preload applied through the two contact points between

the aluminum plates and the tape spring. The test con�guration is schematically shown in Fig. 7.

The procedure adopted in the present experiment allows full control of the boundary conditions

and also precise tracking of the load and displacement histories over time, which is important for

achieving repeatable measurements in the present path dependent problem.

Tests were carried out in displacement-controlled mode following the same procedures described

in Sec. III B. In each test, a downward displacement of 80 mm was applied and then the tape spring

was held in this �nal con�guration for 5000 s. Two temperatures, T = 15◦C and 22◦C, and two

displacement rates, u̇ = 1 mm/s and 5 mm/s, were chosen. Full �eld views of the deformed tape

spring were captured continuously using a high-resolution digital camcorder.

u

P

θ/2

θ/2

v

Fig. 7 Schematic of folding-stowage test.

The measured load P and displacement u over time during folding are plotted in Fig. 8. The

load response has been converted to a plot of moment M vs. rotation θ in Fig. 9 for the case of
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u̇ = 1 mm/s at T = 22◦C. The rotation has been obtained by adding the end rotations measured

from the images of the deformed specimen, and the moment has been obtained from the measured

load multiplied by the distance between the line of action of the load and the middle cross section

of the tape spring, v, also measured from the images. Images of the specimen at di�erent stages of

the test are shown in Fig. 10. The label of each image corresponds to a speci�c point in Fig. 9.
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Fig. 8 Measured load response during folding: (a) u̇ = 1 mm/s and (b) u̇ = 5 mm/s.

The initial part of the response in Fig. 9 shows a sti�, softening behavior. Then, the tape spring

bends uniformly, see con�gurations A - C in Fig. 10, with a decreasing bending sti�ness EI, where

I is the second moment of area of the cross section about the neutral axis. This nonlinearity is due

to changes in both E and I: �rst, the second moment of area decreases with rotation as a result
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Fig. 9 Measurements of moment vs. rotation for u̇ = 1 mm/s and T = 22◦C.
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Fig. 10 Sequence of deformed shapes corresponding to the response in Fig. 9.
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of ovalization and, second, the longitudinal modulus relaxes with time because of viscoelasticity. In

this uniform deformation stage, the longitudinal curvature is given by κl = θ/L. Uniform bending

ceases in the con�guration C, which is just past after reaching the maximum moment. At this

point, a buckle begins to form in the middle of the tape spring. Although the applied loading is not

completely symmetric, due to gravity, but this asymmetry is too small to have a signi�cant impact

on the location of the buckle. From con�guration C to E, the moment drops sharply as the end

rotations continue to increase. This corresponds to an expansion of the buckle in the transverse

direction and unloading of the regions away from the buckle. The buckle has fully developed in

con�guration E, where a localized fold region with zero transverse curvature has been formed. At

this stage, the tape spring has adopted the deformation pattern outlined in Fig. 3, with longitudinally

curved and straight parts of the tape spring coexisting. From this point onwards, con�gurations

E - G, the moment stays constant with rotation and the fold length increases as a result of the

propagation of the localized fold into the straight portions of the tape spring. This fold propagation

occurs in a quasi-static manner in the present case because of the displacement-controlled loading

mode adopted in this test.

The load responses during folding at two di�erent rates and temperatures have been plotted

in Fig. 8. These plots show similar types of nonlinear response, but the maximum load values

are di�erent. It can be seen in Fig. 8 that higher maximum loads occur at lower temperatures

and faster rates, due to the time and temperature dependence of viscoelastic materials. Their

mechanical response is in general nonlinearly a�ected by rate and temperature, but the stresses are

always higher at lower temperatures and faster rates. In Section IV a viscoelastic constitutive model

will be employed to analyze such e�ects in detail.

Load relaxation during stowage is evidenced by plotting the change in load over time on a semi-

log scale, Fig. 11. The linearity of the curves from 1000 s to 5000 s on a log time axis implies that

the reduction in load is exponential in time. After 5000 s the load has dropped to about one-third

of its value at the end of folding. At both rates, higher loads are measured at the lower temperature

throughout the entire stowage period.
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Fig. 11 Measured load relaxation in stowed con�guration: (a) u̇ = 1 mm/s and (b) u̇ =

5 mm/s.

D. Deployment Experiments

The deployment dynamics were measured using the test con�guration shown in Fig. 12. The

specimen was clamped at the bottom and held vertical. It was �rst folded to an angle of 87◦ over

a period of 9 s by manually applying a follower force on the free end; it was then held stowed for

983 s. While in the stowed con�guration, the force at the free end was measured by connecting the

specimen to a load cell through a cord. Deployment was initiated by cutting the cord at the end of

the stowage period. The entire test was carried out at 22◦C.

