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Abstract. This paper deals with the kinematic simulation of deployable structures that go
through bifurcation points as they move. A series of algorithms are developed for structures
that can be modelled using pin-jointed bars and that admit a single-parameter motion. These
algorithms are able to detect and locate any bifurcation points that exist along the path of the
structure and, at each bifurcation point, can determine all possible motions of the structure.
The theory behind the various algorithms is explained and the analysis of a simple example is
discussed in detail. Then, a simplified version of the particular problem that had motivated this
work, the simulation of the folding and deployment of a thin membrane structure forming a solar
sail, is analysed. For the particular cases that are considered it is found that the deployment
process is inextensional, but a detailed study of the simulation results show that in more general
cases it is likely that stretching or wrinkling will occur.
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1 Background and introduction

Thework described in this paper originates from a series of difficulties that had been encountered
in using standard algorithms to simulate themotionof deployable structures.Aparticular problem
had been the folding/unfolding of a thin membrane for a solar sail; this had been shown to work
fine by physical modelling [1] but could not be simulated.

The type of problem to be considered is best explained with reference to the simple two-
dimensional pin-jointed structure shown in Figure 1(a). Bar 2 can be moved horizontally, either
to the left or to the right, and downwards by mobilising its single finite amplitude mechanism.
Denoting by m the number of independent mechanisms, m = 1 here. If bar 2 is moved to the
right, the configuration shown in Figure 1(b) will be obtained and, continuing to mobilise the
mechanism in the same direction, finally the configuration shown in Figure 1(c) is obtained. In
this configuration two different types of motion are possible, hence m = 2. In the first motion
bar 2 remains parallel to the base, Figure 1(b), whereas in the second motion bar 1 does not move
while bars 2 and 3 rotate about joint 1, Figure 1(d). Note that this choice between two different
motions is available only in the particular configuration of Figure 1(c): once the structure has
left this special configuration its motion is again determined by a single parameter.

All configurations of a movable structure can be represented in a configuration space of suitable
dimension. In this example, this space is �4 because the positions of joints 1 and 2 can be
defined by two cartesian coordinates per joint. A sequence of configuration changes of the type
described above defines a kinematic path in this configuration space, and the special configuration
of Figure 1(c) corresponds to a point of intersection of two different paths. This point is called
a kinematic bifurcation point.

Consider the configuration shown in Figure 1(d) and rotate bars 2 and 3 until they overlap with
bar 1. This configuration,RB, is also a bifurcation point where, again, two different motions are
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Figure 1: (a,b) Ordinary configurations of simple 2D structure; (c) kinematic bifurcation; (d) one of two
possible motions out of bifurcation point.
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Figure 2: Topological graph showing all possible kinematic paths of structure of Figure 1.

possible. We can either rotate bars 1 and 2 about joint 2, which now coincides with the left-hand
support, or rotate bars 2 and 3 about joint 1, which coincides with the right-hand support. Once
one of these two options has been chosen, the structure starts following another single-parameter
path.

A topological map of all existing kinematic paths for this structure is shown in Figure 2. This
figure shows that there are three bifurcation points (RB and RC have been discussed above,
whileRA corresponds to a configuration symmetric toRC) linked by three kinematic paths. The
upper and lower parts of each path are labelled P i and P i′. At a bifurcation point the structure
can either continue moving on a path with the same number, or it can switch to a path with a
different number.

The kind of behaviour that is illustrated by the above example occurs in many structures that
admit one or more finite-amplitude motions —which is indeed the case for most deployable
structures— but in general obtaining a complete map like that shown in Figure 2 is by no means
straightforward.

This paper presents a series of algorithms forming a computational scheme to simulate the
continuous motion of a deployable structure that can be modelled using pin-jointed bars, and
which admits a single-parameter motion. The scheme is able to detect bifurcation points along
the path of the structure. At each bifurcation point, all possible motions of the structure can
be determined, so that a particular one can be selected by the user. The layout of the paper is
as follows. Section 2 gives a brief outline of the computational scheme. Section 3 presents the
theory behind the various algorithms, which are divided into first-order algorithms—to simulate
the motion along a uniquely determined path— and second-order algorithms —to determine all
possible paths out of a kinematic bifurcation point. A solution technique for the resulting system
of quadratic equations is presented. Section 4 describes the algorithm to converge to a bifurcation
point. The algorithms are applied to two simple examples in Section 5, and to the deployment
simulation of two small models of solar sail structures, in Section 6. Section 7 concludes the
paper.
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Figure 3: Kinematic path with bifurcation points atR0 andRn.

