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Abstract

A new concept for deployable mesh reflectors is pre-
sented. It consists of a deployable ring structure and two
identical cable nets (front and rear nets) connected by ten-
sion ties. The reflecting mesh is attached to the front net.
The concept has been demonstrated by means of simple
demonstrator hardware. A preliminary design of a 3 m
diameter, 10 GHz reflector with a focal length to diam-
eter ratio F/D = 0.4 that could be packaged within an
envelope of 0.1 × 0.2 × 0.8 m3 is presented.

Introduction

There is currently a growing interest in low-cost deploy-
able appendages for small satellites, and the development
of structures for such applications is a lively area of re-
search in the Deployable Structures Laboratory, at Cam-
bridge University.

The work presented in this paper was motivated by
an application requiring a 3 m diameter parabolic reflec-
tor to be launched alongside a 0.6 × 0.6 × 0.8 m3 bus,
packaged within an envelope of 0.1 × 0.2 × 0.8 m3, the
last dimension is a hard limit. The reflector is to have
a focal length to diameter ratio F/D = 0.4 and operate
at a frequency of 10 GHz. Excluding inflatables, which
still cannot be regarded as a mature technology, none of
the existing deployable reflector systems is suitable for
this application. It was considered that an adaptation of
the AstroMesh concept (Thomson 1997) offers the great-
est potential for meeting the requirements with a low-cost
system.

In the AstroMesh, see Figure 1, the reflective mesh is
attached to a network of thin cables, or tapes with high ax-
ial stiffness that approximates to a paraboloid; the cables
are prestressed to form a stiff and accurate structure. The
size of the triangles forming the cable network is chosen
sufficiently small to achieve the required accuracy. This
concept is known as a tension truss and was invented by
Miura (1986). The forces required to prestress the ca-

ble net are provided by a series of springs, called tension
ties in Figure 1, connecting the network to an identical
rear net. Both nets are connected around the edge to a
deployable ring truss with telescopic diagonals.

Note that the height of the ring truss is given by the
depth of the two nets plus their separation. Although the
rear net can be made less deep, say half the depth of the
front net, by accepting larger forces on the ring, a reflector
with small F/D requires a high ring. For example, for a
reflector depth H = 0.46 m and D = 3 m an AstroMesh-
type truss divided into 18 segments would have a packaged
height of more than 1.2 m. An alternative ring configu-
ration, based on a pantograph with, again, 18 bays would
have a height of 0.9 m. However, this requires a large
number of joints.

Figure 1: AstroMesh concept (from Thomson 1997).

∗Junior Visitor. Permanent address: Department of Structural Engineering, Royal Institute of Technology, SE 100 44 Stockholm, Sweden
†Professor of Structural Engineering, Associate Fellow AIAA.

Copyright c© 2001 by S. Pellegrino. Published by the American Institute of Aeronautics and Astronautics, Inc. with permission.

1
American Institute for Aeronautics and Astronautics



For the reasons stated above it was concluded that a
new concept was needed in order to meet the present re-
quirements. Hence, this paper presents a new concept that
has been developed. Simple demonstrator hardware has
been made to illustrate the concept and demonstrate its
viability. Finally, a preliminary design of a 3 m reflector
that would meet all of the requirements is presented.

Ring structure

Front net

Rear net

Tension ties
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(b)

(d)

(c)

Additional
members

Figure 2: New concept.

New Concept

The proposed reflector structure is based on the tension
truss concept. Like the AstroMesh, it is composed of three
main parts:

• a deployable ring structure;

• two identical cable nets (front and rear nets) con-
nected by tension ties;

• the reflecting mesh, attached to the front net.

Although the concept is a general one, for clarity it will
be explained with reference to the particular example
shown in Figure 2. Basically, we are dealing with a struc-
ture consisting of a large number of cable elements and
constant-tension springs with only six struts (compression
elements).

