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Abstract
This paper is concernedwith the deployment kinematics of over-constrainedmechanical linkagesforming
an expandablespaceframe that can be folded into a compact bundle. Structures of this kind are being
developed to deploy large apertures in space,where a key requirement is that there should be a single
deployment path that takes the structure uniquely from the folded to the deployed con¯guration. A
schemefor analysing the sensitivity to geometric imperfections of any given design is presented.

1 In tro duction
Deployable structures have many applications on spacecraft, where their capability to execute large
con¯guration changesis exploited to designstructures that are packagedinto a small envelope for trans-
portation or storage,and then expandedat the time of operation. The particular bar structures that are
analysedin this paper have the special feature that packagedthey form a tight bundle and deployed they
form a rectangular frame suitable to support, for example,a °exible active surfaceor a photovoltaic ¯lm.
Figure 1 shows an exampleof a six-rod frame with rolling hingesand light-weight carbon ¯bre rods.

A particular problem with structures of this kind is that their deployment is often non-unique, due to
the existenceof intermediate con¯gurations where the path bifurcates. In this paper, we aim to develop
a simple and yet e±cient analysisschemethat enablesa designerto test for the existenceof bifurcations
and to evaluate the sensitivity of deployment to small imperfections.

2 Kinematic analysis
Following Gan and Pellegrino [1], the scheme begins by formulating the constraint equations of the
structure in natural coordinates. By assigningeach element to a (4 £ 4) transformation matrix, T i for
the rigid rods and T µi for the mechanical joints, and then imposing that the complete structure forms a
closedloop, we obtain Uicker et al.'s [3] loop-closureequation

T 1T µ1 T 2T µ2 T 3T µ3 : : : T n T µn = I (1)

where I is the identit y matrix. Considering a set of in¯nitesimal joint rotation changes±µi 's, the trans-
formation matrix T µi can be expandedas

T µi + ±µi = T µi + (T 0
µi

)(±µi ) (2)
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Figure 1: Deployable rectangular frame consisting of 6-rods.

where a ` 0 ' denotesthe matrix of partial derivativeswith respect to µi . Substituting the expansion(2)
into (1) and omitting higher-order terms yields

(T 1 T 0
µ1

T 2 T µ2 T 3 T µ3 : : : T n T µn )±µ1+
(T 1 T µ1 T 2 T 0

µ2
T 3 T µ3 : : : T n T µn )±µ2+

(T 1 T µ1 T 2 T µ2 T 3 T 0
µ3

: : : T n T µn )±µ3+
: : : +
(T 1 T µ1 T 2 T µ2 T 3 T µ3 : : : T n T 0

µn
)±µn = [0]

which can be written in form

P±µ1 + Q±µ2 + R ±µ3 + S±µ4 + : : : = [0] (3)

Note that the (3 £ 3) top-left submatrices of P, Q, R , S are always skew-symmetric, due to the fact
that any arbitrary rotation can be de¯ned by only three elementary rotations. The top-right (3 £ 1)
submatricesprovide three independent constraints. Hence,we can re-write Equation (3) in the form
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or K [±µi ] =
£
0 0 : : : 0

¤T
(5)

where K is a tangent kinematic matrix (6 £ n for an n-bar frame) and can be decomposed with the
Singular Value Decomposition (Pellegrino [2]) into

K = UV W T (6)

Here, the (6£ 6) matrix U is orthogonal and the (6£ n) matrix V contains the r non-zerosingular values
along its leading diagonal. The (n £ m) matrix W , also orthogonal, comprisestwo submatrices,W d and
W i , of size(n £ r ) and (n £ (n ¡ r )) respectively.

In general, Equation (5) can be solved numerically using a predictor-corrector scheme based on a
standard Newton-Raphsoniteration. If r = 5, then there is a single kinematic path for the structure to
movealong, and in this casethe singlecolumn of the sub-matrix W i providesa good initial approximation
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for the motion to be imposed. Hence,setsof ¯nite rotations dµi and hencethe full deployment path can
be computed by de¯ning

[dµi ] = [¢ µi ] + [¢ µ0
i ] (7)

follows by, replacing the right-hand-side of Equation (5) by a vector [ei ] of corrections arising from the
predictor step,

K [¢ µi ] = [ei ] (8)

Then, we employ the least squaressolution of Equation (7) to determine the minimal correcting angles
¢ µ0

i

[¢ µ0
i ] = ¡

rX

j =1

wj uT
j

vj ;j
[ei ] (9)

The algorithm outlined above is repeateduntil either the joints or the membersreach a physical boundary,
at which point the structure is fully deployed.

If at somepoint r · 4 then a bifurcation point has beenreached, and the structure is generally able
to continue moving along several di®erent paths.

3 Case study
We have analysedthe deployment behaviour of several 6-rod linkages,and new insights into the kinematic
behaviour of such structures have been obtained through careful study of the variation of the singular
valuesof K .

=45 

Figure 2: 6-rod closed-loop deployable frame

Consider the deployable frame shown in Figure 2, which consistsof two short and four long rods, of
lengths l1 and l2 respectively, connectedby six revolute joints. The loop closureequation has the form

T 1 £ T µ1 £ T 2 £ T µ2 £ T 3 £ T µ3 £ : : : £ T 6 £ T µ6 = I

where
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Figure 3:  Variation of hinge angles 
                 during deployment
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Figure 4:  Singular values of kinematic matrix of 
	           frame, during deployment

Here, µi denotesthe angle variable for joint i .
Figure 2 shows the deployment sequenceof a 6-rod rectangular frame with l1=l2 = 2:86. Without

assumingsymmetric behaviour, Figure 3 shows a plot of the joint input-output angles. Figure 4 shows
the corresponding variation of the singular values along the \normal" deployment path. Note that
a bifurcation point is detected when µ1 ¼ 108±; at this point there are two zero singular values, which
indicates that the equationhasa double in¯nit y of solutions, and sothere are two independent mechanisms
for the structure, at this particular point.

Additional simulations, carried out for di®erent valuesof the designvariables, such as the ratio l 1=l2,
have shown that the singular valueschangeaccordingly, and in somecasesthe bifurcation point is lost.
A sensitivity study of the structure can be conducted by assigningan objective function to each design
variable, in order to optimize the structure overall performance. Progressive optimization is achieved by
closely monitoring the °uctuation of singular valueswith respect to each individual designvariable.

4 Remark
We have investigated the kinematic behaviour of several deployable frames,and consideredthe e®ectsof
manufacturing imperfections, in order to determine particular design con¯gurations that are relatively
insensitive to errors. Among these is the deployable frame shown in Figure 1, which has a uniquely
de¯ned deployment path.
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