2 Outline of deployment simulation

The computations that are performed are based on the equilibrium matrix, H, of the structure.
They could also be formulated in terms of the transpose of the equilibrium matrix, i.e. the
compatibility matrix. The singular value decomposition (SVD) ofH is used to identify complete
sets of independent inextensional mechanisms, from which any rigid-body mechanisms are
removed, and independent states of self-stress.

If the structure is at a bifurcation point, it is necessary to determine which of its mechanisms
or their combinations extend into finite motions. Although any linear combination of the set
of inextensional mechanisms defines, to the first-order, a different kinematic path, only those
motions that satisfy a system of second-order compatibility equations are, in fact, potential finite
motions. Furthermore, it is possible that some paths actually coincide, and this can be discovered
only by actually simulating finite-amplitude motions of the structure.

Once a path out of a point of bifurcation has been selected, the single internal mechanism of the
structure is mobilised until the structure reaches the next bifurcation point. Along this single-
parameter path, a predictor-corrector algorithm based on the SVD of the equilibrium matrix
is implemented, and a special algorithm is developed to detect the existence of a bifurcation
ahead of the current configuration, and to stop exactly there. Then, the analysis at the point of
bifurcation is repeated.

Figure 3 shows the path followed by a structure, initially at the bifurcation point R0. Three
different paths can be taken at R0, and each path has two different directions. Having chosen
path P 1, a single-parameter motion is simulated until the assembly moves into another point of
bifurcation,Rn.

3 Theory

Consider a pin-jointed structure with b bars and j unconstrained joints. The equilibrium matrix
H, relating the vector of bar forces, t, to the vector of nodal load components, p, has dj rows
—where d, which equals 2 or 3, is the dimension of the space in which the structure is being
analysed— and b columns

Ht = p (1)
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The compatibility matrix relating the (small) nodal displacement components, d, to the bar
extensions, e, is

Cd = e (2)
where

C = HT (3)

3.1 First-order analysis

The first step in the computational procedure is the determination of the total number of inde-
pendent inextensional mechanismsm and the number of states of self-stress s. These parameters
can be determined from the rank r of the equilibrium matrix H

m = dj − r (4)
s = b − r (5)

In non-bifurcation configurations the structures considered in this paper have a singlemechanism,
m = 1, and no states of self-stress, s = 0. Hence, from Equations 4 and 5

dj − b = 1

The value of r is determined, together with orthogonal sets ofm inextensional mechanisms and
s states of self-stress, from the singular value decomposition (SVD) of the equilibriummatrix [2-
3]. The SVD of the equilibriummatrix consists of a set of left singular vectorsU = [u1, . . .,udj],
a set of right singular vectorsW = [w1, . . .,wb] and a set of non-zero singular values

V =
[

diag(v1, . . ., vr) 0
0 0

]

such that

H = UVWT (6)

The singular vectors, of unit magnitude, can be grouped into the following sub-matrices

Ur = [u1, . . .,ur], Um = [ur+1, . . .,ur+m]
Wr = [w1, . . .,wr], Ws = [wr+1, . . .,wr+s]

(7)

Because of the correspondence between equilibrium and compatibility matrices, Equation 3, the
singular vectors have the following physical interpretation

Ur contains modes of extensional deformation
(loads that can be equilibrated by the structure, in its current configuration);

Um contains modes of inextensional deformation, or mechanisms
(loads that cannot be equilibrated);

Wr contains sets of kinematically compatible extensions corresponding, through the
singular values, to the extensional modes inUr

(bar forces in equilibrium with the external loads inUr);
Ws contains sets of kinematically incompatible extensions

(states of self-stress).
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Figure 4: Predictor-corrector increments along single-parameter path.