Figure 2(a) highlights the 18 cable elements and 6
struts that form the deployable ring structure. This is a
well-known “tensegrity structure” belonging to a family
invented in 1948 by the sculptor Kenneth Snelson and R.
Buckminster Fuller. Recently, Duffy et al. (2000) have
pointed out the potential usefulness of deployable tenseg-
rity structures for spacecraft applications. Two important
features of tensegrity structures are that:

• there is no connection between compression ele-
ments;

• the connections between compression and tension
members are simple.

These features make them particularly attractive in appli-
cations requiring low-weight, low-cost deployables that
can be packaged very compactly. A disadvantage of stan-
dard tensegrity structures is that they are very flexible, due
to the existence of internal mechanisms of inextensional
deformation, as will be shown next. However, we have
obtained a new solution that avoids this problem.

Consider the pin-jointed structure shown in Figure 3,
whose layout is identical to the ring structure in Figure 2.
The top six joints lie at the corners of a regular hexagon
and the bottom six joints lie at the corners of an identi-
cal hexagon. Each joint is connected by bars to the two
neighbouring joints in the same hexagon, and also to two
joints of the top hexagon. Note that it is not connected
to the joint directly above, but to the next and the second
next joints, in an anti-clockwise sense.

(a) (b)

Figure 3: Hexagonal tensegrity module; (a) three-
dimensional view; (b) top view.

This structure has j = 12 joints and b = 24 bars. To
investigate its static and kinematic properties we use the
extended Maxwell’s rule (Calladine 1978)

3j − b = m − s (1)

where
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• m = number of independent inextensional mech-
anisms, and

• s = number of independent states of self-stress

Substituting the values of j and b into Equation 1 we ob-
tain

m − s = 12 (2)

It can be shown that this structure has one state of self-
stress, s = 1, where the six longer bars connecting the two
hexagons are in compression and all other members are
in tension. Therefore, from Equation 2 we conclude that
m = 13 and, since six mechanisms will be rigid-body
motions of the whole structure, this leaves seven inter-
nal mechanisms. These mechanisms can be stiffened by
prestressing the structure, but this will only provide a rel-
atively small amount of stiffness.

Because this structure can be prestressed, as de-
scribed, a deployable version can be made quite easily.
The state of prestress will require only six members to
carry compressive forces, all other members are in ten-
sion and therefore—instead of using bars—they can be
replaced with cables. Then, if the struts are collapsible,
e.g. either telescopic or foldable at a series of hinge points,
the whole structure can be folded.

This structure, however, has seven internal mecha-
nisms, which is clearly undesirable. Therefore, we have
modified it by connecting two identical triangulated struc-
tures to the hexagons, as shown in Figure 2(b); the layout
of these nets is more clearly shown in Figure 4.

(a)

(b)

Figure 4: (a) Top and (b) side views of front and rear nets.

The layout of these nets can be defined in many dif-
ferent ways, for example it could be optimised such that
all triangles have equal area and are as close as possible

to equilateral. The particular layout that was chosen is
based on a simple two-dimensional, regular tessellation
of equilateral triangles that is obtained by dividing each
side of a hexagon into three. Then, the outermost trian-
gles were distorted to form a catenary-like edge for the net
to improve the force distribution in it. Finally, all nodes
were projected onto a paraboloid, see the Appendix.

Consider the structure consisting of the original ring
structure plus the two triangulated nets; its static and kine-
matic properties are investigated as follows.

• Number of joints: there are 6 joints in the symmetry
unit of each net, hence

j = 2 × (1 + 6 × 6) = 74 (3)

• Number of bars: there are 15 bars in the symme-
try unit of each net, plus the 24 bars of the ring
structure, hence

b = 2 × (15 × 6) + 24 = 204 (4)

Substituting Equations 3 and 4 into Equation 1 we obtain

m − s = 18 (5)

Since the state of self-stress is still statically possible, but
no additional states of self-stress have been created, we
have s = 1. Hence, m = 19 and, of these mechanisms,
6 are rigid-body motion and 13 internal. The 13 inter-
nal mechanisms can be removed by adding 13 bars to the
structure, as shown in Figure 2(c). The resulting structure
has m = 6, and hence only rigid-body mechanisms, and
s = 1.

