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TRAJECTORY DESIGN OF A SPACECRAFT FORMATION FOR
SPACE-BASED SOLAR POWER USING SEQUENTIAL CONVEX

PROGRAMMING

Ashish Goel∗, Soon-Jo Chung†, and Sergio Pellegrino‡

The concept of collecting solar power in space and transmitting it to the Earth
using microwaves has been studied by numerous researchers in the past. The
Space Solar Power Initiative (SSPI) at Caltech is a collaborative project to bring
about the scientific and technological innovations necessary for enabling a space-
based solar power system. The proposed system comprises an array of ultra-light,
membrane-like deployable modules with high efficiency photovoltaic (PV) con-
centrators and microwave transmission antennas embedded in the structure. Each
module is 60m × 60m in size and in the final configuration, hundreds of these
modules span a 3km × 3km array in a geosynchronous orbit. As this forma-
tion goes around the Earth, the orientation and position of each module has to be
changed so as to optimize the angle made by the photovoltaic surface with respect
to the sun and by the antenna surface with respect to the receiving station on Earth.
In order to achieve high antenna array efficiency, the modules have to remain in a
tight formation with an edge-to-edge distance on the order of a few meters. In addi-
tion, the modules also have to avoid collisions and maintain a planar configuration
to avoid the possibility of both PV and RF shadowing. In this paper, we present
the trajectory design that achieves the dual goal of minimizing the propellant us-
age and maximizing the power delivered to the ground station, while meeting the
various orbital constraints. The optimal control problem is solved using sequential
convex programming for a 4 × 4 formation and the results obtained show that it
is possible to maintain the formation for 11 years in a geo-synchronous orbit with
relatively small amounts of propellant. This serves as a critical achievement in the
path towards realizing the objective of space-based solar power.

INTRODUCTION

The concept of collecting solar power in space and transmitting it to the Earth using microwaves
was initially floated in a science fiction magazine by Isaac Asimov1 and first proposed in a technical
paper by P. E. Glaser in 1968.2 Since then, numerous researchers have proposed architectures and
implementation strategies for realizing the dream of space-based solar power.3–5 As a source of
renewable energy, space-based solar power has numerous advantages over terrestrial solar power
installations. It is largely independent of the diurnal, seasonal and weather-related variability as-
sociated with terrestrial solar power. The near-continuous availability of power also eliminates the
need for expensive storage solutions. The ability to use beam forming for directing the microwave
power to any location at any point of time makes it a very exciting proposition for resource-starved
areas on Earth.
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Figure 1. Overview of Space Solar Power System, reproduced from Arya et al.
(2016).6 The architecture is modular at multiple levels. The formation comprises
a large number of modules. Each module is made up of individual strips that are
lined up with identical fundamental units called tiles.

The Space Solar Power Initiative (SSPI) at Caltech is a collaborative project to bring about the
scientific and technological innovations necessary for enabling a space-based solar power system.
The proposed system comprises an array of ultra-light, membrane-like deployable modules with
high efficiency photovoltaic (PV) concentrators and microwave patch antennas embedded in the
planar structure. Each module is 60 m × 60 m in size and in the final proposed configuration,
hundreds of these modules span a 3 km × 3 km array in a geosynchronous orbit. This architecture
is depicted in Figure 1, reproduced from Arya et al. (2016).6 Each module is folded and packaged
into a 1.5 m × 1.5 m volume before launch, allowing us to launch multiple modules with a single
launch vehicle.6

Each module in the formation contains a large number of tiles. The tile is the fundamental unit
of this design and comprises two primary layers. The top layer contains a series of parabolic con-
centrators. Solar radiation incident on these concentrator mirrors gets directed towards a thin strip
of photovoltaic cells located on the back side of the concentrators. The DC photocurrent is then
converted into microwave radiation at 10 GHz frequency with RF electronic ICs located on the un-
dersides of the top layer. Patch antennas located on the bottom layer of the tile radiate the RF power
towards an array of rectifying antennas (rectennas) on Earth. Precision timing control at each of the
patch antennas allows them to be operated in the form of a phased array to carry out beam-forming
and beam-steering, thereby directing the power towards any desired location on Earth.

As the formation goes around the Earth, the orientation and position of each module has to be
changed so as to optimize the angle made by the photovoltaic surface with respect to the sun and
by the antenna surface with respect to the receiving station on Earth. Our goal is to carry out these
attitude and orbital maneuvers to maximize power transmission while minimizing the propellant
mass added to the system. In addition, to achieve high efficiencies in the operation of the phased
antenna array, the 60 m × 60 m modules have to remain in a tight formation, with an edge-to-edge
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distance on the order of a few meters. While maintaining this tight formation, the modules also have
to avoid collisions and avoid shadowing the neighboring modules in the formation.