It follows from the above that a set of bar extensions e is compatible if and only if it satisfies the
condition

WT
s e = 0 (8)

Kinematic bifurcations are associated only with internal mechanisms and hence, if the structure
admits any rigid-body mechanisms, they need to be removed fromUm. An algorithm to remove
rigid-body mechanisms from Um is described in [4]; it will be assumed that Um contains only
internal mechanisms,m being the number of internal mechanisms.

Two different cases are possible: (i) m = 1 with s = 0, and hence in the current configuration
the structure admits a single-parameter finite motion, or (ii) m ≥ 2 with s ≥ 1, and hence the
structure is at a bifurcation point. In other words, because we are considering only assemblies
with a single large displacement mechanism, if more than one infinitesimal mechanism is found
in some particular configuration, then in that configuration the structure must be at a point of
kinematic bifurcation.

Case (i) can be dealt with using the results of the first-order analysis described above, Section 3.2.
Case (ii) requires the development of additional theory, Section 3.3, to determine the distinct
kinematic paths alongwhich the structure canmove out of the bifurcation point. The computation
of these kinematic paths requires the use of compatibility equations that include terms of order
higher than those included in Equation 2.

3.2 Predictor-corrector incrementation

Consider a structure with m = 1 that is moving along a kinematic path, and assume that the
current configuration,Ri, is not a bifurcation point. To find the next configuration of the structure
we impose a finite amplitude of its inextensional mechanism ui

r+1 (predictor step) and then carry
out a series of iterative corrections (corrector steps) that eliminate any strain in the bars, Figure 4.
The predictor step is

Ri′ = Ri + ui
r+1δ (9)

The sign of δ controls the direction of motion. Because there is no guarantee that the SVDs of the
equilibrium matrices in successive configurations will automatically produce mechanisms with
consistent signs, the sign of δ has to be such that the kinematic path continues to be followed
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in the desired direction. This is ensured by checking the sign of the dot product between the
mechanisms in the configurations i − 1 and i. The sign of δ is reversed if

ui−1
r+1 · ui

r+1 � −1 (10)

The maximum value of δ that is allowed (smaller values may be used to increase the number of
points on the path) depends upon the region of the kinematic path along which the structure is
moving. If the smallest non-zero singular value, vr, is sufficiently large the structure is far away
from the next bifurcation point, and hence the magnitude of δ is chosen based upon a length
parameter, such as the root mean square of all bar lengths. On the other hand, when the structure
is converging towards a bifurcation point, it may be necessary to decrease the magnitude of δ,
see Section 4.

In the configuration Ri′ the bars of the structure have undergone extensions e which need to
be corrected. Following References [3, 5], the minimal (in a least squares sense) correcting
displacement d due to the extensions −e is computed from

d = −
r∑

i=1

wT
i e
vi

ui (11)

The configurationRi+1 = Ri′ + d is the strain-free configuration nearest toRi′ . This corrector
step can be repeated a number of times, until a desired convergence accuracy is achieved.

3.3 Second-order compatibility equations

The second-order compatibility equation for a pin-jointed bar of length L between nodes A
(XA, YA) and B (XB, YB) has the form

XA − XB

L
uA +

YA − YB

L
vA +

XB − XA

L
uB +

YB − YA

L
vB

+
1

2L
(u2

A − 2uAuB + u2
B + v2

A − 2vAvB + v2
B) = e +

e2

2L
(12)

Introducing

di =

⎡
⎢⎢⎣

uA

vA

uB

vB

⎤
⎥⎥⎦ , S =

⎡
⎢⎢⎣

1 0 −1 0
0 1 0 −1

−1 0 1 0
0 −1 0 1

⎤
⎥⎥⎦ , and ei = e + e2/2L (13)

Equation 12 can be written in the form, see [6] for further details,

cidi + dT
i Sdi = ei (14)

Here, ei is a higher-order measure of the extension of bar i which, to the first-order, coincides
with the standard measure (current length minus initial length); ci is the the i-th row of the
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compatibility matrix C, Equation 2. For a structure with b bars we can write b equations of this
type, one for each bar.