To realise this structure in practice we need to find
a way of prestressing the two nets. The obvious way of
doing it is to connect corresponding nodes of the two nets
with a series of tension ties that apply equal forces. It
turns out that this is not an ideal solution because

1. large compressive forces are induced in the cables
of the ring structure, which need to be counteracted
by increasing the level of prestress of the ring; this
would further increase the compression in the struts;

2. 12 of the 13 additional members shown in Fig-
ure 2(c) are not pre-tensioned;

It was found that all of these issues can be resolved
by modifying the configuration of the ring structure. In-
stead of using the original configuration, where the two
hexagons are directly one above the other as shown in
Figure 3(b), one hexagon is rotated through a small angle,
Figure 5.
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front net
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Figure 5: Complete structure, additional 12 members not
shown.

By itself, the resulting ring structure can no longer
be prestressed, as s = 0 and hence, from Equation 2,
m = 12. However, when the structure is considered in its
entirety, including the prestressing forces applied by the
tension ties, the following is found.

• To obtain a structure free of internal mechanisms
only 12 additional members are required, not 13,
hence the member connecting the centres of the two
nets can be replaced with a tension tie.

• For a 10◦ anti-clockwise rotation of the upper
hexagon with respect to the bottom hexagon—as
shown in Figure 5—all of the cables are in a state
of tension.∗
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Figure 6: Forces in the two nets due to tension tie loads
of 1 N on the inner nodes and 2 N on the edge nodes.

Figure 6 shows the force distribution in the two nets;
the corresponding forces in the ring structure are −68.8 N
in the struts, +25.9 N in the cables forming the hexagons,
and +39.5 N in the six cables linking the hexagons.

Configuration of Tensegrity Reflector

In addition to studying the statical and kinematical prop-
erties of the reflector structure, it is necessary to analyse
the effect of different design parameters on the magnitude
and distribution of the forces within the structure. Our aim
is to obtain a fairly uniform distribution of forces in the
net and to avoid large forces in the supporting structure,
particularly the struts. The configuration study is divided
into two parts. First, the influence of the sag-to-span ratio
of the net edges and the tension ties forces on the forces in
the net is investigated. Then, for some particular values of
the forces in the tension ties and a particular sag-to-span
ratio, the effect of the relative rotation of the hexagons on
the forces in the nets and the ring structure is considered.

A detailed description of the procedure used for gen-
erating the triangular net mesh and how the sag-to-span
ratio is defined are given in the Appendix, at the end.

Sag-to-Span Ratio and Tension Tie Forces

Throughout this first study the tension ties are represented
by vertical loads on the joints of the net, see Figure 7. We
begin by checking the statical and kinematical properties
of the three-ring cable net in Figure 7. From the Appendix,
the number of joints is

b = 6
3(1 + 3 × 3)

2
= 90 (6)

and the number of bars is

j = 1 + 6
3(1 + 3)

2
= 37 (7)

The extended Maxwell’s rule, Equation 1, yields

m − s = 21 (8)

From the synclastic shape of the net, it is obvious that
no state of self stress can be sustained giving s = 0. By
fixing 6 joints in space we get m = 3. Hence, we need to
fix another three degrees of freedom to eliminate the in-
ternal mechanisms. Following Pellegrino (1993) we have
analysed the equilibrium matrix of the structure and thus
computed three independent mechanisms. By looking at
plots of these mechanisms we decided to fix one edge joint
radially and tangentially, i.e. two perpendicular in-plane
directions, and its neighbouring edge joint radially. This
gives a statically and kinematically determinate structure.

∗Note that the forces in the outer ties have been set to twice the value of the internal ties.

4
American Institute for Aeronautics and Astronautics



Figure 7: Loads applied to cable net to study the influence
of sag-to-span ratios on the force pattern.

The cable net in Figure 7 was analysed for three sag-to-
span ratios: 5, 10 and 15%. For each ratio the initial set-
ting of the tension tie forces was 1 N everywhere, which is
most practical as identical constant-tension springs would
be used in all of the tension ties. However, if the force
pattern in the net is irregular or, worse, some elements are
in compression, the tension tie forces have to be adjusted.

