
S. D. Guest 
The Folding of Triangulated 
Cylinders, Part Ill: Experiments 

S. Pellegrino 

Engineering Department, 
Cambridge University, 

Trumpington Street, 
Cambridge, CB2 1PZ U.K. 

This paper describes an experimental investigation of a type of foldable cylindrical 
stru.cture, first presented in two earlier papers. Three cylinders of this type were 
deszgned and manufactured, and were then tested to find the force required to fold 
t~em. T~e res~lts from_ these tests show some discrepancies with an earlier computa
tzona! szmulatzon,. whzch was ba~ed on a pin-jointed truss model of the cylinders. 
Possz~le exP_lanatz~ns for these dzscrepancies are explored, and are then verified by 
new szmulatzons uszng co"!p~tational models that include the effect of hinge stiffness, 
and the effect of geometric zmperfections. 

1 Introduction 
F~ldable structures are used for a variety of applications, 

rangmg from umbrellas to solar arrays for spacecraft. This paper 
describes an experimental investigation of a type of foldable 
cylindrical structure, first presented in two earlier papers (Guest 
and Pellegrino, 1994a, b). These structures are formed by divid
ing up the surface of a cylinder into a series of identical trian
gles, the sides of which approximate to helices. The side-lengths 
of ~e triangles are chosen such that ( i) the cylinder is bi-stable, 
havmg two strain-free configurations, one extended and one 
folded; ( ii) the strains induced by the folding process are suffi
ciently small that the cylinder deforms purely elastically. 

The first paper in this series (Guest and Pellegrino, 1994a), 
henceforth referred to as Part I, introduced this type of foldable 
cylinders, and described the four topological and geometric pa
rameters that are required to identify a particular cylinder. The 
parameters are the number of starts of two of the helices on the 
surface of the cylinders, denoted by the letters a and b, and the 
ra~IOs be.tween the lengths of two sides of a triangle and the 
third. With the symbols introduced in Figs. 2 and 3 of Part I, 
the four parameters are m, n, lb!la, and U la, respectively. By 
considering a simplified, uniform folding mode, Part 1 obtained 
estimates of the strains induced by folding cylinders with m = 
1, n = 7, and m = 2, n = 7, for a wide range of ratios lblla 
and leila. 

The second paper in this series (Guest and Pellegrino, 
1994b), henceforth referred to as Part II, looked in more detail 
at the folding process of three particular cylinders, and described 
a computer simulation of that process. The simulation showed 
that the folding process is broadly similar in the three cylinders 
and consists of two distinct phases. During the first phase, the 
cylmder forms a strained shape-transition region under a stead
ily increasing folding force. When this force reaches a peak and 
starts. to dec~ease, the second phase begins. Now, the shape 
transitiOn regiOn moves along the cylinder under a small force 
leaving behind a fully folded part of the cylinder. This type of 
behavior is observed in the collapse of many structures, and is 
generally known as a propagating instability (Kyriakides, 
1994). However, while propagating instabilities are usually de
structive, for these cylinders this behavior is highly desirable. 

This paper describes three foldable cylinders that have been 
designed, manufactured, and tested. The first two cylinders were 
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designed simply to validate the theoretical work in the previous 
papers. The third cylinder was aimed at a possible application, to 
produce a collapsible fuel tank for Hydrazine, a highly corrosive 
rocket fuel. As fuel is used, the tank would reduce its volume 
thus preventing sloshing of the remaining fuel, and also reduc~ 
ing the amount of fuel which collects away from the supply 
pipe, a?d hence is left unused. A summary of the geometry of 
the cylmders that were manufactured is given in Table 1. The 
observed experimental behavior shows complexities that were 
not predicted in Part II. However, a re-analysis of the folding 
process which allows for two effects that had been neglected 
previously, hinge stiffness along the connections between pan
els, and the presence of manufacturing imperfections, predicts 
the kind of behavior that is observed in practice. 