Next, consider the most general motion of nodes A and B that causes no first-order extensions
in any bars of the structure. It has the expression

di = Uiβ (15)

where the vector β = [β1, . . . , βm]T contains m arbitrary coefficients. Ui is a matrix with 2d
rows andm columns, obtained fromUm by selecting the rows that correspond to bar i.

Because we are considering a motion that is first-order inextensional the first term in Equation 14
vanishes and hence the second-order compatibility equations can be written in the form

βTQjβ = 0, j = 1, . . . s (16)

where

Qj =
b∑

i=1

ti,jUT
i SUi (17)

This is a system of s quadratic equations, and hence the kinematic paths out of the point of bifur-
cation can be obtained by finding the intersections of the corresponding s quadric surfaces. Of the
infinite number of first-order inextensional mechanismsUmβ, only those particular mechanisms
that satisfy the second-order compatibility equations represent potential finite motions.

Before going further, it is convenient to normalise the quadratic forms in Equation 16. Com-
putationally this is done by representing the matrices Qj by vectors of length m2, which are
orthogonalised by the Gram-Schmidt technique [7]. Each of the resulting unit vectors is then
transformed back into a square matrixQj . So, finally the system of quadratic equations is

βTQjβ = 0, for j = 1, . . . s (18)

3.3.1 Solution of second-order compatibility equations

From Bezout’s Theorem [8] the number of solutions of a system of s algebraic equations of order
2 can be at most 2s. Consider the case s = 3: the 23 = 8 intersection points of three ellipsoids are
shown in Figure 5(a). Some, or indeed all, of these intersections may be imaginary, Figure 5(b),
or there may be a smaller number of multiple intersections, Figure 5(c). Finally, there may be
improper intersections with infinitely many points, Figure 5(d), in which case Bezout’s theorem
does not apply. The linear independence of the quadratic formsQj does not give any guarantees
on the type of intersection, hence all of the above cases are possible, in principle.

Solutions in closed form are possible for small values of s [6], but the most practical approach
is purely numerical, using a standard non-linear equation solver. Such algorithms start from an
initial starting point andperforma series of iterations tofinally converge upon the nearest solution.
The key to finding as many different solutions as possible lies in providing well distributed
starting points spanning the entire space of first-order mechanisms. As the dimension of the

8
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(a) (b)

(c) (d)

Figure 5: Intersections of three paraboloids at (a) 8 distinct points; (b) 4 distinct points; (c) 1 multiple
point; (d) infinitely many points along an ellipse, plus 2 distinct points.

space ism = s+1, whereas there are only s equations, it is necessary to normalise the equations
with respect to one variable; this introduces the normalisation condition

||β|| = 1 (19)

This condition represents the intersection of a hypersphere of unit radius, with the s second-
order compatibility equations. For s = 1, for example, the space of first-order mechanisms is
2-dimensional, and this normalisation is analogous to intersecting a conic with a circle of unit
radius. Similarly for s = 2, the space of mechanisms is 3-dimensional and we look for the
intersections of 2 quadric surfaces with a unit sphere.
By considering well distributed points on this hypersphere and using them as starting points for
the non-linear equation solver “fsolve” available inMatlab [9] a number of different solutions are
found. Repeated solutions are eliminated by checking the dot product of each new solution with
all those found previously. If the dot product is close to 1, the root has already been found. For
example, if n (< 2s) solutions have been determined, then for βn+1 the dot products βi · βn+1,
i = 1, . . ., n are computed. If

|βi · βn+1| � 1 for any i = 1, . . ., n (20)

then the root has already been found and the next starting point is considered. Otherwise, βn+1

is added to the set of solutions and n is incremented by one.

9
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Depending on how finely the starting points are distributed on the hypersphere, an increasing
proportion of the 2s solutions will be determined.

3.4 Finite motion paths

Although each solution found in Section 3.3 defines a kinematic path out of the point of kinematic
bifurcation, in fact different second-order solutions may correspond to the same kinematic path.
To find out, finite-amplitude motions of the structure are considered.