The results for a 5% sag-to-span ratio are shown in
Figure 8. For the case where the tension tie forces are
all equal to 1 N, Figure 8(a), some members are in com-
pression. By increasing the edge forces the compressive
forces gradually become smaller and then tensile, Figure
8(b)–(d), as the edge forces are increased. An almost uni-
form force distribution is obtained for edge forces of 4 N,
however the largest force in the edge cable is now over
15 N.
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Figure 8: Forces in a net with 5% sag-to-span ratio. Loads
on inner nodes: 1 N; loads on edge nodes (a) 1 N, (b) 2
N, (c) 3 N, (d) 4 N.

When the sag-to-span ratio is increased to 10% there
is still compression for tension tie forces of 1 N, Figure

9(a). However, as the force in the edge ties is increased
to 2 N an acceptable distribution of net forces is obtained
and the edge forces are smaller than for the 5% sag-to-
span ratio, Figure 9(b). The range of the inner net forces
is 0.75–2.69 N.
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Figure 9: Forces in a net with 10% sag-to-span ratio.
Loads on inner nodes: 1 N; loads on edge nodes (a) 1 N,
(b) 2 N.

Increasing the sag-to-span ratio further to 15% yields
no compressed elements even for the case of uniform 1 N
tension tie loads, Figure 10(a). By increasing to 2 N the
forces in the edge ties gives a very uniform force pattern,
in the range 1.27–2.08 N, and the edge cable forces are
slightly smaller than in the previous case.
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Figure 10: Forces in a net with 15% sag-to-span ratio.
Loads on inner nodes: 1 N; loads on edge nodes (a) 1 N,
(b) 2 N.

Although a sag-to-span ratio of 15% gives a better
force pattern than the 10% ratio, the further loss of re-
flecting area is not justified, hence 10% is the value that
is selected.

Rotation of Hexagons

Next, the effect on the prestress distribution of a relative
rotation θ between the hexagons of the ring structure is
analysed, assuming that the cable nets have a fixed sag-
to-span ratio of 10%. The tension tie force is 1 N on the
inner joints and 2 N on the edge joints, giving the force
distribution shown in Figure 9(b) for θ = 0. However,
when the hexagons are rotated, the force distribution in a
bay of the net is no longer symmetric, Figures 11 and 12.

Net forces
Figure 11 plots the variation in the forces of the inner net
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elements with the rotation of the hexagons. The forces in
the radial cables 1, 3 and 8 are approximately constant, for
the range of θ displayed. The other cable forces—except
for cables 9 and 10—are within 0.5–1.5 N. Most impor-
tantly, cable 9 becomes compressed at θ ≈ 28◦ giving an
upper limit on θ for the particular reflector configuration
studied here.

Figure 12 is a plot of the variation in the forces of
the edge elements. The force in edge cable 13 initially
increases and then decreases. Edge forces 14 and 15 de-
crease when θ is increased. This is due to the change in
the direction of the tension tie forces.
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Figure 11: Variation of forces in net cables.
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Figure 12: Variation of forces in edge cables.

Ring forces
The element forces in the ring structure vary exponentially
with θ, Figure 13. For small angles, the forces are far too
large, especially in the struts. It is not until we reach

θ = 10◦ that the forces have decreased to an acceptable
level. Further rotation decreases the force, although much
more slowly, and for the practical limit of 28◦, discussed
above, the force in the lateral cables is 3.9 N. Note that
the structure is statically and kinematically determinate
and, therefore, is not dependent on the prestress level for
stiffness. However, the cables must be tensioned to a suf-
ficient level that they are able to take compressive loads
without going slack.

Also shown in Figure 13 is the variation of the strut
length, which is not as dramatic as the strut forces, al-
though shorter struts are preferable.
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Figure 13: Variation of forces in ring structure.

Additional members
The additional elements, shown in Figure 2(c), were added
to make the structure statically and kinematically determi-
nate but, of course, they need to be pre-tensioned if cables
are to be used. In the current configuration of these ele-
ments, it turns out that they are always in tension when the
hexagons are rotated, Figure 14, and the magnitude of the
tension increases almost linearly up to about 10◦. How-
ever, if the additional members were re-arranged from
an anti-clockwise direction (defined from edge joints to
ring joints) to clockwise they would be in compression,
instead.