The layout of the paper is as follows. Section 2 describes 
the ~anufacture and compression testing of the models, and 
Identifies the key discrepancies between the behavior predicted 
by the computer simulations in Part II and the actual behavior 
o~ the mo~els. Po.ssible explanations for these discrepancies are 
?Iscuss~d .m Sect.IOn 3, and these explanations are investigated 
m detall, m SectiOn 4, by modifying the computer model and 
producing new simulations. Section 5 discusses these simula
tions, and concludes the paper. 

2 Experiments 

Irathane and Aluminium-Alloy Cylinders. Two of the 
cylinders described in Part I have been made from sheets of 
0.9 mm thick aluminium alloy plate, coated with a 0.7 mm 
thick layer of Irathane on both sides (Irathane is a flexible 
pol~urethane). Hinges were made by forming a series of 
strmght, parallel grooves, using a milling machine. Both one 
~ayer of the Irathane and the Al-alloy were removed, thus leav
mg on~y one layer of Irathane to form the hinge. Each sheet 
was nnlled to the correct fold pattern. The final cylinders were 
formed by joining together opposite edges of the sheets with 
small plates. The bases of both cylinders were fully restrained 
before testing. 

Each cylinder was tested using a Howden testing machine in 
a displacement controlled mode. The top of the cylinder was 
loaded using a plate attached to the testing machine through a 
central ball joint, thus allowing the plate to chanoe its orienta
tion during folding. The total compressive load o~ the cylinder 
was obtained by adding the weight of the loading plate to the 
force measured by a load cell, at the top of the testing machine. 
Once the cylinder had been fully compressed the test was re
versed, as further compression would have damaged the connec
tion between the cylinder and the base plate. 

The results of the compression test on cylinder no. 1 are 
shown in Fig. 1 (a). This plot of force during foldino shows a 
clear periodicity, where the period is approximately 20 mm. 
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Table 1 Geometric parameters 

m n la (mm) h (mm) lc (mm) 

Irathane and Al-alloy 
cylinder no. I 8 50.0 50.0 90.1 

Irathane and Al-alloy 
cylinder no. 2 7 50.0 50.0 86.6 

Cu-Be and steel cylinder 7 124.8 104.7 205.3 

For this cylinder, the change in the relative height coordinates 
of two nodes on the a-helix is 2.7 mm between the extended 
and folded configuration, while this difference is 22 mm for 
two nodes on the b-helix. Hence, it can be concluded that the 
basic periodicity of the force plot has a wavelength correspond
ing to the relative height of successive nodes on the b-helix. 

The cylinder formed one transition zone at the top of the 
cylinder, which moved down the cylinder as the test proceeded. 
As displacement o was increased, no triangles would fold while 
the force was increasing, but several triangles folded in quick 
succession while the force was decreasing. 

The results of the compression test on cylinder no. 2 are 
shown in Fig. I (b). For this case the change in the relative 
height coordinates of two successive nodes between the ex
tended and folded configuration is 4.0 mm along the a-helix, 
and 28 mm on the b-helix. The behavior of cylinder no. 2 was 
similar to the previous cylinder, except that in this case there 
is no consistent periodicity in the results. 

Cu-Be and Steel Cylinder. The third cylinder was manu
factured using a copper beryllium alloy (Cu-Be) as a hinge 
material. Cu-Be was used because, when correctly heat-treated, 
it has a large elastic strain range and hence a thin strip of Cu
Be can be elastically bent around a small radius. The cylinder 
was made from a flat, 0.1 mm thick sheet of Cu-Be. A series 
of stiff triangular panels were formed by sandwiching the Cu
Be between triangles of 0.5 mm thick steel plate. These plates 
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Fig. 2 Folding of the Cu-Be and steel cylinder. initial state, o = 100 
mm; o = 400 mm; o = 630 mm, tulty folded 

were spot welded in place. Tnen. :.he :\' o edges of the sheet 
were joined together, to form the cyiinde:. '\ote that steel plates 
could not be used for a Hydrazine tank. as the steel and the 
Hydrazine would react. A different stiffening material would 
have to be used. 