To characterize the deformation, a target point P near the free end was marked (Fig. 12) and

its lateral displacement xp was tracked during deployment. Values of xp larger than 20 mm were
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laser
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tape-spring

x

P

load cell

Fig. 12 Deployment test con�guration.

extracted from images taken using a high resolution camcorder with a frame rate of 30 fps. For

higher accuracy, a laser displacement sensor (Keyence LK-G87) was used to measure values of xp

smaller than 20 mm.

Figure 13 shows a series of snapshots of the deployment sequence. The corresponding values of

xp and t are provided in Fig. 14, which includes three detailed views of the displacement response

over time, each highlighting a particular feature. The deployment response can be divided into three

stages, each with its own distinctive characteristics. First, a dynamic response is seen during the �rst

5 s, Fig. 14(b), which includes an oscillation with a period of about 0.8 s about a displacement that

decreases over time. Second, the next phase involves a steady deployment that occurs between 5 s

and 55 s, Fig. 14(c), with the lateral displacement actually overshooting the deployed con�guration

by 11 mm. An interesting feature in these �rst two stages is that the fold does not move: this

behavior is di�erent from that of a linear elastic tape spring in which deployment is accompanied by

the fold traveling towards the �xed end [13]. Third, a slow creep recovery of the fold cross section

leads to a near-zero lateral displacement over a period of 3000 s, Fig. 14(d).

After the test, a close examination of the tape spring revealed that the cross section geometry

had not completely recovered, but the magnitude of deformation was too small to be measured

precisely with the present experimental setup. The test specimen was monitored visually over three

months and the cross section of the fold was found to continue recovering at room temperature in
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D E F

G H I

J K L

Fig. 13 Deployment sequence: (A)-(F) from 0 s to 2.5 s in steps of 0.5 s, (G)-(I): from 5 s to

55 s in steps of 25 s, and (J)-(L): from 1000 s to 3000 s in steps of 1000 s.

an asymptotic manner.

18



(a) (b)

0 500 1000 1500 2000 2500 3000
−15

25

65

105

145

185

225

265

305

t [s]

0 1 2 3 4 5
250

260

270

280

290

300

310

t [s]

5 15 25 35 45 55
−20

30

80

130

180

230

280

t [s]
500 1000 1500 2000 2500 3000

−12

−10

−8

−6

−4

−2

0

2

t [s]

(c) (d)

55

A

B

C

D

E

F

G

H

I

J
K L

x
p

 [
m

m
]

x
p

 [
m

m
]

x
p

 [
m

m
]

x
p

 [
m

m
]

Fig. 14 Measured lateral displacement of point P during deployment: (a) overall behavior;

(b) dynamic deployment; (c) steady deployment; (d) creep recovery.

IV. Finite Element Simulations

To investigate the nonlinear behavior of thin shells, including the e�ects of rate and tempera-

ture observed in Sec. III, a �nite element analysis was conducted with the �nite-element package

Abaqus/Standard [23]. A linear viscoelastic constitutive model based on the relaxation modulus of

LDPE was used for this study.

A. Finite Element Model

The two tape springs tested in Sec. III were modeled as cylindrical shells as shown in Fig. 15.

The model dimensions were as de�ned in Table 1 and the thickness variation was included in the

model by specifying the thickness at each node. The thickness at each node position was determined

from the measured thickness distribution using spline interpolation.
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Fig. 15 Finite element model.

For simulating the folding-stowage experiment in Sec. III C, a mesh with 6800 quadrilateral shell

elements S4 with a maximum dimension of 2 mm was used. The mesh density in the circumferential

direction was twice that in the longitudinal direction for precise computation of the localized fold.

Displacement boundary conditions were de�ned on two nodes, A and B, one on each end section

of the shell and coinciding with the mid-point of the cross section. Node B was fully constrained

against translation in any direction, whereas the boundary conditions for node A were varied during

the simulation, as explained below. Gravity loading was de�ned over the whole shell, in the positive

z direction, throughout the analysis. A geometrically non-linear quasi-static analysis was carried

out in two steps, as follows, using the NLGEOM option in Abaqus. An initial folding step, in which

a displacement uz = 80 mm was imposed on node A, at the same rates and temperatures used in the

experiments. A subsequent stowage step, in which the degrees of freedom of node A were held �xed

at the same values as at the end of the folding step. These boundary conditions were held constant

for 5000 s. The accuracy of integration in the quasi-static analysis was controlled by specifying

the tolerance parameter *CETOL which sets a limit on the maximum change in creep strain rate

allowed over a time increment. A value of 1×10−4 was found to be adequate for obtaining accurate

solutions.