A preliminary attempt at designing the optimal trajectories using classical ideas of periodic rel-
ative orbits and the Hill Clohessy Wiltshire (HCW) equations was demonstrated by Goel et al. in
2017.7 In this paper, we provide a more rigorous approach by formulating the trajectory design of
this formation as an optimization problem and present the results obtained by solving this problem
using sequential convex programming. In the following section, we discuss the motivation behind
the problem formulation and describe the geometry and setup of the problem. In the next section,
we describe how we convexify the various constraints to solve the problem using sequential con-
vex programming. We then describe our results and conclude with a discussion of the results and
directions for future research.

As discussed in Goel et al. (2010),7 having a dual-sided module that can transmit RF power
from both the top and bottom surfaces or equivalently, a module that can collect solar power from
both surfaces can offer a 65% improvement in the orbit-averaged power transmitted to the receiving
station on Earth. The dual-sided approach allows the module to operate at a more optimum angle
over different orbital positions. Therefore, in this paper, we exclusively present results for these
dual-sided modules. The mission duration is assumed to be 11 years and the dry mass of a single
spacecraft is estimated to be 370 kg.

PROBLEM FORMULATION

There are numerous challenges associated with trajectory design for SSPI. First, when the mod-
ules are ejected from the launch vehicle, we have the problem of creating the formation out of the
initial swarm of randomly distributed satellites in space. When the formation is complete, we have
the challenge of maintaining the formation using accurate relative position sensors, actuators, and
appropriate control framework. Clearly, the satellites that are close to the center of the formation
will require less propellant for orbital maneuvering than satellites that are near the extremes of the
formation. Therefore, the formation will have to undergo reorganization so that on average, over
the course of the proposed lifetime, each module consumes roughly the same amount of propellant.
In this paper, we focus our attention on the design of the optimum trajectories for the modules, once
the close formation has been achieved. But the same optimal control formulation and solution ap-
proach could be used in the future for establishing the initial configuration and for reconfiguration
(reorganization maneuvers).

We describe the formation in terms of chief and deputy spacecraft. The chief is a virtual reference
whose motion is described in the Earth-Centered Inertial (ECI) reference frame. The chief is in
a geosynchronous orbit around the Earth. The real spacecraft (modules) that are actually in the
formation are designated as deputies and their motion is described in a local vertical local horizontal
(LVLH) frame centered at the chief, as shown in Figure 2. θ is the orbital angle that represents the
position of the chief in the geosynchronous orbit. β is the angle made by the planar deputy with the
sun and φ is the angle made by the deputy with the receiving station on Earth. These three angles
are geometrically related as

θ = β + φ (1)

The power transmitted (P ) by one such deputy to the receiving station depends heavily on the
angles θ, β, and φ. The orientation that is optimal for collecting the highest amount of solar power
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Figure 2. An illustration of chief and deputy spacecraft showing the LVLH frame
and the relevant angles θ, β and φ.

may not be the most efficient for transmitting the RF power. This dependence can be described as

P (θ, β) = PS ηPV ηDC−RF cos(γ) S(β)R(φ) cos(φ) (2)

PS represents the incident solar flux and is equal to 1361 W/m2. The second term ηPV is the
optical power-to-electrical power conversion efficiency of the photovoltaic system and is assumed
to be 25%, taking into account the solar cell efficiency and optical efficiency of the concentrators.
The term ηDC−RF represents the DC-to-RF power conversion efficiency and is assumed to be 33%.
The angle γ is the tilt of Earth’s equatorial plane with respect to the ecliptic plane and is equal to
23.5◦. The PS , ηPV, ηDC−RF, and cos(γ) terms can all be treated as constants. The next term S(β)
represents the dependence of photovoltaic efficiency on the angle β and is plotted in Figure 3(a).
This profile is obtained using ray tracing simulations of the proposed photovoltaic tile structure.
Note that this is a purely geometric effect and should not be confused with the ηPV term. The term
R(φ) represents the dependence of the efficiency of a single antenna in the array on the RF angle
φ. This dependence is obtained using electromagnetic simulations of the antenna and is shown in
Figure 3(b). And finally, cos(φ) represents the variation of the array factor with φ. These factors
combine to give a value of P (θ, β) in units of Watts per m2 of satellite area. Using Equation (1),
Equation (2) can be rewritten as

P (θ, β) = PS ηPV ηDC−RF cos(γ) S(β)R(θ − β) cos(θ − β) (3)

Based on this dependence, if we treat θ as a known variable from the chief’s orbital motion,
we can arrive at the optimum orientation profile for the deputy spacecraft for maximizing power.
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Figure 3. (a) Variation of photovoltaic efficiency with angle β (b) Variation of effi-
ciency of a single antenna in an array with angle φ.