The steel triangles were placed 6 mm apart on the Cu-Be 
sheet to allow an elastic hinge to form. Also. the corners of the 
steel plates were rounded, to increase the width of the unre
strained Cu-Be sheet near the intersection of hinge lines. One 
problem with this method of construction is the detail of folds 
around a node. Inevitably there is an incompatibility where 
concave and convex folds meet. At this point a crease forms in 
the Cu-Be sheet, causing plastic deformation. Thus the aim of 
purely elastic folding was not entirely achieved in this design. 
The base of the cylinder was fully fixed, by casting it into an 
epoxy base. 

Four compression tests were performed, following the same 
procedure as for the Irathane and Al-alloy cylinders. Figure 2 
shows four photographs taken during the first test. It can be 
seen from the first photograph that the cylinder had to be ini
tially slightly folded to fit in the testing machine. A plot of the 
force required to fold the cylinder during this test, Fig. 3 (a), 
shows a period of approximately 60 mm. The change in relative 
height coordinates of two successive nodes between the ex
tended and the folded configuration is 9 mm along the a-helix, 
and 64 mm along the b-helix, and so clearly the periodicity of 
the plot corresponds to the folding of successive nodes on the 
b-helix. 

Fig. 1 Force required to compress the lrathane and At-alloy cylinders: One important effect shown in Fig. 2 is the formation of a 
(a) Cylinder no. 1, {b) Cylinder no. 2 second transition zone close to the base of the cylinder. This 
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Fig. 3 Force required to compress the Cu-Be and steel cylinder: 
(a) first test, (b) second, third, and fourth tests 

occurred when the cylinder had been compressed by 125 mm. 
For the rest of the test it was this transition zone which moved 
up through the cylinder. A likely reason for the formation of 
this second transition zone is the weight of the cylinder, which 
led to a compressive force approximately 55 N greater in the 
second transition zone than in the top transition zone. 

As for the previous tests, during this test no new triangles 
folded while the force was rising, but many triangles folded in 
quick succession as the force dropped. 

When fully folded, the cylinder had a height of 242 mm, 
compared with an original height of 872 mm. 150 mm of the 
compressed height was accounted for by the part of the cylinder 
fixed open at the base. 

When the test was reversed, and the top plate moved up, the 
cylinder showed some spring-back, and regained a height of 
540 mm. Closer inspection of the Cu-Be hinges, showed that 
the creases around the nodes had moved closer together by 1-
2 mm. Stretching the cylinder caused these creases to move 
back towards their original position, and the cylinder to regain 
an extended configuration. The creases did not, however, return 
completely to their original position, and the cylinder only re
gained a height of 763 mm. 

Three further tests were performed on this cylinder. After 
each test the cylinder was pulled back towards its original con
figuration. The force required to fold the cylinder in each case 
is plotted in Fig. 3(b). In each test the cylinder folded by 
forming a transition zone close to the base of the cylinder, 
which then moved up through the cylinder as the test proceeded. 
The force plotted is that in the transition zone, and so the origi
nal data has been modified to account for the steadily decreasing 
weight of the portion of the cylinder above the transition zone. 
Again during the test a number of triangles would fold each 
time the force decreased. 

For each of the further three tests performed the change in 
the relative height coordinates of two successive nodes between 
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the extended and folded configuration is 7 mm along the a
helix, and 45 mm on the b-helix. Note that these values are 
smaller than for the original test, as the plastic deformation 
around the nodes has reduced the height of the cylinder. Again, 
the basic periodicity of these force plots has a wavelength corre
sponding to relative height of successive nodes on the b-helix. 

