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The thin film used for the NASA Ultra Long Duration Balloons (ULDB) shows con-
siderable time-dependent behaviour. Furthermore, experiments on scaled ULDB balloons
have revealed that wrinkles are present over a wide range of pressures. A numerical model
has been developed describing the nonlinear anisotropic viscoelastic material behaviour by
means of a Schapery-type model and this model has been extended to model wrinkling
by means of a user-defined subroutine in the finite-element package ABAQUS. After a
description of the viscoelastic modelling approach, a lobe of a 48 gore ULDB flat facet
balloon is modelled and compared to experimental results. Additionally two test cases of
anisotropic wrinkling are presented, one involving a flat membrane and one a cylindrical
balloon structure.

I. Introduction

Large super-pressure stratospheric balloons currently under development in the NASA Ultra Long Dura-
tion Balloon (ULDB) Program make use of thin polymeric films to form a sealed envelope that is constrained
by a series of meridional tendons. In the balloon the polymeric film is subject to a biaxial state of stress
whose details depend on the cutting pattern, stiffness of the film vs. stiffness of the tendons, etc. Viscoelastic
effects, which are usually significant in the film, play a significant role in the stress distribution and shape
of these balloons.

So far pseudo-elastic material properties have been generally assumed for the design of the balloon
structure. However, following a number of anomalies during flight tests of NASA Ultra-Long-Duration-
Balloons (ULDB),1 it has been realized that the behaviour of super-pressure balloons is more complex than
assumed at first. As the complexity of these balloons is better grasped,11,20 detailed experimental validation
of the analysis models is being initiated, and this in turn requires that details of the time-dependent material
behavior be also included in the models. A finite element model of Schapery’s nonlinear viscoelastic material
model has been developed3,4 and verified by means of cylindrical balloon structures that provide uniform
states of stress. Further investigation of more complex states of stress is needed in order to enable realistic
models of ULDBs. In a first attempt this paper presents predictions for creep strains on a ULDB 48 gore
flat facet balloon that are compared to experimental results obtained in reference 22.

Experiments on small scale ground models with 48 gores, nominal 4 m diameter, and a constant lobe
radius design showed partially wrinkled regions over wide ranges of pressures. With increasing pressures
and/or after some time under pressurisation these wrinkles eventually disappeared. A ULDB 48 gore flat
facet balloon has shown the presence of wrinkles up to a differential pressure of 500 Pa.2

While a wrinkled surface may cause difficulties during experimental measurements the challenge for finite
element models is even higher. The formation of wrinkles is associated with (small) compressive stresses;
these stresses cannot be carried by membrane elements and consequently numerical instabilities occur. Since
in general most balloon structures develop wrinkles in some regions, at least during pressurisation it is
important to take wrinkling into consideration.

This paper is part of an ongoing effort to develop more realistic models for super-pressure balloons,
validated with reference to representative physical models. Here we present an approach to model both
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Figure 1. ULDB 48 gore flat facet balloon, from Young et al.22

nonlinear viscoelasticity and anisotropic wrinkling implemented through a user-defined material subroutine
in the ABAQUS finite-element package. Based on this approach, we have predicted the creep strains in
a flat facet balloon and compared to experimental results. Additionally an approach to model anisotropic
wrinkling is presented. It is then attempted to combine both approaches into one model, which is tested on
a cylindrical balloon structure.

II. Background

II.A. Material

A linear low density polyethylene (LLDPE) film, called StratoFilm 372, has been used for many years for
NASA balloons. This film was produced as a monolayer extrusion with a blow-up-ratio (BUR) of three,
and a thickness of 0.02 mm was achieved. This material has been fully characterised, resulting in a detailed
time-dependent material description.6,12,13

For the ULDB a new material, called StratoFilm 430, has been introduced. This consists of a three layer
co-extrusion using the same LLDPE resin as for SF372. A different die and a reduced BUR have resulted
in a film with a thickness of 0.038 mm. It has been suggested that these changes affect only the transverse
direction properties of the film and so the properties in the machine direction remain unchanged.12 After
some initial creep tests we decided to use Rand’s master curve and nonlinearity functions for SF372.