However, when considering the entire formation, if each deputy spacecraft only carries out an at-
titude maneuver, then the satellites would end up shadowing each other, as illustrated in Figure 4.
Therefore, the attitude maneuvers that optimize power have to be accompanied by orbital maneu-
vers which could lead to large propellant mass requirements. This motivates the formulation of the
trajectory design as an optimal control problem with the goal of obtaining the right balance between
maximizing power and minimizing the mass of the propellant needed to maintain the formation and
to carry out the orbital maneuvers accompanying the attitude maneuvers.

If the chief is located at a distance of r from the center of the Earth, then under the action of a
control input vector U = [Ux, Uy, Uz]

T , the motion of the chief is governed by the following set of
equations

r̈ − rθ̇2 = −µr
r3

+ aSRP cos(θ − β) + Ux (4)

2ṙθ̇ + rθ̈ = aSRP sin(θ − β) + Uy (5)

where µ is the gravitational parameter. We do not include the z equation for the chief since we
restrict its motion to the equatorial plane. Note that we include the acceleration due to solar radiation
pressure aSRP since it is the most dominant perturbation force in a geosynchronous orbit given the
large area to mass ratio of the spacecraft. The solar radiation pressure has the tendency to ellipticize
the chief’s orbit and this effect is discussed in more detail by Goel et al. (2017),7 Atchison (2011)8

and Hamilton & Krivov (1996).9 While the complete problem formulation would also optimize
over the trajectory of the chief spacecraft, in this analysis, we assume that the chief’s orbit is known
and only optimize the trajectories of the deputy spacecraft. For the sake of simplicity, we assume
that the chief is in a geostationary orbit. This makes θ a known quantity in our problem formulation.

We define the relative position vector of the jth deputy spacecraft with respect to the chief (in
the LVLH frame) as rj = [xj , yj , zj ]

T , the state vector as sj = [xj , yj , zj , ẋj , ẏj , żj ]
T and its

control input (thrust per unit mass) vector as uj = [uxj , uyj , uzj ]
T . In order to avoid the shadowing

and obstruction of neighboring spacecraft, we enforce a planarity constraint on the formation. In
other words, we stipulate that all the modules have the same orientation for a given orbital angle
θ. Although this is only a sufficient and not a necessary condition to avoid shadowing, it allows us
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Figure 4. (a) Variation of photovoltaic efficiency with angle β (b) Variation of effi-
ciency of a single antenna in an array with angle φ.

to continue using Equation (3) to estimate the power transferred. Otherwise, a full electromagnetic
simulation and ray-tracing analysis would have to be carried out to estimate the power transferred for
each spacecraft configuration. Since this constraint forces all deputies to have the same orientation,
it also ensures that they all experience the same amount of solar radiation pressure at any given
point of time. Therefore, the solar radiation pressure term drops out of the dynamics equation for
the deputy spacecraft and only appears in the dynamics equations for the chief. In addition, this
planarity constraint couples the attitude dynamics of the spacecraft with its orbital motion. This
coupling effect is duly accounted for in the formulation of the optimal control problem.

Since gaps in the formation are detrimental to the performance of the phased array, we also
enforce an array maintenance constraint whereby the neighboring spacecraft are not allowed to drift
too far away from each other. In the future, a detailed electromagnetic model can be incorporated
within the optimal control framework to account for this effect but in the current analysis, we simply
impose a maximum distance constraint between all neighboring spacecraft. A tree structure is
assigned to the formation so that each spacecraft has a unique ID in the formation and has a pre-
assigned set of neighbors N .