3 Discussion of Experiments 

All the cylinders tested initially formed a transition zone, 
which then moved through the cylinder. Generally the zone 
moved from the top down, but for the Cu-Be and steel cylinder 
it moved from the bottom up, due to the self-weight of the 
cylinder. The shapes of the corresponding force plots also have 
a number of similarities. They all show a periodic variation of 
the force. In two of the cylinders, the Cu-Be and steel cylinder, 
and the lrathane and Al-alloy cylinder no. I, the wavelength of 
this variation corresponds to the folding of successive nodes 
along the b-helix, i.e., of n pairs of triangles on the a-helix. In 
the Irathane and Al-alloy cylinder no. 2 the period of variation 
shows no obvious pattern. 

Comparing these results with the computer simulation in Part 
II, a number of similarities can be seen. In both the simulation 
and the tests the modes of deformation of the cylinder are 
similar. A transition zone forms, which then moves through the 
cylinder. Comparing the plots of force from the computations 
with the experimental results, both cases show the force varying 
around a constant value as the transition zone moves through 
the cylinder. 

There are, however, also a number of discrepancies. One is 
that the force in the experimental results does not vary about 
zero, but about an average compressive force. This implies that 
some strain energy is being stored in the cylinder during the 
folding process. Another discrepancy is that the actual force 
variation does not correspond to the height difference between 
successive nodes on the a-helix. Indeed, for two of the cylinders 
tested it corresponded to the height difference between succes
sive nodes on the b-helix. A third discrepancy is the absence 
in the experimental results of any sign of an initial force peak, 
as the transition zone forms. 

There is a fairly obvious explanation for the first discrepancy. 
The computer model in Part II assumed momentless hinges 
between the triangles. With this model, stretching energy builds 
up in the transition zone, at the start of the folding process 
and-once a certain energy level has been reached-the transi
tion zone moves along the cylinder while the energy stored in 
the system remains constant. There is no bending energy any
where in the cylinder. In reality, some energy must be put into 
the hinges to cause them to fold. Thus, as the transition zone 
moves down the cylinder, energy must be put into the cylinder 
to fold more hinges, and so the average compressive force must 
be greater than zero. It will be seen later that the effect of hinge 
stiffness explains the third discrepancy, the absence of an initial 
force peak. 

To explain the second discrepancy, it should be ·noted that 
the most critical part of the manufacturing technique described 
in the Section 2 is the final joining process between the two 
edges of the sheet containing all the triangles. It is difficult to 
keep the two edges perfectly aligned during this process, and 
hence it is reasonable to expect that only one of the b-helices 
contains a series of geometric imperfections. Thus, if these 
imperfections are sufficiently large, the periodicity of the force 
plot would correspond to the folding of complete turns of the 
a-helix, not to the folding of successive pairs of triangles. The 
more random periodicity shown by the lrathane and Al-alloy 
cylinder no. 2 could be due to more distributed errors, as this 
was an early attempt at making a cylinder, and it had already 
been damaged by a number of demonstrations prior to the test. 
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4 Computer Modeling 

In order to validate the reasons suggested in the previous 
section for the discrepancies between experimental results and 
those predicted by the computer simulation, two changes were 
made to the computer model described in Part II. The first 
change was to modify the model so that it no longer assumed 
momentless hinges between the triangles, and the second was 
to modify the model to simulate the effect of a final misalign
ment during the manufacture of a cylinder. 

Elastic Hinges. The aim of this section is to describe how 
elastic hinges were incorporated into the computational model 
described in Part II. The original model was a pin-jointed truss, 
with bars of equal cross section along the edges of the triangles. 
This model was analyzed using the Force Method of structural 
analysis, and hence by setting up and solving appropriate sys
tems of equilibrium and compatibility equations. To include in 
this model a series of elastic hinges that oppose relative rotations 
between adjacent triangles, the equilibrium, compatibility and 
flexibility matrices for a general hinge element are needed. In 
analogy with Section 2 of Part II, these matrices are derived 
directly in the global coordinate system. The stiffness matrix 
of a similar element was derived in Chapter 5 of Phaal ( 1990), 
using a transformation from a local coordinate system. 