R0

P1’

P2’

P4’

P3’
P1

P1’

P2

P3
P4

RP1

RP2

RP3

RP4RP1’

RP2’

RP4’

RP3’

T1

Figure 6: Identification of distinct finite motions out of a bifurcation point.

Consider a structure at the bifurcation point R0, Figure 6, for which a set of solutions of the
second-order compatibility equations have been determined with the method of Section 3.3.
Each solution defines a possible finite motion path for the structure. To test for the existence
of the i-th path, we consider the finite-amplitude displacement R0 + Umβiδ and then iterate,
as explained in Section 3.2, to eliminate any strain in the bars. The corrector step is repeated
a number of times, until the desired convergence accuracy is achieved. If the solution does not
converge after a specified number of steps, it is deemed that no finite motion path exists in the
neighborhood of the i-th solution of Equation 18.

For each path that is identified, the structure is allowed to move a distance �, measured along
the path, using the predictor-corrector algorithm of Section 3.2. The configurations RP i , all at
distance � from the point of bifurcationR0, are then compared. Let

Ti = RP i − R0 (21)

To check that path i is different from the previous i−1 paths, the dot products of the displacement
vectors are computed. If

|Ti · Tj|
||Ti||||Tj|| � 1 for any j = 1, . . ., (i − 1) (22)

then path i has already been identified.
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4 Convergence to a bifurcation point

Consider a structure that is moving along a kinematic path in a series of predictor-corrector steps
with a constant step size δ, see Section 3.2. As the next bifurcation point is approached, the
lowest non-zero singular value vr starts decreasing. The kinematic simulation has to switch to a
different algorithmwhich is capable of predicting and stopping exactly at the point of bifurcation,
where a new higher-order analysis will be carried out.

Before switching to the algorithm described in this section two conditions need to be satisfied.
First, vr must be less than a certain threshold value ε, indicating that the assembly is getting close
to a bifurcation point. Second, vr should be decreasing in successive steps, i.e. vn+1

r − vn
r < 0.

As the bifurcation point is approached, a number of problems arise. First, there is the danger
of numerical ill-conditioning. Second, at the bifurcation point itself, it is easy to swap paths, as
a number of paths go through this point. Finally, it is possible to jump to the other side of the
bifurcation without realising that this has happened.

(a) (b)

path length

Rn-3

Rn-2

Rn
Rn-1

vr

path length

vr

Rn-3 Rn-2

Rn

Rn-1

Figure 7: Variation of lowest non-zero singular value near a bifurcation point.

Consider an assembly in configuration Rn−1 approaching a bifurcation point Rn, as shown in
Figure 7. To avoid the problems listed above, it is best to predict the single-step displacement to
be imparted to the assembly so that it can be moved directly to Rn. In general, the variation of
the smallest singular value near a bifurcation point should be of second or higher-order. This is
because each singular value relates a bar extension vector to a corresponding displacement vector
[3]. Sampling vr at the three last configurations,Rn−3,Rn−2,Rn−1, a second-order Lagrangian
polynomial in � is fitted through these points

vr = a�2 + b� + c (23)

The intersection between this polynomial and the axis vr = 0 can be calculated. Depending upon
the sign of the coefficient a, two cases are possible. If a < 0, Figure 7(a), the quadratic equation

a�2 + b� + c = 0 (24)

can be solved and, of the two solutions, the one closest to �n−1 is chosen. If a > 0, Figure 7(b), the
curve should be tangent to the axis vr = 0, but numerical round-off causes the curve to translate

11



Praveen Kumar and Sergio Pellegrino

either up or down. In the former case �n is defined from the minimum of the polynomial, in the
latter case it is taken to be the solution closest to ln−1.
Having predicted the configuration where vr is expected to be zero, the amplitude parameter for
the step that converges to the bifurcation point is calculated from

δ = �n − �n−1 (25)