In addition, we enforce a collision avoidance constraint, boundary conditions and some upper
and lower bounds on the values of β, control inputs and speeds of the deputy spacecraft. We also
enforce a periodicity constraint so that the performance of the system does not change from day
to day. This also allows us to restrict the problem duration to one period of the chief’s orbit. And
finally, since there are limitations on how quickly such a large spacecraft can change its attitude,
we stipulate that two consecutive values of β must not vary by more than ∆βmax. From Goel et
al. (2017),7 we know that carrying out maneuvers at rates on the order of a few deg/s imposes a
very small requirement in terms of the propellant needed to carry out the attitude maneuvers using
reaction control thrusters. The time step used to discretize the problem is 10 minutes. We hence set
the value of ∆βmax as 20◦.
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The optimal control problem for a formation of N satellites can now be formally stated as

Variables: sj(k),uj(k), β(k) for j = 1, 2, ..., N ; k = 1, 2, ..., T

Minimize
N∑
j=1

T∑
k=1

‖uj(k)‖1 − λ

(
1

T

T∑
k=1

P (θ(k), β(k))

)

Subject to:

Dynamics

ẍj(k)− 2ẏj(k)θ̇(k)− yj(k)θ̈(k)− xj(k)θ̇(k)2 = −µxj(k)
rj(k)3

− µr(k)( 1
rj(k)3

− 1
r(k)3

) + uxj (k)

ÿj(k)− 2ẋj(k)θ̇(k)− xj(k)θ̈(k)− yj(k)θ̇(k)2 = −µyj(k)
rj(k)3

+ uyj (k)

z̈j(k) = −µzj(k)
rj(k)3

+ uzj (k)

j = 1, 2, ..., N ; k = 1, 2, ..., T

Boundary Conditions

rj(0) = rj0

sj(T ) = sj(0)

β(T ) = β(0)

j = 1, 2, ..., N

Collision Avoidance

Rcol ≤ ‖ri(k)− rj(k)‖

i > j; j = 1, 2, ..., N ; k = 1, 2, ..., T

Array Maintenance

‖ri(k)− rj(k)‖2 ≤ D

i ∈ Nj ; j = 1, 2, ..., N ; k = 1, 2, ..., T

Planarity

xj(k) cos(θ(k)− β(k)) = yj(k) sin(θ(k)− β(k))

j = 1, 2, ..., N ; k = 1, 2, ..., T

Bounds

‖ṙj(k)‖2 ≤ Vmax j = 1, 2, ..., N ; k = 1, 2, ..., T

|β(k)| ≤ βmax k = 1, 2, ..., T

‖uj(k)‖1 ≤ Umax j = 1, 2, ..., N ; k = 1, 2, ..., T

|β(k)− β(k − 1)| ≤ ∆βmax k = 2, ..., T
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Definitions

• λ chooses the relative weightage between minimizing propellant consumption and maximiz-
ing power transfer. Note that we use the L1 norm in the cost function since we assume that
the satellite has individual thrusters in each direction10

• rj is the distance of the jth deputy from the center of the Earth

• rj0 is the initial position of the jth deputy

• D is the maximum separation between two neighboring modules in the formation. This pa-
rameter has been set at 115 m

• Vmax, Umax and βmax set the maximum absolute values of speed, thrust and β respectively

• Rcol is the closest allowable distance between any two spacecraft in the formation. It is equal
to the size of each spacecraft, i.e. 60 m

SEQUENTIAL CONVEX PROGRAMMING

The (−P (θ, β)) term in the cost function, the dynamics equations, the collision avoidance con-
straint, and the planarity constraint are all non-convex. Further, the combination of the collision
avoidance constraint and the array maintenance constraint severely restrict the feasible solution
space, making it tough to find the optimum solution. In this paper, we use the sequential convex
programming (SCP) algorithm for solving the optimization problem. The basic idea behind SCP
is to solve the non-convex problem by making successive convex approximations of the original
problem based on the current best estimate of the solution. To illustrate this, let us consider the
following non-convex optimization problem

Minimize f0(x)

Subject to: gi(x) ≤ 0 for i = 1, 2, ..., m

hj(x) = 0 for j = 1, 2, ... , n

For any intermediate solution x(k), we establish a convex trust region τ (k) around x(k). We find
convex approximations f̂0 of f0, ĝi of gi, and affine approximations ĥj of hj over τ (k) for all i, j.
The following convex problem is now solved at each iteration until two successive iterations yield
solutions that differ by less than a specified tolerance.