Consider a typical elastic hinge, Fig. 4, between two triangles. 
The triangle PIP2P3, Fig. 4(a), has unit normal 

(l) 

and triangle P J> 5P 6 , Fig. 4 (b), has unit normal 

(2) 

Let M be the moment exerted by the hinge, positive in the 
direction shown in Fig. 4 (a, b). Equilibrium of each triangle 
is maintained by three comer forces, normal to the triangle. 
Any in-plane force component exerts no in-plane moment, and 
hence makes no contribution to the equilibrium equations that 
are derived below. These in-plane forces are carried by the 
original truss model. 

Consider the triangle PIP2P3 , shown in Fig. 4(a). The magni
tude of the comer forces, ri, r 2 , r3 , can be found by considering 
moment equilibrium along the three sides of the triangle. 

Taking moments initially about PIP2 , 

(3) 

rearranging the scalar triple product gives 

As u is a unit vector, and is parallel to (P2 -PI) X (P3- Pz), 
this can be written 

Fig. 4 Elastic hinge element 
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(5) 

and so 

(6) 

Similarly, taking moments about P2P3 gives 

P -P Xru· -( 
P3- Po ) 

( I 3
) I IIP3 - Pzll 

+ . M= ( 
Pz - PI ) ( P3 - Pz ) O 

IIPz - Pdl 1\P, - Pzll 
(7) 

which can be reduced to 

ri = _ (P2 - PI)· (PJ - Pz) M 
II(P3 - Pz) X (PI - PJ)iiii(Pz- PI)II . 

(8) 

Also, taking moments about P3PI gives 

(9) 

which can be reduced to 

Similar relationships can be found for triangle P4P5P6 

r
6 

= _ I!Ps- P411 . M ( 1l) 
II(Ps - P.) X (P6 - Psi) 

r
4 

= _ (Ps- P4)·(P6- Ps) M (12 ) 
IICP6- Ps) x (P4- P6) i IICPs- P4)il 

rs = _ (Ps- P4)·(P4- P6) M. (13 ) 
II(P4- P6) X (Ps- P4)1111(Ps- P4)11 

The equilibrium matrix for the general hinge element of Fig. 
4 (c) relates the moment M to all of the external forces in 
equilibrium with it. At PI = P5 , the total force is riu + r5v, 
and similarly, at P2 = P4 , the total force is r2u + r4v. At P3 

and P6 the total forces are r 3u and r6v, respectively. Hence the 
16 X 1 equilibrium matrix, A;,, for this element is defined by 
the following system of equilibrium equations. For brevity, the 
notation P ij = P1 - P, has been adopted. 

( 
P12 ·P23 ) ( P.,·P64 ) 

- IIP23 X P,IIIIPnll u- IIP64 X P.,IIIIPd v 

( 
IIPd ) 

- liP., X Ps61i v 

The transpose of A;, is the compatibility matrix of the hinge 
element, relating the rotation of the hinge to the displacement 
of the nodes PI - P6 . It is assumed that the hinge element is 
unstrained; i.e., the hinge rotation is zero, when the element is 
fiat, to simulate the behavior of a cylinder made from a flat 
sheet. 
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The flexibility matrix relates M to the hinge rotation. It is 
defined in terms of the axial flexibility of the bars in the truss 
modeL the hinge length, and a dimensionless constant f, which 
can be varied to simulate different hinge properties. For the 
element of Fig. 4 

F = [ f J 
h AE IIPz - Ptll . 

(15) 

The hinge elements for the cylinder are incorporated into 
the truss model to give enlarged equilibrium, compatibility and 
flexibility matrices for the entire structure. For a cylinder with 
N nodes and B bars, there are now H hinge elements. Thus the 
vectors of generalized stresses and strains include, as well as 
all the terms defined in Part II, H additional components. Apart 
from these changes, the simulation algorithm is unchanged from 
Part II. 