II.B. Viscoelastic Model

A general introduction to the field of nonlinear viscoelasticity is provided in standard textbooks.8,21 In
reference 3 we have presented an attempt to model the time-dependent material behavior of LLDPE using
the creep/relaxation models available in ABAQUS. Additionally the Schapery16 nonlinear viscoelastic con-
stitutive material model has been implemented as a user defined material (UMAT) for the use in ABAQUS
and verified by means of cylindrical balloon structures.3,4 This alternative approach is quite accurate and
will be being used in the following sections.

Schapery’s material model16 is based on the thermodynamics of irreversible processes, where the transient
material behavior is defined by a master creep function. Nonlinearities can be considered by including
factors that are functions of stress and temperature. Further, horizontal shift factors enable coverage of wide
temperature/stress ranges. Schapery also gave a general multiaxial formulation with the nonlinear function
being an arbitrary function of stress. Since the Poisson’s ratio has only a weak time-dependence a single
time-dependent function is sufficient to characterize all elements of the linear viscoelastic creep compliance

2 of 15

American Institute of Aeronautics and Astronautics



matrix.17

Rand and co-workers12,14 further simplified this relationship by assuming that the time-dependence in
any material direction is linearly related to that observed in the machine direction:
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The first term in Equation (1) represents the elastic response of the material, provided by the instanta-
neous elastic compliance D0, while the second term describes the transient response, defined by the transient
compliance function, ∆D. The other parameters are nonlinearity functions and the horizontal shift factors
for the master-curve.

S0
ij and Sij are the coefficient matrices enabling the multiaxial formulation. Since the material response

in any direction is based on the properties in the machine direction, one assumes S0
11 = 1 and S11 = 1 .

Anisotropic behaviour is accounted for by adjusting the remaining coefficients.

III. Viscoelastic Subroutine

To use Schapery’s single-integral constitutive model in a numerical algorithm, Equation (1) needs to be
rewritten in incremental form. A numerical integration method was presented by Haj-Ali and Muliana5

for a three-dimensional, isotropic material. Based on the integration method proposed in reference 5, an
algorithm has been developed for anisotropic material behavior that implements the biaxial approach of
Rand and co-workers.12,14 This algorithm was implemented in ABAQUS, but would be equally suitable for
any displacement based finite element software, where strain components are used as the independent state
variables.3,4

The incremental method requires the transient strain function ∆D to be expressed in terms of a sum
of exponentials, called a Prony series, and the strain/stress history needs to be stored at the end of each
increment for each strain/stress component and each Prony term. A schematic overview of the iterative
algorithm is depicted in Figure 2 while the full set of equations has been presented in reference 4.

The ABAQUS interface for a user-defined material (UMAT) passes the current time increment ∆t and
the corresponding strain increment ∆ε, determined using the Jacobian matrix, ∂σt

j/∂εt
i, at the end of the

previous time increment. In turn, it requires at the end of the current time increment an update of the
stresses σt

j and the updated Jacobian matrix.
Every time UMAT is called, it starts with an estimation of a trial stress increment ∆σt,trial based on the

nonlinearity parameters at the end of the previous time increment. With this initial guess an iterative loop
is entered, where the integration in Equation (1) yields ∆εt,trial, which is compared with ∆εt,ABAQUS . If
required, the stresses and the nonlinearity parameters are corrected and the loop is repeated. Alternatively,
if the strain error residual is below a specified tolerance (set to tol = 10−7) UMAT exits the loop and updates
the Jacobian matrix and the stresses.

The subroutine has been verified for cylindrical balloon structures,4 without any wrinkles. An approach
that allows for the presence of wrinkles in thin anisotropic membranes is presented in the following section.

