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Abstract

This paper is concerned with the deployment kinematics of over-constrained mechanical linkages forming
an expandable space frame that can be folded into a compact bundle. Structures of this kind are being
developed to deploy large apertures in space, where a key requirement is that there should be a single
deployment path that takes the structure uniquely from the folded to the deployed configuration. A
scheme for analysing the sensitivity to geometric imperfections of any given design is presented.

1 Introduction

Deployable structures have many applications on spacecraft, where their capability to execute large
configuration changes is exploited to design structures that are packaged into a small envelope for trans-
portation or storage, and then expanded at the time of operation. The particular bar structures that are
analysed in this paper have the special feature that packaged they form a tight bundle and deployed they
form a rectangular frame suitable to support, for example, a flexible active surface or a photovoltaic film.
Figure 1 shows an example of a six-rod frame with rolling hinges and light-weight carbon fibre rods.
A particular problem with structures of this kind is that their deployment is often non-unique, due to

the existence of intermediate configurations where the path bifurcates. In this paper, we aim to develop
a simple and yet efficient analysis scheme that enables a designer to test for the existence of bifurcations
and to evaluate the sensitivity of deployment to small imperfections.

2 Kinematic analysis

Following Gan and Pellegrino [1], the scheme begins by formulating the constraint equations of the
structure in natural coordinates. By assigning each element to a (4 × 4) transformation matrix, Ti for
the rigid rods and Tθi

for the mechanical joints, and then imposing that the complete structure forms a
closed loop, we obtain Uicker et al.’s [3] loop-closure equation

T1Tθ1T2Tθ2T3Tθ3 . . .TnTθn
= I (1)

where I is the identity matrix. Considering a set of infinitesimal joint rotation changes δθi’s, the trans-
formation matrix Tθi

can be expanded as

Tθi+δθi
= Tθi

+ (T′
θi
)(δθi) (2)
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Figure 1: Deployable rectangular frame consisting of 6-rods.

where a ‘ ′ ’ denotes the matrix of partial derivatives with respect to θi. Substituting the expansion (2)
into (1) and omitting higher-order terms yields

(T1 T′
θ1

T2 Tθ2 T3 Tθ3 . . . Tn Tθn
)δθ1+

(T1 Tθ1 T2 T′
θ2

T3 Tθ3 . . . Tn Tθn
)δθ2+

(T1 Tθ1 T2 Tθ2 T3 T′
θ3

. . . Tn Tθn
)δθ3+

. . . +
(T1 Tθ1 T2 Tθ2 T3 Tθ3 . . . Tn T′

θn
)δθn = [0]

which can be written in form

Pδθ1 +Qδθ2 +Rδθ3 + Sδθ4 + . . . = [0] (3)

Note that the (3 × 3) top-left submatrices of P, Q, R, S are always skew-symmetric, due to the fact
that any arbitrary rotation can be defined by only three elementary rotations. The top-right (3 × 1)
submatrices provide three independent constraints. Hence, we can re-write Equation (3) in the form
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or K[δθi] =
[

0 0 . . . 0
]T

(5)

where K is a tangent kinematic matrix (6 × n for an n-bar frame) and can be decomposed with the
Singular Value Decomposition (Pellegrino [2]) into

K = UVWT (6)

Here, the (6×6) matrix U is orthogonal and the (6×n) matrix V contains the r non-zero singular values
along its leading diagonal. The (n×m) matrix W, also orthogonal, comprises two submatrices, Wd and
Wi, of size (n× r) and (n× (n− r)) respectively.
In general, Equation (5) can be solved numerically using a predictor-corrector scheme based on a

standard Newton-Raphson iteration. If r = 5, then there is a single kinematic path for the structure to
move along, and in this case the single column of the sub-matrixWi provides a good initial approximation
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for the motion to be imposed. Hence, sets of finite rotations dθi and hence the full deployment path can
be computed by defining

[dθi] = [∆θi] + [∆θ′i] (7)

follows by, replacing the right-hand-side of Equation (5) by a vector [ei] of corrections arising from the
predictor step,

K[∆θi] = [ei] (8)

Then, we employ the least squares solution of Equation (7) to determine the minimal correcting angles
∆θ′i

[∆θ′i] = −

r
∑

j=1

wj uTj
vj,j

[ei] (9)

The algorithm outlined above is repeated until either the joints or the members reach a physical boundary,
at which point the structure is fully deployed.
If at some point r ≤ 4 then a bifurcation point has been reached, and the structure is generally able

to continue moving along several different paths.

3 Case study

We have analysed the deployment behaviour of several 6-rod linkages, and new insights into the kinematic
behaviour of such structures have been obtained through careful study of the variation of the singular
values of K.

=45 

Figure 2: 6-rod closed-loop deployable frame

Consider the deployable frame shown in Figure 2, which consists of two short and four long rods, of
lengths l1 and l2 respectively, connected by six revolute joints. The loop closure equation has the form

T1 ×Tθ1 ×T2 ×Tθ2 ×T3 ×Tθ3 × . . .×T6 ×Tθ6 = I

where
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Figure 3:  Variation of hinge angles 

                 during deployment
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Figure 4:  Singular values of kinematic matrix of 

	           frame, during deployment

Here, θi denotes the angle variable for joint i.
Figure 2 shows the deployment sequence of a 6-rod rectangular frame with l1/l2 = 2.86. Without

assuming symmetric behaviour, Figure 3 shows a plot of the joint input-output angles. Figure 4 shows
the corresponding variation of the singular values along the “normal” deployment path. Note that
a bifurcation point is detected when θ1 ≈ 108

◦; at this point there are two zero singular values, which
indicates that the equation has a double infinity of solutions, and so there are two independent mechanisms
for the structure, at this particular point.
Additional simulations, carried out for different values of the design variables, such as the ratio l1/l2,

have shown that the singular values change accordingly, and in some cases the bifurcation point is lost.
A sensitivity study of the structure can be conducted by assigning an objective function to each design
variable, in order to optimize the structure overall performance. Progressive optimization is achieved by
closely monitoring the fluctuation of singular values with respect to each individual design variable.

4 Remark

We have investigated the kinematic behaviour of several deployable frames, and considered the effects of
manufacturing imperfections, in order to determine particular design configurations that are relatively
insensitive to errors. Among these is the deployable frame shown in Figure 1, which has a uniquely
defined deployment path.
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