One of the cylinders analyzed in Part II has been reanalysed 
incorporating hinge elements along all internal bars. It has pa
rameters m = 1, n = 7, lb/ la = 1 and leila = .J3. The particular 
model that has been analyzed has N = 36 nodes, B = 86 bars 
and H = 76 hinge elements. Each simulation of the folding 
process consists of approximately 300 compression steps of 
size 0.0 lla. Simulations were performed using different 
values of the flexibility factor, f. The results for 
f = 1 X 10 6

, f = 1 X 10 5 and f = 1 X 104 are presented in 
Fig. 5. Note that decreasing f corresponds to making the hinges 
stiffer. 

Figure 5 (a) shows the force R required to compress the 
cylinder for the three different values of hinge stiffness. Each 
of the plots shows the force rising at the end, which is due to 
the interaction between the transition zone and the fully fixed 
base. 
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Fig. 5 Folding of cylinders with m = 1, n = 7, lblla = 1, fell. = v3: 
(a) force required to compress cylinders with different hinge flexibilities; 
(b) distribution of €c, when 15 = 1.91/a and f = 1 x 104

• Bars take the 
number of their bottom node, and nodes are numbered going up on the 
a-helix. Discrete values have been joined, for legibility. 
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When f = 1 X 106 the force plot appears very similar to the 
results presented in Part II. The stiffness of the hinge has very 
little effect in this case. 

When f = 1 X 10 5 a larger peak force is required to form the 
transition zone at the top of the cylinder, and an approximately 
constant, nonzero force is required to move this zone down the 
cylinder. 

When f = 1 X 104
, some clear changes in behaviour become 

evident, as the formation of the transition zone is now a two
stage process. During the first stage, the force R reaches a peak 
as the transition zone is initially formed at the top of the cylin
der. This zone includes some bars which are also elastic hinges, 
and some which are not. The second stage occurs as this transi
tion zone starts moving down the cylinder. R increases as the 
number of hinges in the transition zone increases. The transition 
zone is finally fully formed when all the bars within the zone 
are also elastic hinges. After this, there is a steady-state part of 
the plot as the fully formed transition zone moves down the 
cylinder. The steady-state part for this particular simulation is 
rather short, as the cylinder that is being simulated is small, 
and the effect of the base quickly becomes important. Note that 
there is an average compressive force in the cylinder during the 
steady-state phase, as energy must now be put into the cylinder 
to fold the hinges. Also note that the force required to form the 
initial transition zone is now seven times higher than for the 
case with momentless hinges. Finally note that the steady-state 
part of this plot involves compressive forces larger than those 
in the initial force peak. 

Figure 5 (b) shows the strain in the c -bars, defined in Fig. 2 
of Part I when the cylinder has been compressed by b = 1.9lla, 
for f = 1 X 104

• This value of b corresponds to a peak in the 
force plot. The plots for f = 1 X 10 5 and f = 1 x 10 6 are 
similar, but with slightly lower strains. The plot is presented 
forb = 1.91la rather than b = 1.62la, as used in Part 2, so that 
the transition zone has had time to fully form. The peak strain 
in the bars is only 2% higher when f = 1 X 104 than for the 
case with momentless hinges. 

Manufacturing Errors. The original computer model of 
the structure was also altered to assess the effect of misaligning 
the final seam of the cylinder during manufacture. These errors 
were simulated by imposing an initial strain e on the bars which 
cross the final join-line of the cylinder. Simulations were per
formed for cylinders with parameters m = 1, n = 7, lblla = 1 
and lJ la = f3 as before. The cylinders were compressed in 
approximately 300 steps of size o.on for three different values 
of e, 0.1 percent, 1 percent and 2.5 percent. The results are 
shown in Fig. 6. 

When e = 0.1 percent, Fig. 6 (a), the force plot is very 
similar to the case when the manufacturing error is zero. 

When e = 1 percent, Fig. 6 (b), however, the steady-state 
part of the plot becomes periodic with a wavelength correspond
ing to the folding of a set of n = seven pairs of triangles, 
forming a complete tum of the a-helix. The manufacturing error 
prevents the folding from proceeding smoothly. 