Minimize f̂0(x)

Subject to: ĝi(x) ≤ 0 for i = 1, 2, ..., m

ĥj(x) = 0 for j = 1, 2, ... , n

‖x− x(k)‖2 ≤ τ (k)

The advantage of SCP lies in the fact that during each of the iterations, we solve a convex prob-
lem whose solution can be found very quickly and accurately. This gives us the ability to scale up
the algorithm for large formations, as in the case of the SSPI project. Further, the low computa-
tional cost of the implementation allows us to port this algorithm on flight hardware for real-time
operations in resource-constrained systems. SCP has been successfully used for robotic motion
planning11, 12 and for the guidance and control of swarms of spacecraft in the presence of drag and
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Figure 5. Visualization of the convexification of the cost function over different iter-
ations of SCP. Each dotted curve represents a different approximation based on the
value of β from the previous iteration. Different approximations are obtained for dif-
ferent values of θ. We only show the approximation for θ up to 90◦ since the behaviour
of the system is symmetric over the four quadrants during one orbit.

J2 perturbations.13, 14 While SCP does not guarantee finding the global optimum for all types of
non-convex optimization problems, it can yield local optimal solutions. For example, Morgan et al.
(2016)15 show that the SCP formulation for multi-spacecraft optimal trajectories, with a convexified
collision avoidance condition, can be proven to converge to the local optimal point (Karush-Kuhn-
Tucker point) of the original non-convex problem.

We now discuss how we go about convexifying each of the four non-convex components in our
optimization problem.

Cost Function

The (−P (θ, β)) term in the cost function is non-convex and going back to its definition in Equa-
tion (3), we know that the non-convex behavior is largely due to the R(θ−β) and cos(θ−β) terms.
In order to convexify this, we restrict the solution space to a small range of angles (±10◦) around
the solution from the previous iteration. Over this range of angles, we use a quadratic approxi-
mation of the cost function which is shown using dotted lines for various values of θ in Figure 5.
Note that convexifying (−P (θ, β)) is equivalent to finding a concave approximation for P (θ, β). In
this figure, the quadratic approximation has been plotted for several iterations and it shows how the
approximation evolves as the value of β from the previous iteration changes. This scheme results in
a changing cost function for every iteration.

Dynamics Equations

Since convex programming requires all equality constraints to be affine, the dynamics equations
are linearized about the trajectory from the previous iteration (sj). The linearization yields an
equation of the following form
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ṡj = A(sj)sj +B(sj)uj + C(sj) (6)

The matrices A, B, and C are obtained by taking the Jacobian of the dynamics equations. By
using a zero-order-hold approach to discretize the problem, the linearized form of the dynamics
equations can now be written as

sj(k + 1) = Aj(k)sj(k) +Bj(k)uj + Cj(k) (7)

The equations for Aj , Bj , and Cj can be found in Morgan et al. (2014)13 and have been repro-
duced here in Appendix A. An important point to note here is that the nominal trajectory sj used
for linearization is not the solution directly obtained from the previous iteration. Having obtained
an optimum thrust vector uj from the previous iteration, the true non-linear dynamics equations
are used to propagate the trajectory with a fourth-order Runge-Kutta method.16 We thus obtain sj ,
which represents the true trajectory of the spacecraft for the uj obtained by solving the convex opti-
mization problem. This step can be thought of as the corrector step in a predictor-corrector method
and prevents error build-up when large number of iterations are needed to arrive at the final solution.
It also ensures that in the last iteration of SCP, when the solution changes by a very small value, the
convexified optimization problem is a very good approximation of the original problem.

Collision Avoidance The collision avoidance constraint is concave since it represents a spherical
exclusion zone around each spacecraft. The best convex approximation to a concave constraint is
affine and hence we replace the spherical boundary with a plane tangent to the sphere and normal to
the line joining the two spacecraft. A convex version of collision avoidance is hence implemented
by forcing the spacecraft to stay on either sides of this hyperplane boundary. More details about
the convexification of the collision avoidance constraint can be found in Morgan et al. (2014).13

Mathematically, the convexified version of the constraint equation for deputies i and j can be written
as

(rj [k]− ri[k])T (rj [k]− ri[k]) ≥ Rcol‖rj [k]− ri[k]‖2 (8)

where rj [k] represents the position of the jth deputy at time k, obtained from the previous iteration.
The collision avoidance constraint does present a challenge in terms of scalability since one such
constraint equation has to be written down for every pair of satellites in the formation. The number
of such equations scales with the number of satellites as N2. The decentralization approach dis-
cussed in Morgan et al. (2014)13 cannot be used here since all deputies share the common variable
β.