Having predicted the displacement amplitude necessary to move the assembly into the point of
bifurcation, a forward calculation is performed. Using the value of δ from Equation 25, the single
mechanism in the configuration Rn−1 is mobilised and the corresponding strain-free configu-
ration is computed with the standard predictor-corrector algorithm. If in the new configuration
vr = 0, then the bifurcation has been found. Otherwise the following two checks are carried
out. First, to ensure that the assembly has not switched paths, it is checked that the inextensional
mechanisms in the configurationRn−1 and in the new configuration are approximately identical,
hence

|un
r+1 · un−1

r+1 | � 1 (26)
Second, to check that the assembly has yet to reach the bifurcation point a further, small dis-
placement is imparted. If the smallest non-zero singular value is found to increase, it means that
the assembly has already crossed the bifurcation point. If both checks are satisfied, the structure
is moved from configuration Rn−1 to Rn. If either check is not satisfied, δ is decreased and
the forward calculation is repeated. This iteration is repeated until vr becomes smaller than a
specified tolerance.

5 A simple example

Consider the three-bar structure of Figure 1, already discussed in Section 1. The SVD of the
equilibrium matrix for the structure at the bifurcation pointRC , Figure 1(c), is

H =

⎡
⎢⎢⎣

0.7071 0.7071 0 0
0 0 −1 0

−0.7071 0.7071 0 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

1.7321 0 0
0 1 0
0 0 0
0 0 0

⎤
⎥⎥⎦

⎡
⎣ 0.4082 −0.8165 −0.4082

0.7071 0 0.7071
0.5774 0.5774 −0.5774

⎤
⎦(27)

Hence, the rank of H is r = 2 and the matrices containing the m = 2 mechanisms and s = 1
states of self-stress are

Um =

⎡
⎢⎢⎣

0 0
−1 0

0 0
0 1

⎤
⎥⎥⎦ , Ws =

⎡
⎣ 0.5774

0.5774
−0.5774

⎤
⎦ (28)

The coefficient matrix of the single second-order compatibility equation is computed fromEqua-
tion 17

Q1 = 0.5774
[

0 −1
0 0

] [
1 0
0 1

] [
0 0

−1 0

]

12
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+ 0.5774
[

0 −1 0 0
0 0 0 1

]
⎡
⎢⎢⎣

1 0 −1 0
0 1 0 −1

−1 0 1 0
0 −1 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0 0
−1 0

0 0
0 1

⎤
⎥⎥⎦

− 0.5774
[

0 0
0 1

] [
1 0
0 1

] [
0 0
0 1

]
(29)

This gives

Q1 =
[

1.1547 0.5774
0.5774 0

]
(30)

and, thus, the second-order compatibility equation is

[β1β2]
[

1.1547 0.5774
0.5774 0

] [
β1

β2

]
= 0 (31)

which can be simplified to
β2

1 + β1β2 = 0 (32)

Including the normalisation condition, Equation 19, we obtain the following system of quadratic
equations {

β2
1 + β1β2 = 0

β2
1 + β2

2 = 1
(33)

whose solutions are β1 = [−1 1]T and β2 = [0 1]T . These two solutions correspond to two
distinct kinematic paths out ofRC , respectively shown in Figure 1(b) and 1(d).

We choose path P 1, corresponding to β1, and follow the motion of the structure —which has
a single mechanism— until it approaches the next bifurcation point, RA. Convergence to this
bifurcation point was achieved in a single step; the lowest non-zero singular value in the penul-
timate step was vr = 0.0052, at this point an amplitude parameter δ = 0.0091 was computed
with the method of Section 4, and in the following step vr = 7.14×10−7. Because this number
is smaller than the required tolerance (10−6) the structure was considered to have converged to
RA. Hence, a new analysis of the available paths was carried out.

Figure 8 shows the variation of the lowest non-zero singular valuewith path length for a complete
kinematic simulation starting in configuration RA, going to RC through path P 1, then to RB

through path P 3, and then back toRA through path P 2.

6 Folding and deployment of solar sails

An important motivation for developing the algorithms presented in this paper was being able
to simulate the folding and deployment of a thin membrane structure that had been proposed
by Temple and Oswald [10] for a solar powered spacecraft that would go to Mars. The original
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Figure 8: Variation of lowest non-zero singular value when the structure in Figure 1 moves along paths
P 1, P 3, and P 2.
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Figure 9: Wrapping of thin membrane around a central hub; (a) deployed and (b) wrapped configurations;
(c) folding pattern with six near-radial folds.
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proposal envisaged a circular membrane with a diameter of 276 m that, during launch, would be
wrapped around a spacecraft with a diameter of 4 m.