Other issues
Another important issue, not concerned with the force dis-
tribution within the structure, is that the struts move closer
to the centre of the reflector when θ is increased. Hence,
the struts are more likely to interfere with the tension ties.
This might complicate the deployment procedure; there-
fore, it is important to keep θ small.
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Demonstration Model

To verify the feasibility of the proposed concept, a small-
scale physical model was constructed, with a diameter of
0.47 m.

The nets for the model were constructed on
paraboloidal molds of PETG (a thermo-plastic material
with the trade name of Vivak) with diameter D = 0.45 m
and focal length F = 0.134 m, on which the position of
the nodes of the net had been marked with a 3-axis CNC
machine. The elements of the net were 0.8 mm diameter
Kevlar cords which were pretensioned before being taped
to the mold; then, the cords were joined at all cross-over
points by Nylon loops and bonded with epoxy resin. Cor-
responding nodes of the two nets were connected with
rubber bands, later replaced with steel springs.

Identical Al-alloy, 30 mm long joint fittings of cylin-
drical shape with a diameter of 15 mm, were attached to
the six corners of each net. These fittings had been preci-
sion drilled with 2.0 mm diameter holes in the directions
of all the cords that need to be connected to a node, and
all connections were made with epoxy resin. The cords of
the ring structure, also attached to the same joint fittings,
were made from 1.0 mm Kevlar cord.

The telescopic struts are 0.46 m long, each made by
cutting off the stick of a foldable umbrella. The umbrella
sticks are inserted into 20 mm long, 6.4 mm diameter holes
that are co-axial with each fitting and fastened with a grub
screw. The structure can be easily folded and deployed
by hand, photographs are shown in Figures 15–17.

The model works quite well, considering that it was
the first attempt at putting together a structure of this kind.
However, some of the net cables are slack and there is
some interference between the nets and the struts, be-
cause the diameter of the net—as manufactured—turned
out to be bigger than expected. Correcting these problems

should not be difficult when a new model is made.

Figure 17 shows the very compact packaged configu-
ration; note the elongated shape of the package, compat-
ible with the requirements.

Figure 15: Top and bottom views of model structure, ex-
panded.
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Figure 16: Side view of model structure, expanded.

Figure 17: Model structure, folded.

Preliminary Design of 3 m Reflector

In this section we determine the main characteristics of a
reflector to meet the requirements: D = 3 m, F = 1.2 m,
operation at 10 GHz. In particular, we aim to estimate the
mass of the reflector.

Network Density

The surface error of the reflector will originate from a
number of different sources, such as thermal distortion
of the structure, etc. Only one contribution to the over-
all error budget can be considered at this stage, namely
the effect of approximating the required paraboloid with
a polyhedral surface. Therefore, it will be conservatively
required that the root-mean-square error δrms should be
less than about 1/100 of the wavelength.

At 10 GHz the wavelength is 30 mm and so the al-
lowable error is 0.3 mm. For a spherical surface of radius
R, Agrawal et al. (1981) have obtained the following re-

lationship between δrms and the side length, L, of the
triangles

δrms =
L2

8
√

15R
(9)

For a shallow paraboloid the radius of curvature is ap-
proximately twice the focal length F , thus

R ≈ 2F (10)

For D = 3.0 m and F = 0.4D = 1.2 m Equation 9 can
be solved for L and yields

L = 0.15 m

Thus, the number of triangles across a 3 m diagonal of
the hexagon will be 20, which means that there will be
10 rings of equilateral triangles. The corresponding total
length of the cables that make up both nets is ≈ 300 m.

It is assumed that the members of the cable nets are
made from graphite composite tapes (density 1740 kg/m3)
with a rectangular cross section of 5.0 mm by 0.2 mm. The
weight of the joints in the net is accounted for by doubling
the density of the tapes to 3480 kg/m3. The total mass of
the two nets is 1.04 kg.