Planarity Constraint The planarity constraint is also an equality constraint and therefore de-
mands an affine approximation. Reproducing the planarity constraint from the problem formulation,
we have

xj cos(θ − β) = yj sin(θ − β) (9)

We now define x̃j = xj − xj , ỹj = yj − yj and β̃ = β − β. Equation (9) can now be written as
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(xj + x̃j) cos(θ − β − β̃) = (yj + ỹj) sin(θ − β − β̃)

If we restrict x̃j , ỹj and β̃ to small values, then sin(β̃) can be approximated as β̃ and cos(β̃) can
be approximated as 1. Ignoring the second order terms, we now have

(xj + x̃j) cos(θ − β) + xj β̃ sin(θ − β) = (yj + ỹj) sin(θ − β)− yj β̃ cos(θ − β)

From the definitions of x̃j and x̃j , we get

xj cos(θ − β) + xj β̃ sin(θ − β) = yj sin(θ − β)− yj β̃ cos(θ − β)

which is linear in xj , yj , and β.

Trust Region Update

A critical aspect of sequential convex programming is the introduction of a trust region in the
optimization framework. This trust region signifies the region over which we ‘trust’ our convex
approximation. A very large trust region could lead to large convexification errors and inaccurate
results while a very small trust region makes the algorithm very slow. There are different approaches
used for updating the size of the trust region after each iteration. If the problem is well behaved,
fast convergence can be ensured by steadily shrinking the trust region by a constant factor. Since
the computation time is not of primary concern for this analysis, we keep the size of the trust region
constant.

Due to the restriction of the trust region, in the first few iterations, the algorithm explores the
feasible space close to the starting guess used to initiate the algorithm. Therefore, it is critical to
choose a feasible starting guess which reduces the likelihood of getting stuck in local minima. For
this analysis, we use the results obtained from the linearized equations presented by Goel et al.
(2017)7 as the initial values of the optimization variables.

To summarize, the convex version of the optimization problem which is solved during an iteration
of the SCP algorithm is shown below. We use CVX17 with the MOSEK18 solver for solving the
convex problem in each iteration.

Variables: sj(k),uj(k), β(k) for j = 1, 2, ..., N ; k = 1, 2, ..., T

Minimize
N∑
j=1

T∑
k=1

‖uj(k)‖1 − λ

(
1

T

T∑
k=1

P̂ (θ(k), β(k))

)

Subject to:

Dynamics

sj(k + 1) = Aj(k)sj(k) +Bj(k)uj + Cj(k)

j = 1, 2, ..., N ; k = 1, 2, ..., T

Boundary Conditions
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rj(0) = rj0

sj(T ) = sj(0)

β(T ) = β(0)

j = 1, 2, ..., N

Collision Avoidance

(rj [k]− ri[k])T (rj [k]− ri[k]) ≥ Rcol‖rj [k]− ri[k]‖2
i > j; j = 1, 2, ..., N ; k = 1, 2, ..., T

Array Maintenance

‖ri(k)− rj(k)‖2 ≤ D
i ∈ N (j); j = 1, 2, ..., N ; k = 1, 2, ..., T

Planarity

xj cos(θ − β) + xj β̃ sin(θ − β) = yj sin(θ − β)− yj β̃ cos(θ − β)

j = 1, 2, ..., N ; k = 1, 2, ..., T

Bounds

‖ṙj(k)‖2 ≤ Vmax j = 1, 2, ..., N ; k = 1, 2, ..., T

|β(k)| ≤ βmax k = 1, 2, ..., T

‖uj(k)‖1 ≤ Umax j = 1, 2, ..., N ; k = 1, 2, ..., T

|β(k)− β(k − 1)| ≤ ∆βmax k = 2, ..., T

Trust Region

‖rj − rj‖2 ≤ τr
|β − β| ≤ τβ
Definitions

• P̂ (θ, β) is the quadratic approximation of P (θ, β)

• τr and τβ are sizes of the trust regions for position and β respectively

RESULTS

In this section, we present the results obtained for a 4 × 4 formation using the SCP framework
described in the previous section. The sixteen satellites start at the nodes of regular 4 × 4 grid
centered at the origin in the y-z plane. The centers of adjacent satellites are initially 100 m apart.
First we present the Pareto optimal front (Figure 6) for this formation, which is obtained by solving
the problem for different values of λ. The first data point corresponds to the baseline case of λ = 0
where the attitude and orbital motions are decoupled and the last data point corresponds to the
largest value of λ = 1000 with highest weightage for maximizing power.