The folding pattern that is required to wrap such a membrane around a central hub was analysed
in [1]. In the simplest case this consists of an odd number of near-radial folds that crease the
membrane alternately up, valley folds, and down, crest folds, intersected by sets of parallel folds.
The crest and valley folds originate at the corners of a straight-sided polygon that forms the hub.

To make small physical models of this structure it is fine to assume that the membrane has zero
thickness, in which case the crest and valley folds are straight. However, in larger models one has
to account for the gradual increase in the effective size of the hub as the membrane is wrapped
around it.

These fold patterns are worked out by considering only the fully-folded and fully-deployed
configurations. Hence, they do not guarantee that the folding process itself will not require either
stretching of the membrane, or changing the shape of the fold lines. The only way of finding
out if small effects of this kind play a role in this type of folding is to carry out a kinematic
simulation of the folding/deployment process.

Thus, the three main questions to be answered by the simulation are:

• Does there exist a continuous, strain-free motion that takes the assembly from the open to
the folded configuration?

• Is there a possibility that the membrane might deploy/retract into an unexpected configu-
ration, due to the existence of bifurcation points along its path?

• Does the hub remain planar during this motion?

To answer these questions, the membrane will be assumed to be of zero thickness, and modelled
as a pin-jointed bar assembly consisting of bars placed along the fold lines of the membrane. An
additional pin-jointed bar is placed along a diagonal of each trapezium bounded by successive
parallel folds.

6.1 Square hub

Here we analyse a solar sail of the smallest possible size andwith the smallest possible number of
crest and valley folds, i.e. four in total. Its pin-jointedmodel is shown in Figure 10. This assembly
has b = 16 bars and j = 6 non-foundation joints. Two joints, 1 and 3, are fully constrained.
In a general configuration this structure has two finite inextensional mechanisms, a rigid-body
rotation about the axis 1-3, and an internal mechanism.

To simulate the folding process, the equilibrium matrix of the pin-jointed assembly was set
up in the fully deployed, i.e. flat, configuration. The SVD of this matrix gave six independent
mechanisms and, after elimination of the rigid-bodymechanism, a set of five internalmechanisms
Um was obtained. A set of four independent states of self-stressWs was also obtained.
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Figure 10: Pin-jointed model of smallest model of solar sail.

Since s = 4, from Bezout’s theorem 24 = 16 solutions can be expected. 15 solutions were found
with the root scanning procedure: Figure 11 shows the configurations that were obtained by
simulating the motion of the structure along these 15 paths. All of these configurations are at a
distance � = 1.75 from the flat configuration. Note that a number of kinematic paths are related
by symmetry considerations, as the assembly has four-fold cyclic symmetry and the folding
pattern has two-fold symmetry. For example, path 8 can be obtained by rotating path 6, through
180◦ about the z-axis.

Path 12 corresponds to the path that takes the sail into its fully folded configuration. Nodes 2
and 4 move down (into the paper), whereas nodes 5 and 7 move up (out of the paper). In fact,
there is a second path that also takes the sail into its fully folded configuration, corresponding
to the 16th solution —which was not identified by the root scanning procedure. This alternative
path requires nodes 2 and 4 to move up while nodes 5 and 7 move down. In both cases, two hub
nodes have to move out of plane. Thus, depending upon the motion of the hub, up or down, two
equivalent kinematic paths leading to the same compact configuration exist.

6.2 Hexagonal hub

Wewill now consider the folding of a pin-jointed structure that consists of two loops of triangles
that wrap around a six-sided hub, Figure 12. This (slightly) more realistic model of the solar sail
will allow us to give complete answers to the three questions that were posed at the beginning
of this section.