IV. Wrinkling of Anisotropic Membranes

Thin membranes cannot carry compressive stresses and consequently wrinkles or slack regions form. Most
balloon structures develop wrinkles, at least during pressurisation and especially near any end fittings and
tendons. Experimental observations showed that wrinkles appear even in a flat facet balloon structure.2

In order to allow for experimental validation of numerical models it is important to consider the effects of
wrinkling in thin anisotropic material. In the following we present a first attempt to predict the correct
stresses and displacements in a partially wrinkled anisotropic membrane surface. Our aim is not to model
the exact shape of the wrinkles but rather the average surface as shown in Figure 3(a). Also the following is
limited to flat membranes with in-plane loading. For a wrinkled state we make the following assumptions:
the bending stresses in the membrane are negligible, the stress in the wrinkle direction is zero, and there is
a uniaxial stress in perpendicular direction.
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Input variables:

From ABAQUS: time and strain increment

Stored: stress history, old stresses, old reduce time

Best guess for stress increments

based on current ABAQUS strain increments,

Use old nonlinearity parameters and reduced time

Set error tolerance,

Enter iteration

Strain increments 

based on current trial stresses

Stress correction

error > tolerance

Compute stress history

Output variables:

To ABAQUS: current stresses, Jacobian

Store: stress history, stresses, reduced time

nonlinearity parameters, 

reduced time

Strain residual

yes

no

Figure 2. Schematic overview of the user-defined subroutine.
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Figure 3. Average wrinkling surface, from Roddeman et al.15

A general approach to consider wrinkles in isotropic materials was proposed by Stein and Hedgepeth18

and further developed in references 9, 10. It was observed that when wrinkles develop within a membrane
the associated overall contraction in the direction of the wrinkles exceeds that predicted by the Poisson’s
ratio effect. Hence, this approach requires an appropriate increase of the local effective value of the Poisson’s
ratio in wrinkled regions. This effective value of Poisson’s ratio is determined by imposing a locally uniaxial
stress state in the direction of the wrinkles. However, in order to apply the Stein and Hedgepeth approach
the wrinkling orientation must be known, and while for isotropic materials the direction of the wrinkles is
determined by the principal stresses with any shear components being zero, this is generally not the case for
anisotropic materials. Hence, the approach described in the following subsections consists of the following
steps:

1. check the element state: taut, slack or wrinkled;
2. if wrinkled determine the wrinkling orientation;
3. find an effective elasticity matrix that leads to a compression-free state of stress.

IV.A. Wrinkling Criterion

Kang and Im7 used a combined stress-strain criterion based on principal stresses and strain to determine if
an element is wrinkled or not. Three different states were considered:

principal stress σ22 > 0 taut
principal strain ε11 ≤ 0 slack
otherwise (σ22 ≤ 0 and ε11 > 0) wrinkled

If the element is found to be taut no further action is required and in case of a slack state all stresses are
set to zero and an empty elasticity matrix is required. For a wrinkled element the following sections describe
the procedure.

IV.B. Wrinkling Orientation

Kang and Im7 have presented a scheme where the orientation and the magnitude of the uniaxial tension is
obtained from an invariant relationship between the normal strain component in the direction of the local
uniaxial tension and the shear strain component. Presuming a uniaxial state of stress, they derived the
following two relationships for the strain components ε22u and ε12u, where the subscript u denotes directions
parallel and perpendicular to the wrinkle, defined on the actual wrinkled surface, as depicted in Figure 3(a):

ε22u =
C12C33 − C23C31

C23C32 − C22C33
· ε11u (3)
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2ε12u =
C22C31 − C21C32

C23C32 − C22C33
· ε11u (4)

where Cij are the components of the stress-strain relations after a rotation of the coordinate system by
an angle β, see Figure 3(b). They found that Equation (4) is an invariant with respect to the magnitude
of wrinkling, valid for both wrinkled states and (unwrinkled) uniaxial tension, while Equation (3) holds
only for uniaxial tension. Based on these two equations they propose a scheme to determine the wrinkling
orientation, i.e. the direction of the uniaxial tension.