Mesh

The reflective mesh is knitted gold-plated Molybdenum
wire with a surface density of 0.025 kg/m2. To account
for seams and surface treatment this value is doubled to
0.05 kg/m2.

Approximating the mesh area with the area of a spher-
ical cap, we have

A = 2πRH

where R is the radius of the sphere, hence R = 2F =
2.4 m, and H is the height of the cap; hence H = 0.469 m.
Thus, A = 7.07m2 and the corresponding mass is 0.35 kg.

Force in Springs

The tension in the mesh applies a lateral loading on the
cable net to which it is attached, because the mesh forms
a small kink, of angle L/R at the cross-over between ad-
jacent triangles, see Figure 18(a). To prevent the sides
of the triangles from becoming significantly distorted, the
tension T in the cables of the net must be significantly
larger than the transverse load.

TNL

T

N

NL

(a)
LL

Ttie

TT

L/R

(b)

R

Figure 18: (a) load on cable; (b) equilibrium of a node.
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For a preliminary estimate T will be set equal to ten
times the mesh tension N multiplied by the triangle side
length L. Taking N = 2.0 N/m the required tension in
the net cables is T = 3.0 N. The force in the tension ties
that is required to obtain the specified tension T in the
cables is, see Figure 18(b) but note that only two of the
six cables connected to this node are shown,

Ttie = 3TL/R = 3 × 3.0 × 0.150/2.4 = 0.56 N (11)

It is interesting to note that the average pressure on the
net, given by Ttie over the corresponding area of mesh†

is 29 N/m2. This pressure is considerably larger than the
self-weight of the mesh under gravity, which is 0.5 N/m2.

Ring Structure

The cable net analysed in the section Configuration of
Tensegrity Reflector consisted of only three rings of tri-
angles while the current one has ten rings. A preliminary
estimate of the loads transmitted to the ring structure by
the full-size net can be obtained by assuming that each
cable in the three ring reflector represents 3.3 cables in a
ten ring reflector. So, we can calculate the forces in the
supporting structure by scaling the forces applied by the
three ring net, which gives equivalent forces in the ten-
sion ties of 8 N. Table 1 lists the forces and length of the
members of the ring structure.

Element Force (N) Length (m)

Horizontal cable 310 1.50
Lateral cable 376 1.96
Strut −712 2.88

Table 1: Forces and lengths of elements of ring structure.

Design of Struts

The struts are designed to resist Euler buckling, subject
to a minimum slenderness, Le/r, of 200. Here, Le is
the effective length and r the radius of gyration. For a
thin-walled tube of radius R

r =

√
I

A
=

√
πR3t

2πRt
=

R√
2

Since Le = 2.88 m, this yields R > 0.0204 m.
Graphite fibre tubes (E = 227.5 GN/m2 and ρ =

1740 kg/m3) with an outer diameter of 42 mm and wall
thickness of 0.5 mm are selected and a check on the buck-
ling load, 3.8 kN, is amply satisfied. The total length of
these struts is 17.3 m and the total mass 1.96 kg.

Cable Dimensions

We assume that graphite fibre is the material used also
for the cables of the ring structure. Its tensile strength
is 2800 N/mm2 and a design strength of 500 N/mm2 is
assumed. The maximum cable force is 1880 N, assuming
a factor of safety of 5. Thus, the required cross-sectional
area is 3.76 mm2 and, since the total length of the cables
in the ring structure is 29.8 m, their mass is 0.19 kg.

Connections and Hinges

With a length of 2.88 m, each strut must be collapsed
to less than a quarter of its length to fit into the launch
envelope. One solution would be to use bi-stable com-
posite tubes (Iqbal and Pellegrino 2000) or, alternatively,
graphite fibre tubes with three self-locking hinges per
strut.

The latter solution is easier to quantify at the present
time and so a preliminary mass estimate was obtained by
considering the mass of recently developed demonstra-
tor hardware. The tape-spring-rolamite hinges developed
by Pellegrino et al. (2000) have a total mass, including at-
tachments to the struts, of 0.2 kg. For the end connections
between the strut and the ring structure cables a mass of
0.1 kg per strut was assumed.