As anticipated, generating higher values of orbit-averaged power requires more aggressive atti-
tude maneuvers and consumes more propellant. However, it is important to note that the power
generated saturates at a value of around 75 W/m2. Therefore, we can deliver the maximum possible
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Figure 6. Pareto optimal curve showing the trade-off between power and propellant
mass for a satellite in a 4 × 4 formation. A few data points are marked with the
corresponding value of λ.

power from the modules with only 19 kg of propellant for a period of 11 years. In arriving at the
estimate of propellant mass from the norm of the u vector, we assume that the orbital maneuvers
will be carried out using electric thrusters with an Isp of 3000 s. While current electric propulsion
units can reach Isp values on the order of a few thousand seconds, miniaturized versions of such
thrusters with Isp of 3000 s are under development19–22 and could become available when the SSPI
modules are ready to be placed in their orbit.

Since SCP does not guarantee finding the global optimum, not all points shown on the graph fall
on the Pareto front. A higher density of points has to be obtained for different values of λ with
different initial conditions to arrive at the complete representation of the true Pareto front.

It is also very informative to analyze the β profile for some of the points shown in Figure 6.
Specifically, in Figure 7, we plot the optimum orientation profile for points corresponding to λ = 0,
λ = 0.2, and λ = 1000. We notice that for λ = 0, the optimum profile involves gradual maneuvers
of very low magnitude. As λ increases to a value of 0.2, the orientation profile looks similar but
the amplitude of the maneuvers has almost doubled. And finally, for large values of λ, the optimum
profile requires attitude maneuvers at the maximum allowed slew rate. The transitions are sharp
with β values varying sharply over a wide range of angles from -50◦ to 50◦. As mentioned earlier,
sharper transitions in orientation produce more power but require more aggressive orbital maneuvers
that demand more propellant. Figures 6 and 7 provide a clear illustration of this concept.

In order to visualize the trajectories of the spacecraft in the ECI frame, we plot snapshots of the
trajectories of the spacecraft at six different instances over the course of one orbit in Figure 8 for
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Figure 7. (a), (b) and (c) panels showing the optimum orientation profile for λ = 0,
λ = 0.2, and λ = 1000 respectively.

both λ = 0 and λ = 1000. These trajectories show how the relative positions of the satellites
change over the course of one orbit and have strong similarities with the periodic relative orbits
which represent a force-free solution to the linearized equations of relative dynamics in the LVLH
frame. While it is very hard to discern the differences in trajectories for different values of λ from
these snapshots, the most striking difference appears in the second and fifth frames (compare frame
(b) with frame (h) and frame (e) with frame (k)). For large values of λ, this is where there is a sharp
transition in the value of β, as shown in Figure 7, corresponding to θ = 90◦ and θ = 270◦. At these
angles, the dual-sided spacecraft transition from using the anti-sun surface to the sun-facing surface
and vice versa for RF transmission.

It is worth noting that different satellites in the formation consume different amount of propellant
depending on their location and distance from the chief. The propellant mass numbers shown in
Figure 6 correspond to the satellite located at the corner of the formation which requires the maxi-
mum amount of propellant. For λ = 1000, the propellant masses needed for different satellites in
the formation are shown in Figure 9. It shows that even for satellites at the same initial distance
from the chief, the propellant consumption can be significantly different, depending on its relative
position in the formation.

In order to better understand the source of this discrepancy, we plot the x, y and z coordinates
of four of the 16 satellites in the LVLH frame for λ = 1000. These plots, shown in Figure 10,
correspond to the four blue colored satellites in Figure 9. The blue and purple curves correspond to
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Figure 8. Orbits of deputies in a 4 × 4 formation. Panels (a) through (f) show the
trajectories for λ = 0 and panels (g) through (l) show the trajectories for λ = 1000.
These plots are from the point of view of an inertial observer over 24 hours. Note that
the sizes of objects in this figure are not representative of their actual sizes.
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Figure 9. Propellant mass consumption in kg for satellites at different initial positions
in the formations. These numbers are obtained by solving the optimization problem
for λ = 1000. Satellites at the same initial distance from the chief are shown in the
same color.

the satellite with propellant mass consumption of 21.4 kg while the yellow and orange curves are
for satellites with propllant mass of 16.9 kg. Points correspondins to θ = 90◦ and θ = 270◦ are
marked with a black line indicating the locations at which the sharp transition maneuvers shown in
Figure 7(c) take place. Due to the planarity constraint, the propellant requirement is dominated by
the distance of the satellites from the chief in the x − y plane at these locations. Clearly, the blue
and purple satellites are at a larger distance and hence consume more propellant. This can also be
seen in Figure 11 which shows the optimum thrust profile for these spacecraft.

