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Motivation

 Future telescopes may be too 
large to fit in a single payload 
fairing

 In-space assembly bypasses 
fairing limit

 In-Space Telescope Assembly 
Robotics (ISTAR) project 
proposed low-cost, lightweight, 
modular architecture for 
apertures > 20-30 m

21Hogstrom, K., Backes, P., Burdick, J., Kennedy, B., Kim, J., Lee, N., Malakhova, G., Mukherjee, R., Pellegrino, S., and Wu, Y.-H., 
“A Robotically Assembled 100-meter Space Telescope,” 65th International Astronautical Congress, Toronto, CA: 2014.
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ISTAR Primary Mirror Components 

 Mirror modules
 Groups of off-the-shelf 

mirror segments

 Packaged with actuators and 
electronics

 Sized to fit in payload fairing

 Truss modules
 Provide mirror support

 Fold compactly for launch

Mirror module

Truss module
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ISTAR Truss Module

 Based on Pactruss deployment 
scheme1

 Mid-member Rolamite tape spring 
hinges

 Spring forces large enough to self-deploy 
module

 Deployed by robot controlling 
displacement of two opposing verticals

 Work against spring forces for quasistatic
deployment

 Bulk manufacturing  fabrication and 
assembly errors

 Deployment reliability is important 
mission constraint 

1Hedgepeth, J. M., Pactruss support structure for precision segmented reflectors, Carpinteria, California: Langley 
Research Center, 1989.
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Goals

 Develop simulation toolkit to model deployment behavior of a truss 
module with errors
 In context of ISTAR module, but general to any geometry and deployment 

scheme

 Geometry easily adjustable to include specified or randomly chosen errors

 Experimentally validated 

 Use toolkit to perform reliability trade studies
 What kinds of errors are most detrimental?

 How do module design parameters affect reliability?
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Outline

 Simulation toolkit using Python and Abaqus/Standard
 Truss model

 Rolamite tape spring hinge model

 Methodology

 Example results

 Experimental validation
 Construction and measurement of physical modules

 Experimental methodology

 Results and comparison to simulations

 Conclusion and ongoing work

1SIMULIA Abaqus, Dassault Systemes, Software Package, Ver. 6.13-2, 2013
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Wedge Model 

 Full truss module tessellation 
of six identical triangular 
prisms

 Overall dimensions:
 𝐿: side length of deployed 

module

 𝐻: depth of deployed module

 𝑞: side length of stowed module

 Members modeled as elastic 
beams
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Joint Model 

 Joints modeled as massless 
elastic beam elements fixed 
to vertical member and 
hinged to other member

 Compliance/slack in 𝑥, 𝑦 and 
𝑧 directions

 Soft stop about rotation axis 
to prevent overextension

 Joint masses modeled as 
lumped masses at the top 
and bottom of each vertical

 Four Rolamite tape spring 
hinges
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𝜇

Rolamite Hinge Kinematic Model

 Two pieces of standard tape 
measure and four circular 
cams

 𝑝: distance between cam 
centers

 𝜇: distance between 
member centerlines

Watt, A. M., “Deployable structures with self-locking hinges,” University of Cambridge, 2003.

𝒂𝟏 𝒃𝟏
𝒂𝟐, 𝒂𝟐′ 𝒃𝟐′, 𝒃𝟐

𝑝

𝒂𝟏 𝒃𝟏

𝒂𝟐, 𝒂𝟐′ 𝒃𝟐, 𝒃𝟐′
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Rolamite Hinge Moment-Rotation Profile

 Nonlinear and discontinuous, with 
pre-latching and latching regions

 Define 𝜃 as 0 when fully folded
and 180° when deployed

 𝑀 = 𝑓 𝜃, 𝑠𝑙𝑎𝑡𝑐ℎ
 𝑠𝑙𝑎𝑡𝑐ℎ = 0 if 𝜃 < 𝜃𝑐 for all history
 𝑠𝑙𝑎𝑡𝑐ℎ = 1 if 𝜃 ≥ 𝜃𝑐 at any point in 

history

 Apply behavior in Abaqus using 
user subroutines URDFIL and 
UFIELD

 Define 𝑀 𝜃, 𝑠𝑙𝑎𝑡𝑐ℎ with a table
 URDFIL obtains 𝜃 after each 

increment and sends to UFIELD
 UFIELD determines and sets new 
𝑠𝑙𝑎𝑡𝑐ℎ value

Watt, A. M., “Deployable structures with self-locking hinges,” University of Cambridge, 2003.