The deployment-recovery test in Sec. IIID was analyzed using a mesh with 2500 elements and

a maximum dimension of 4 mm. For this simulation, all nodes on the section CC ′ were �xed and

the analysis steps were as follows. In the folding step, a displacement of 300 mm along the x-axis

was imposed to node A over a period of 9 s. At the end of the folding step the tape spring had

reached the stowed con�guration. The displacement of node A along the y-axis was then held �xed
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for 983 s in the stowage step, while all other degrees of freedom of node A were left unconstrained.

These two steps were carried out quasi-statically. At the end of the stowage step the constraint on

node A was instantaneously released and a dynamic analysis was run for 3000 s.

B. Constitutive Model

The constitutive behavior of the shell elements was de�ned to be linear viscoelastic. Implemen-

tation of the Prony series model of Sec. III B in Abaqus/Standard requires the speci�cation of the

shear and bulk moduli, which are related to the uniaxial modulus through the equations

G(t) =
E(t)

2(1 + ν)
, (9)

K(t) =
E(t)

3(1− 2ν)
, (10)

where ν is the Poisson's ratio, G is the shear modulus and K is the bulk modulus. A Poisson's ratio

of 0.49 had been determined from the relaxation tests and this value was assumed to be constant

in the present study. This assumption implicitly leads to the condition that bulk and shear moduli

are synchronous [25]. In general, this is not a realistic description for most materials, however, as

shown in Sec. V, this assumption does not seem to have a signi�cant e�ect on the behavior of the

tape spring. The relaxation modulus speci�ed in Table 2 was assigned to the shell elements with

the option *VISCOELASTIC, TIME=PRONY.

C. Results

The evolution of the stress distribution as the tape spring is folded, stowed and deployed can be

studied with the �nite element model. The longitudinal stresses on the outer surface during folding

at T = 22◦C with u̇ = 1 mm/s are shown in Fig. 16. At the beginning, Fig. 16(a), the tape spring

is bent smoothly and is under tension on the longitudinal edges. After the instability is initiated,

Fig. 16(b), the deformation starts localizing in the middle of the shell and the variation between the

edges and the center increases. The buckle subsequently spreads transversely to form a complete

fold, which is in uniform compression in the middle but rises rapidly to tension near the edges,

Fig. 16(c). Once the localization occurs, the longitudinal stresses are much reduced away from the

fold.
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Fig. 16 Longitudinal stresses on outer surface: (a) during initial uniform bending, (b) after

instability is initiated and (c) as buckle develops.

Stress relaxation in the stowed state is shown in Fig. 17, which plots the longitudinal stress

on the outer shell surface, at the beginning and at the end of the stowage period. Note that the

longitudinal stress magnitudes have signi�cantly decreased over the stowage period and the fold

region has extended longitudinally. A reduction in the longitudinal curvature of the fold is also

predicted by the simulation as the fold region increases in length.

Three intermediate deformed shapes during deployment and the corresponding stress distribu-

tions are shown in Fig. 18. In the steady deployment phase, the arclength of the fold decreases

while the transverse curvature remains zero. As the tape spring passes through the position with

xp = 0 and overshoots, the longitudinal bending stress on the two edges gradually reduces to zero.

The longitudinal curvature is practically zero after the overshoot and the remaining part of the de-

ployment is controlled by the recovery of the transverse curvature in the fold. The simulation shows

that the fold remains stationary throughout the entire deployment, which agrees with experimental

observations.
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Fig. 17 Relaxation of longitudinal stresses on outer surface: (a) beginning of stowage and (b)

end of stowage.
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Fig. 18 Longitudinal stress on outer surface: (a) steady deployment (b) passing through xp = 0

and (c) maximum overshoot con�guration.

V. Comparison of Experimental and Finite Element Results

Both quantitative and qualitative comparisons between simulations and experiments are pre-

sented in this section. Starting from the folding test, the calculated load versus time responses

for the case u̇ = 1 mm/s and two di�erent temperatures are plotted along with the corresponding
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experimental measurements in Fig. 19. The predicted response is found to match the observed

response in all aspects. The initial sti�ness, onset of limit load instability, and postbuckling load

plateau are all well reproduced. Only minor discrepancies are found in the values of the buckling

load, which is overpredicted by 0.9 N and 0.3 N for temperatures of 15◦C and 22◦C respectively.

These errors are likely due to additional geometric imperfections that were not characterized in the

study, such as non-uniformity of the cross section shape along the length of the tape spring. These

discrepancies are however insigni�cant in magnitude. Four deformed con�gurations during folding

stage are compared in Fig. 20. Both the evolution of the overall deformed geometry and the shape

of the localized fold are closely captured by the simulation.
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Fig. 19 Comparison of load vs. time during folding, for u̇ = 1 mm/s.