Starting from an initial guess for the angle β that defines the wrinkle orientation, the coordinate system
is rotated into the local 1, 2-system and the following procedure is applied:

1. in the local 1, 2-system check that ε11 > 0 for the assumed value of β
2. set ε11u = ε11

3. calculate ε12u and ε22u from Equations (3),(4)
4. β defines the wrinkling orientation if ε12 = ε12u and ε22u ≥ ε̌22

where the components εij are the strains from a rotation of the coordinate system. The key in the above
procedure is to find an angle β that solves the equation ε12u − ε12 = 0.

IV.C. Effective Elasticity Matrix

While in a taut element stresses and strains are related by the standard relationship for plane stress elasticity,
in a wrinkled region these equations do not apply. Once the correct wrinkling orientation has been found
a new effective elasticity matrix Deff can be determined that relates a given state of strain to a state of
uniaxial stress. The derivation of Deff follows Miller et al.10

Assuming negligible bending stress in the membrane and imposing uniaxial stress yields for stresses in
wrinkling orientation

σ11 = C11ε11 + C12ε22 + C13γ12

σ22 = 0 (5)
σ12 = 0

For uniaxial stress in the 1-direction ε22 and γ12 in Equation (5) can be eliminated using the strain-stress
relationship and σ11 can be rewritten as

σ11 =
C11

1− C12S21 − C13S31
· ε11 (6)

where all Cij were computed previously, during the search for the wrinkle angle β. The compliance matrix
components S21 and S31 are determined from the inverse of the stiffness matrix:

S21 =
C31C23 − C21C33

C

S31 =
C21C32 − C31C22

C
(7)

with C = C31C12C23 − C31C13C22 − C21C12C33

+C21C13C32 + C11C22C33 − C11C23C32

While isotropic materials allow several possible solutions for Deff , in the case of anisotropic materials
there is only one solution that satisfies Equation (5). In wrinkle-oriented coordinates the effective elasticity
matrix is

Deff =




C11
(1−C12S21−C13S31)

0 0

0 0 0
0 0 0


 (8)

where Deff,11 is the rotated material stiffness, from Equation (6). Hence we can write

Deff =




Erot 0 0
0 0 0
0 0 0


 (9)
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Note that Deff is matrix of rank 1. In comparison, Deff found by Miller et al. for isotropic material
(after rotation into wrinkling orientation) contains an additional component for the shear stiffness, and so
has rank 2:

Deff =




E 0 0
0 0 0
0 0 E

4


 (10)

V. Verification Test Cases

V.A. Experimental Validation of Viscoelastic Subroutine

Young and coworkers22 conducted creep experiments on a flat-facet balloon structure with 48 gores and
nominally 4 m diameter. The flat facet design uses gores whose widths correspond to the tendon spacing
and as a consequence the structure contains no built-in lobing. The balloon was made of PBO and the same
coextruded film that is used for ULDBs, with a thickness of 38 microns. The gores were joined via heat
sealing. Similar in design to full-scale balloons, in this model the tendons were terminated with Brummel
splices at both top and bottom end-fittings.

The structure was inflated five times to a very small differential pressure before the test series started.
Additionally, two tests were carried out with the same structure at pressures of up to 100 Pa and 300 Pa
before the experiment considered in this paper. After each test the balloon was left depressurized for at least
12 hours before the subsequent test, to allow viscoelastic recovery.