Three of the hub nodes, 2, 3 and 4, are fully constrained. The other three nodes are connected by
bars to node 1, which is allowed to move only in the z-direction, to maintain the hexagonal shape
of the hub. The equilibrium matrix of this assembly has size 46 × 45. In a general configuration
the assembly has only one finite internal mechanism, but in the fully deployed, flat configuration
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Figure 11: Projections onto x, y plane of 15 of 24 = 16 motions out of fully-deployed configuration, for
solar sail with square hub.
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Figure 12: Pin-jointedmodel of small solar sail with 6 near-radial folds and hexagonal hub, cf. Figure 9(c).
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RA in which we started our simulation there arem = 16 independent infinitesimal mechanisms
and s = 15 independent states of self-stress.

After a laborious analysis of this bifurcation point, with its potential 215 paths, the correct
kinematic path was picked up, thus starting the motion illustrated in Figure 13. Figure 13(c)
shows a partially folded configuration where nodes 8-13 lie directly above or below the hub
nodes. This configuration corresponds to the bifurcation point RB, which our algorithm took
35 steps to converge to. Although in this configuration the hub is planar, it distorts out-of-plane
during the motion fromRA toRB. AtRB there arem = 4 infinitesimal mechanisms and s = 3
states of self-stress and, having computed 23 = 8 distinct finite paths, it was found that there are
two axi-symmetric motions both of which lead to the correct folded configuration. These two
solutions correspond to node 1 moving up or down, respectively.

As the assembly approached the fully folded configuration RC , three non-zero singular values
started approaching zero. The configuration RC , shown in Figure 13(e), is also a bifurcation
point, which took 26 steps to converge to. In this configuration the central hub is again planar.

Next, the structure was deployed back to the original configurationRA. The deployment simu-
lation began with an analysis of bifurcation pointRC , where an axisymmetric deployment path
was chosen. During deployment the assembly passed through the bifurcation point RB and,
finally, as it approached the fully open configuration, 15 singular values started approaching
zero. Convergence to the bifurcation pointRA required 149 simulation steps.

The variation of the 15 singular values that were zero at the start of the simulation described above
are plotted in Figure 14 for the entire kinematic simulation. One singular value is always zero,
corresponding to the single internal mechanism. Due to the cyclic symmetry of the assembly,
some of the singular values coincide and therefore the number of distinct curves that are visible
on the plot is actually less than 15.

Note that the plot in Figure 14 is symmetric about the centre line, as the same path was followed
both during folding and deployment. In fact, it is possible to change path at the first bifurcation
and follow an alternative path. This would also produce the correct folding pattern, but the
variation of the singular values would no longer be symmetric.

Also note that the number of steps taken to converge to successive bifurcation points increased
during the course of the simulation. Thus, it took 35, 26, 58 and 149 steps to converge to the
bifurcation pointsRB,RC ,RB andRA, respectively. It appears that there is a link between the
rank deficiency of the equilibriummatrix, i.e. the number of singular values that are approaching
zero, and the number of iteration steps required for convergence. However, the build up of
numerical errors and inaccuracies may also be a significant effect, since convergence to the same
configuration,RB, required 35 steps the first time and 58 the second time.

7 Discussion

The kinematic simulations described in Section 6 suggest that the deployment/folding behaviour
of a theoretical membrane of zero thickness and with straight folds is strictly inextensional, if the
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Figure 13: Projection onto x, y plane of folding simulation of structure in Figure 12.
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Figure 14: Variation of 15 lowest non-zero singular values during folding and deployment of solar sail
model of Figure 12.

19



Praveen Kumar and Sergio Pellegrino

hub is allowed to distort out of plane. It has been shown that the deployment process is radially
sequential, i.e. a complete loop of triangles has to unwrap completely before the next loop starts
unwrapping, and there is a kinematic bifurcation every time a loop completes its unwrapping.

It should be noted that in the simulation the bars and joints of the pin-jointed model of the solar
sail were allowed to pass through each other, although this never happened. The part of the
membrane that is already wrapped around the hub does not remain stationary, but moves by a
small amount, see Figure 14(d). It can be concluded that, although in the particular simulations
that we have carried out there was no physically unacceptable interference between different
parts of the membrane, it is likely that there would be interference if one considered a larger
solar sail, whose folding pattern consists of several loops of triangles. Of course, the effect of
modelling the thickness of the membrane will also need to be considered.
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