𝑀

𝜃𝜃𝑐 180°

Pre-latching Latching

𝜃
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𝑧

𝑥

𝑦

Fixed node

Controlled 
node

NOMINALWITH ERRORS

Simulation Methodology

 Create model in stowed position
 Specify endpoints of members and connectivity with 

connection behavior
 No prestress
 Errors specified or drawn from random distribution

 In static step, apply 𝑦-displacement boundary 
condition to controlled node
 Assumes quasistatic deployment, independent of 

rate

 Use automatic stabilization to mitigate 
instabilities
 Artificial viscous damping with magnitude 

proportional to extrapolated strain energy
 Proportionality constant of 5 × 10−5
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Simulation Results
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Simulation Results

Top

Bottom

Left Right
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Experimental Validation

 Need to make sure that 
simulation toolkit accurately 
represents deployment behavior

 Quantities to compare:
 Nodal displacements

 Rolamite hinge rotations

 Need to recreate geometry of 
physical module as closely as 
possible
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Experimental Model

 Built two modules with same 
nominal dimensions 

 𝐿 = 𝐻 = 50 cm

 𝑞 = 13 cm

 𝑑𝑜 = 1 cm

 𝑡 = 0.9 mm

 Carbon fiber composite rods

 3D printed ABS plastic joints

 Estimated slack/compliance 
threshold of 500 𝜇m

𝑞

18

Introduction ∙ Simulation Toolkit ∙ Experimental Validation ∙ Conclusion and Ongoing Work
Experimental Model ∙ Experimental Setup ∙ Results



FaroArm Measurements

 Coordinate measuring machine 
built by FARO 

 Obtained both stowed and 
deployed shape

 Touched tip to various locations on 
modules to obtain member 
endpoints and hinge axes

 Only second module used in 
experiments

 Unquantified measurement error 
due to module moving slightly

Average Maximum

Endpoints 0.91 mm 3.27 mm

Axes 1.23° 3.84°
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Experimental Rolamite Hinges

 3D printed cams and commercially obtained 
tape sections 

 Experiments to measure moment-rotation 
curve
 Pre-latching: quasistatic rotation test
 Latching: four-point bending test

22

0

0.2

0.4

0.6

0.8

1

0 30 60 90 120 150 180

M
o

m
en

t 
[N

m
]

Rotation [deg]

Quasistatic rotation test

Four-point bending test

Introduction ∙ Simulation Toolkit ∙ Experimental Validation ∙ Conclusion and Ongoing Work
Experimental Model ∙ Experimental Setup ∙ Results



Experimental Setup

Load cell

Carriage

Motor
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Experimental Setup

 Stereo camera pair measure 
nodal displacements in 3D

 iPhone cameras measure 
Rolamite hinge rotations in 2D

 Full experiment repeated four 
times

VIDEO SPEED: 8xVIDEO SPEED: 2x
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Nodal Displacements

 Simulation matches within 
10% of experimental results at 
end of deployment

 Can see how node becomes 
fixed in the x and z directions 
when diagonal hinges latch
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Experimental Hinge Behavior

 Left diagonal hinge latches 
first

 Right hinge forced to 
suddenly jump to 167.6° ±
1.0° and maintain this value 
for a short time

 Eventually, right hinge 
latches, followed by lower 
longeron hinge and then 
upper longeron hinge
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Hinge Behavior Comparison

 Some discrepancies in 
timing of longeron hinges, 
but very good agreement 
in behavior of diagonal 
hinges

 Simulation predicts 
intermediate angle of right 
diagonal hinge within 2%
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Conclusion

 Developed toolkit to simulate the deployment behavior of a truss module
 Achieved good agreement between experiment and simulations
 Possible causes of discrepancies include:

 Compliance parameters 
 FaroArm measurement errors

 Ongoing work: use toolkit to answer important questions about the 
reliability of the designed module
 To estimate reliability:

 Apply unique random distribution of errors in one simulation, using FaroArm measurements 
as bounds

 Determine if simulated deployment is success or failure
 Repeat many times to obtain percentage of successes

 Develop suite of reliability trade studies by adjusting module geometry, hinge design, 
and deployment methods
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