Figure 4. Differential pressure over time, from Cathey et al.2

Experimental creep measurements were made by means of photogrammetry using a setup of three cameras
mounted on tripods (see figure 1). The balloon was hung in an open area and filled with a mixture of Helium
and air. The structure was then pressurised in five increments and at each pressure level the pressure
was maintained for approximately 90 minutes. Sets of three simultaneous photographs were taken of the
targeted regions of the equatorial region of several lobes of the balloon, which had previously been fitted
with photogrammetry targets, and the photos were used to determine the strains in the target regions, at
the various differential pressures. The three-dimensional coordinates of the targets were determined with
photogrammetry software, with a reported accuracy better than 0.063 mm. The particular test that is
considered in this paper took the structure to the desired maximum differential pressure level of 600 Pa in
six increments. The applied pressure over time is plotted in Figure 4.

For the simulation a quarter of a gore was modelled in ABAQUS with triangular membrane elements
(M3D3). The model consists of about 4400 elements, the mesh being finer along the edges of the gore and
towards the end-fittings. Each tendon was allowed to move within a meridional plane of symmetry; the
equator nodes were constrained to lie in the equatorial plane, while the apex points were allowed to move
only along the axis of the balloon. For pressurisation the DLOAD command was used. The differential pressure
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levels were applied instantaneously in a step function, as opposed to the actual ramp functions used during
the experiment.

V.B. Anisotropic Wrinkling

For verification of the anisotropic subroutine it was decided to use a pre-tensioned rectangular membrane.
A uniform biaxial state of stress was set up by applying the stress σ0 and the load P = thσ0 as shown in
Figure 5. After pre-tensioning, in-plane bending moments M were applied on the side edges, then M was
gradually increased. The stress σx at the lower edge of the membrane eventually becomes compressive and a
band of vertical wrinkles, of height b, forms. Details about the analytical solution are given in reference 18.
The membrane is partly wrinkled if

1
6
≤ M

Ph
<

1
2

(11)

where the ratio b/h can be obtained from
b

h
=

3M

Ph
− 1

2
(12)

This test is run with both the new anisotropic wrinkling model and the proven isotropic wrinkling model
by Miller et al.10 The anisotropic implementation is expected to produce the same results as the isotropic
implementation (using the same isotropic material properties).

Figure 5. Flat membrane under biaxial stress and in-plane bending, from Miller et al.10

An 80 mm × 160 mm rectangular membrane has been modelled with 16 × 16 triangular membrane
elements (M3D3). A nominal stress σ0 = 2.0 MPa, a force P = 16 MPa, and a moment M = 300 Nmm have
been applied. From Equations (11) and (12), wrinkling is expected to begin for M = 213.3 Nmm; when the
full moment is applied the wrinkled region has a width of b = 18.4 mm.

The nodes along the left edge in Figure 5 were constrained in the x-direction and in addition the node
at the center of the left edge was also constrained in the y-direction. All nodes along the edge on the right
were kinematically tied in the x-direction to a dummy node, while the center of the edge were additionally
tied in the y-direction to the dummy node. The dummy node was free to move in plane. This approach
allows the force P and the moment M to be applied at a single node.

V.C. Combination of Viscoelasticity and Wrinkling

After the two subroutines, the viscoelastic model and the wrinkling model, had been verified separately as
described in the previous two sections, an attempt was made to combine viscoelasticity and wrinkling into
one implementation.

At the beginning of a time increment when the subroutine is called by ABAQUS a taut state of stress is
assumed. Then the iterative algorithm of the viscoelastic subroutine is run to find the state of stress, for a
taut element. Using the resulting stresses the element is checked for wrinkles (see section IV.A). If a wrinkled
or slack state is obtained, the state of stress and the Jacobian matrix need to be modified. Alternatively
if the element is found to be taut the viscoelastic subroutine continues as usual. In the case of a wrinkled
element a slightly modified wrinkling algorithm is entered: after the wrinkling orientation is determined the
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Input variables:

From ABAQUS: time and strain increment

Stored: stress history, old stresses, old reduce time

Best guess for stress increments

based on current ABAQUS strain increments,

Use old nonlinearity parameters and reduced time

Enter iteration

error < tolerance

Compute stress history

Output variables:

To ABAQUS: current stresses, Jacobian

Store: stress history, stresses, reduced time

Iterative algorithm:

find correct stresses

no

yes

Enter uniaxial iteration

error < tolerance

Iterative algorithm:

find correct uniaxial stress

no

yes

Wrinkle check

yes

no

Figure 6. Combination of viscoelasticity and wrinkling.
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previously found stresses are discarded. Strains and history variables are rotated into the wrinkle orientation
and the iterative algorithm that was previously used to find the stress state is run once again, but this time
uniaxially. Once the correct uniaxial stress is found all of the variables are rotated back into the material
orientation and the viscoelastic subroutine continues as usual. A schematic overview of the subroutine is
depicted in Figure 7.

A cylindrical balloon structure was used to test this combined approach, since a cylinder can be assumed
to have a uniform stress distribution and hence is a useful tool for testing the viscoelastic subroutine.3,4

Starting with a pressurised cylinder, the ends of the cylinder were brought closer together, in order to cause
a series of hoop wrinkles to form; in the hoop direction a high uniaxial stress is maintained. Viscoelastic
effects then cause the hoop strains to increase over time and, due to Poisson’s ratio effects, the wrinkles
disappear over time.

The cylinder had a diameter of 300 mm and height of 760 mm. By symmetry, only half of a 90◦ sector of
the balloon was modelled, with triangular membrane elements (M3D3); a mesh of 60 elements in the hoop
direction and 65 elements in the longitudinal direction was used. A uniform internal pressure of 1500 Pa was
applied through the DLOAD command while the end-fittings were held in place. This resulted in a nominal
hoop stress of 5.9 MPa. Next the end-fittings were brought closer together, each by 5 mm, causing the axial
stress to become compressive and wrinkles to form.

The pressurisation and the movement of the end-fitting was applied “instantaneously”, in very short
time increments (∆t = 1× 10−20 s), and was completed before the viscoelastic model took effect. The end
movement was imposed in increments of ∆z = 1 mm with a stabilisation factor of 1 × 10−21, which was
reduced to 1× 10−28 in a subsequent step.

VI. Results

VI.A. Flat Facet Balloon

Young et al.22 have measured the creep strains on a flat facet balloon. This test was the first of this type
and the results are plotted at the bottom of Figure 7. Measurements were taken from six different gores and
for each gore the creep strains were averaged over the whole target area, covering about 250 mm × 500 mm.
Overall, there is considerable spread in the results; it was concluded that variations in gore width were the
source of this spread.

Based on the recorded pressure over time a simulation was run with a quarter of a gore using the
viscoelastic subroutine presented in section III. Two sets of results are plotted at the top of Figure 7: the
continuous line shows the creep strain predicted at the equator, at the center of the lobe; this is the maximum
creep strain on the whole lobe. The dashed line is the average strain over a region somewhat smaller than
that were the experimental results were averaged. Minor local irregularities were observed in the area along
the edge of the gore and hence this region was not included in the average strain result. Including this area
would have further decreased the average strains.

VI.B. Flat Membrane

To check that the anisotropic wrinkling approach is working, a pre-tensioned rectangular membrane under
in-plane bending was modelled. For comparison to the results from the well-established isotropic implemen-
tation, both subroutines were used with the same loading and the same isotropic material properties. The
results are compared in Figure 8. The left column shows the results from the isotropic implementation, while
the right column shown the new anisotropic implementation. Figures 8(a) and (b) depict the membrane right
at the beginning of wrinkling, which occurred as expected at about 215 Nmm. Up to this moment the results
from both subroutines are identical. Once wrinkling started the anisotropic subroutine requires high values
of stabilisation (numerical damping) for convergence. In order to achieve convergence the remaining bending
moment was applied in several increments. For each increment, after convergence had been reached, a sub-
sequent step was run with lower numerical dumping while keeping the loading constant. Figure 8(c) shows
the converged membrane with fully applied moment M but still with considerable stabilisation. Figures 8(d)
and (e) depict the end results of both subroutines, where the stabilisation was sufficiently decreased to arrive
at the same result as the isotropic subroutine.
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Figure 7. Predicted creep strains from viscoelastic subroutine and experimental results from.22
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Figure 8. Comparison of isotropic and anisotropic wrinkling subroutines.
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VI.C. Cylinder