Next, consider the stowage tests. The load relaxation responses in the stowed con�guration for

two di�erent temperatures and a folding rate of u̇ = 1 mm/s are plotted in Fig. 21. Predicted and

measured responses are in good agreement, indicating that the �nite element model is accurate for

long term simulations.

Finally, consider the deployment tests. The lateral displacements xp are compared in Fig. 22 and

it is found that all features of the response have been reproduced by the simulation with only minor

discrepancies. In the initial dynamic phase, Fig. 22(a), the predicted oscillations are essentially over

in 4 s, which is slightly earlier than the measured response. A small discrepancy is also found in the

steady deployment phase, Figure 22(b), as the simulation predicts the maximum overshoot to occur
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Fig. 20 Comparison of deformed shapes during folding and stowage.
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Fig. 21 Comparison of load vs. time during stowage, for u̇ = 1 mm/s.
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2.5 s earlier than observed in the experiment. Nonetheless, the long term creep recovery is well

predicted, Fig. 22(c), with a discrepancy of less than 1 mm by the end of the simulation, at 3000 s.

A comparison of deployed shapes is provided in Fig. 23, which demonstrates good correlation in

the dynamics of the fold. The main source of the discrepancies outlined above is believed to be

variations in environmental conditions during the deployment experiments.

VI. Conclusion

Cylindrical thin-shell structures, known as tape springs, are widely used in deployable structures.

If made of polymeric materials, they exhibit nonlinear geometric, time and temperature dependent

behavior when they are subject to bending. The present study was the �rst to examine viscoelastic

e�ects during folding, stowage, and deployment of tape springs.

Viscoelastic tape springs can be folded by triggering a local instability and the resulting nonlin-

ear load-displacement relationship is characterized by a limit load and a propagation load. Both of

these loads increase with the folding rate but decrease with temperature. Stress relaxation occurs

during stowage, and there is a corresponding reduction over time of the instantaneous spring-back

upon release that initiates deployment of the tape spring.

The deployment behavior of tape springs that have been held stowed for a period of time

encompasses three distinct stages. The �rst stage is a dynamic response accompanied by a low

magnitude vibration. This short dynamic phase is followed by a steady deployment in which the

tape spring returns towards the original, straight deployed con�guration and overshoots by a small

amount. The third phase is a slow creep recovery of the fold cross section, accompanied by an

asymptotic recovery of the original position of the tip of the tape spring. A unique feature of

viscoelastic tape springs is that the folds remain stationary throughout deployment, whereas in

elastic tape springs, which show a much stronger dynamic response, localized folds travel along

the tape spring during deployment [13]. This di�erence is due to the inherent energy dissipation

in viscoelastic structures. Because of load relaxation, the energy stored during folding of the tape

spring is dissipated over time and the internal force becomes too low to cause signi�cant dynamics.

An advantage of this e�ect is that the deployment process becomes more steady and the risk of
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Fig. 22 Comparison of lateral displacement of shell free end: (a) transient dynamic response,

(b) steady deployment and (c) long term creep recovery.

damage due to dynamic events is decreased. However, the internal force may become so small that

even a small resistance to deployment may be su�cient to prevent the structure from ever reaching

the original con�guration.
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t = 0 s

t = 29 s t = 55 s

Fig. 23 Comparison of deployed shapes.

The continuous folding, stowage, deployment, and shape recovery processes have been analyzed

with a �nite element model that incorporates a linear isotropic viscoelastic material model with an

experimentally determined relaxation modulus master curve. The material model consists of a six-

term Prony series and a Williams-Landel-Ferry type temperature shift function. The �nite element

model uses shell elements with thickness de�ned by the measured thickness distribution of the tested

specimens to closely capture the instability in load response. The �nite element simulations capture

the experimentally measured behavior, including the e�ects of rate and temperature in the nonlinear

load-displacement response during folding, load relaxation over an extended stowage duration, short-

term deployment as well as long-term shape recovery. Good qualitative and quantitative results in

modeling the viscoelastic and nonlinear behavior of shells under quasi-static and dynamic situations

have been demonstrated.

In concluding, it should be noted that the numerical simulation techniques presented in this
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paper are limited to homogeneous viscoelastic structures. For analyzing viscoelastic composite

deployable structures, e�ective viscoelastic composite properties need to determined and employed

in the �nite element simulations. Viscoelastic homogenization of �ber reinforced polymer composites

and its application to deployable structures is a subject of current study by the authors [26].
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