CONCLUSIONS AND FUTURE WORK

In this paper, we have outlined the trajectory design problem for space-based solar power using a
formation of planar satellites. We discussed how the physics of the problem couples the attitude and
orbital dynamics and also showed how the SCP framework can be used to solve the ensuing non-
convex optimization problem. Our initial results show that the methodology adopted is capable of
producing the desired results. It has allowed us to arrive at useful estimates for the propellant mass
needed for a 11-year mission and more importantly, the trade-off analysis helps us pick a design
point based on the relative importance of power and mass.

There are numerous ways in which this analysis can be extended in the future. The first obvious
direction is to increase the size of the formation to check if the trends observed continue to be valid.
We have so far treated the motion of the chief as a known quantity. From the analysis presented
by Goel et al. (2017),7 we know that solar radiation pressure has a tendency to ellipticize the orbit.
This might increase the amount of propellant needed for maintaining the shape of the formation. It
would hence be meaningful to also optimize the chief’s orbit, taking into account the influence of
solar radiation pressure.

In our analysis, we have also ignored the gravitational influence of the moon and the sun. Typi-
cally, geostationary satellites have to carry extra propellant for North-South and East-West station-
keeping and will be taken into account in our future analysis efforts. While all the results in this
paper are for a geosynchronous formation, the analysis can also be extended to a LEO formation
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Figure 10. x, y and z coordinates of the four corner spacecraft from Figure 9 for
λ = 1000. θ = 90◦ and θ = 270◦ locations are marked with a black line corresponding
to the points with sharp maneuvers and hence maximum control input requirement.

where the challenges are quite different since we cannot target a single receiving station on the
Earth. We also have to contend with significant amount of eclipse time in each orbit, in addition to
the J2 and drag perturbation forces.

The sequential convex programming approach is not guaranteed to find the global optimum and
it would be useful in the case of this specific problem to obtain some theoretical bounds or identify
the conditions under which convergence and more importantly, convergence to a global minimum
can be proved. It would also be useful to compare the results obtained from this approach with
those obtained using ideas of relative orbital motion with the HCW equations. It would also be
desirable to estimate the computational efficiency of the algorithm, especially for large formations
and study how it gets affected by changes to the trust region update scheme. Finally, it would be
useful to check the accuracy of these solutions against other algorithms such as genetic algorithms
and simulated annealing.

In the future, the planarity and array maintenance constraints can also be gotten rid of by devel-
oping a cost function that can estimate the performance of the system for non-planar formations
with gaps among the modules, taking into account the PV and RF shadowing effects.

As mentioned in the Problem Formulation section, trajectory design is only one of the numer-
ous guidance and control problems associated with space-based solar power. The reconfiguration
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Figure 11. The optimum thrust profile in the x, y and z directions for the four corner
spacecraft from Figure 9 for λ = 1000.

problem seems to be directly linked with the trajectory design problem since it might influence the
total propellant mass needed for the mission. The methodology presented in this paper could also
be extended for solving these related problems.
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APPENDIX A: EQUATIONS FOR LINEARIZED DYNAMICS

Aj(k), Bj(k) and cj(k) are given by the following expressions

Aj(k) = eA(x̄j(k))∆t (10)

Bj(k) =

∫ ∆t

0
eA(x̄j(k))τBdτ (11)

cj(k) =

∫ ∆t

0
eA(x̄j(k))τ c(x̄j(k))dτ (12)

A(xj(k)) is given by

A(xj(k)) =


03×3 I3

0 2ωz −2ωy
G3×3 −2ωz 0 2ωx

2ωy −2ωx 0


where ~ω = [ωx, ωy, ωz] is the rotational angular velocity vector of the chief, 03×3 is the 3 × 3

null matrix and I3 is the 3× 3 identity matrix. G3×3 is given by

G3×3 =


θ̇2 − µ

r5j

3µz(x+r)
r5j

+ 3µrx
r5j

θ̈ + 3µy(x+r)
r5j

3µz(x+r)
r5j

−θ̈ + 3µyx
r5j

θ̇2 − µ
r5j

(r2
j − 3y2) + 3µrx

r5j

3µzy
r5j

3µzx
r5j

3µzy
r5j

− µ
r5j

(r2
j − 3z2)


B is just a selection matrix given by

B =

[
03×3

I3

]
c(xj(k)) is given by

c(xj(k)) =



0
0
0

−3µ(x+r)
r3j

+ µr

(
1
r3
− 1

r3j

)
3µy
r3j

3µz
r3j


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