An attempt to combine the two separate implementations for viscoelasticity and wrinkling has been tested on
a cylindrical structure. The ends of the cylinder were brought closer together in order to produce a uniform
wrinkled state. Figures 9 and 10 show the results from this approach. The cylinder sections in Figure 9 show
a quarter of a cylinder with the end shown on the left and the central section on the right. The contours
describe the stresses in the axial direction. Figure 9(a) was taken after initial pressurisation and before the
ends were moved. Hence there is still a biaxial state of stress. The changes seen in Figure 9(b) were seen
when the end of the cylinder was moved with a high stabilise factor. These differences disappear in the next
step as seen in Figure 9(c) after the stabilise factor was reduced again. Figure 9(d) shows the cylinder after
10 minutes creep. These images are related to stress states at particular times, shown in Figure 10 by means
of the markers (a)-(d).

In general the cylinder behaved as expected: the wrinkles that were induced during the elastic phase
(t < 1× 10−20 s) disappeared as soon as viscoelasticity took effect, due to Poisson’s ratio’s effects. However,
numerical problems were observed during the analysis. This can be seen especially on the left end of
the cylinder (in particular Figure 10(c)), where the stress in axial direction abruptly changes. Further
investigation of this result is required.
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t = 4 x 10-20 s

t = 1 x 10-15 s

t = 600 s

Figure 9. Axial stress over time in an initially wrinkled cylinder.

VII. Conclusion

An iterative algorithm for the multiaxial formulation of Schapery’s nonlinear viscoelastic material model
has been presented. The algorithm has been implemented for displacement based finite element programs
using the user-defined-subroutine interface available in ABAQUS. Using the viscoelastic material data from
StratoFilm 372, published by Rand and co-workers, the numerical model has been applied to a flat facet

13 of 15

American Institute of Aeronautics and Astronautics



-20 -15 -10 -5 0 5

0

1

2

3

4

5

6

7

S
tr

e
s
s
 [

M
P

a
]

log time [s]

(a)

(b)

(c)

(d)

hoop stress

axial stress

Figure 10. Stress variation over log time in an initially wrinkled cylinder.

balloon and predictions have been compared to experimental results. The predicted creep strains were higher
than the experimental strains, mainly because experimental strains have been averaged over a larger area
and so taking also into account areas with much lower strains. This trend has been shown by averaging the
predictions over an area around the equator.

An attempt has been made at considering wrinkling in thin anisotropic films. An algorithm to find
the wrinkle orientation and correct for a uniaxial state of stress has been presented and also implemented
using the ABAQUS user-defined subroutine interface. While it has been found to produce correct results,
convergence was achieved only after numerical damping had been introduced. Numerical damping was then
reduced in subsequent steps.

The two separate implementations for viscoelasticity and wrinkling were combined into one subroutine.
This approach was tested by means of a cylindrical balloon that formed uniform wrinkles in the hoop direc-
tion. The initially wrinkled cylinder behaved as expected: the wrinkles disappeared as soon as viscoelasticity
took effect due to the Poisson’s ratio effect. However numerical problems were observed and will need further
investigation.

Finally, it should be noted that this paper is part of an ongoing effort. Some of the approaches presented
will be refined in the future. In particular this includes the investigation of numerical instabilities and
improvement of convergence when the wrinkling algorithm is used.
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