Element Quantity Unit mass Mass (kg)

Net cables 300 m 0.0087 kg/m 1.04
Struts 17.3 m 0.113 kg/m 1.96
Ring cables 29.8 m 0.0066 kg/m 0.19
Hinges 18 0.20 kg/item 3.60
Connections 12 0.050 kg/item 0.60
Mesh 7.07 m2 0.050 kg/m2 0.35
Total 7.74

Table 2: Mass estimates for 3 m diameter reflector.

Discussion and Conclusions

The proposed reflector concept offers a viable solution to
the requirements. Of course, a number of important as-
pects have yet to be considered, such as the attachment
of the reflector to the spacecraft and the deployment se-
quence of the reflector.

Based on the estimates in Table 2 the total mass of a
3 m reflector with F/D = 0.4 is estimated at around 8 kg.

In concluding, it is noted that the proposed concept
is—in principle—suitable also for offset configurations,
although no detailed study has yet been done.

†It is assumed that the surface associated with one node is twice the area of a triangle.

9
American Institute for Aeronautics and Astronautics



Acknowledgments

The work presented in this report was partially supported
by research contract no. CU009-0000004842 between the
Defence Evaluation Research Agency and the University
of Cambridge, on behalf of the British National Space
Centre.

Financial support from The Royal Swedish Academy
of Sciences for AGT’s visit to the Deployable Structures
Laboratory, University of Cambridge, during the year
2000 is gratefully acknowledged.

Appendix: Mesh Generation Procedure

This appendix describes the procedure used for generat-
ing the triangular mesh of the paraboloidal cable nets.
The procedure is applicable to nets forming any regular
polygon and is illustrated in Figure 19. First, an m-sided
polygon is divided into m sectors, Figure 19(a). Each
sector is then subdivided into n×n triangles and the edge
nodes are projected onto parabolas with the required sag,
Figure 19(b). Finally, the triangular mesh is projected
onto the required paraboloidal surface giving the shape of
the cable net, Figure 19(c).

1

2

m
m-1

(a)

n

n

(b)

(c)

Figure 19: Generation of net; (a) m sided polygon;
(b) subdivision of order n; (c) vertical mapping onto
paraboloid.

In the final net the number of triangles t, elements b
and joints j are respectively

t = mn2 (12)

b = m
n(1 + 3n)

2
(13)

j = 1 + m
n(1 + n)

2
(14)

The subdivision of order n of a triangular sector is
defined by the number of polygon sides, m, the radius, R,

and the two-dimensional sag-to-span ratio, ρ, defined as,
Figure 20

ρ =
δ

2R0 tan (θ/2)
(15)

where δ is the sag, θ = 2π/m, and R0 the “effective"
radius of the net. Note that the span used in the definition,
2R0 tan (θ/2), is different from the distance between the
outer vertices which is 2R tan (θ/2).

γ /n γ /nγ /n

r

θ

δ

Δ2

Δ1

R0

R/n

R/n

R/n

Figure 20: Triangular subdivision of a sector, here n = 3.

Given the sag-to-span ratio, R0 is calculated by sub-
tracting from R the following lengths, Figure 20

Δ1 = R
1 − cos (θ/2)

cos (θ/2)
(16)

Δ2 =
δ

cos (θ/2)
(17)

From Equations 15–17, the relation between R and R0 is
written as

R

R0
=

1 + 2ρ tan (θ/2)
cos (θ/2)

(18)

The radius R is divided into n equal parts, corresponding
to n − 1 rings of identical triangles. In the outer ring,
the triangles are distorted by the sag of the edge cables.
The edge joints are equidistantly positioned on an arc with
radius r and opening angle γ, Figure 20

r =
δ2 + R2 sin2 (θ/2)

2δ
(19)

γ = 2 arccos
r − δ

r
(20)
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The horizontal projection of the length of the edge ele-
ments is 2r sin (γ/2n). It should also be noted that for
odd values of n the actual two-dimensional sag of the edge
elements will be slightly less than δ, as shown in Figure 20
for n = 3.
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