Similar results are obtained when e = 2.5 percent, Fig. 6 (c). 
Again the results are periodic with a wavelength corresponding 
to the folding of n = seven pairs of triangles. The variation in 
force is greater than for e = 1 percent as larger errors make it 
more difficult to fold parts of the cylinder. 

Comparing the strain in the bars for the three cylinders con
taining manufacturing errors with a perfect cylinder, it is found 
that the peak strain is little changed. The largest increase occurs 
for e = 2.5 percent, when the peak strain is increased by 16 
percent. However, because of the incompatibility introduced 
by making some bars longer, the manufacturing errors lead 
to generally higher levels of strain distributed throughout the 
cylinder. 
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Fig. 6 Force required to compress initially strained cylinders with m = 

1, n = 7, r.n. = 1, fells = ra: (a) e = 0.1 percent, (b) e = 1 percent, 
(c) e = 2.5 percent. 

5 Discussion and Conclusions 
This paper has shown the practical realization of the triangu- . 

lated cylinders introduced in the previous two papers. In particu
lar, it has explored two reasons why the experimental behaviour 
of these cylinders differs from the predictions obtained from 
the simple pin-jointed truss model analyzed in Part II. 

The first effect that has been explored is the effect of hinge 
stiffness. It has been found that the effect of adding a series of 
elastic hinges to the truss model has the effect of raising the 
average compressive force to fold the models above zero, an 
effect seen in all of the cylinders tested. Indeed, sufficiently 
high hinge stiffnesses lead to the compressive force during 
steady-state folding being similar in size to the force required 
to form the initial transition zone. This explains why the initial 
force peak associated with the formation of the transition zone, 
predicted from the truss model in Part II, is not shown in the 
experimental results. 

The second effect that has been explored is geometric mis
alignment during manufacturing. It has been found that the 
simple truss model predicts significant changes in behavior 
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when geometric errors are introduced. The force developed, 
while still oscillating about zero, no longer has a period corre
sponding to the folding of one pair of triangles, but corresponds 
to the folding of n pairs of triangles. Superimposed on this 
global behavior is the folding of individual pairs of triangles. 
This behavior is very similar to that seen in the experimental 
tests . 

Some consideration must be given to the values of the param
eters used during the simulations. The initial strains e used 
to simulate manufacturing errors can be easily justified. The 
maximum value of e, 2.5 percent, corresponds to a misalign
ment during final fabrication of 3 mm for the Cu-Be and steel 
cylinder, and of 1 mm for the Irathane and Al-alloy cylinder. 
Errors of this magnitude could certainly have been introduced. 

It is less easy to justify the particular values of fused during 
the investigation of the effects of hinge stiffness. The reason 
for this is the generic nature of the original model. In particular, 
the deformation of the bars in the original truss model was not 
meant to directly simulate the deformation of the triangular 
plates, but to investigate the effect of distributed elasticity 
within the model. In the Irathane and Al-alloy cylinders, for 
example, this deformation in fact takes place by shearing of the 
hinges. Thus as no quantitative measure of the bar stiffnesses 
has yet been considered, the values of f must be seen as a 
qualitative exploration of the effects of hinge elasticity on the 
folding process. 

To validate the proposed computational model, a simulation 
of the behavior of the Irathane and Al-alloy cylinder no. 1 (see 
Table 1) has been performed. The simulation included both 
hinge elasticity and manufacturing errors, and the following 
parameters were chosen to match the observed behavior of the 
cylinder: AE = 6 ·10 5N, f = 1.25 · 107

, e = 0.15 percent. 
The initial behavior of the cylinder has not been simulated, 
because in the experimental model, extra, partially cut triangles 
were added at the top of the cylinder to form a level edge. 

A comparison of the experimental results (reproduced from 
Fig. 1 ) , and the simulation results, is shown in Fig. 7. The 
agreement between the results is remarkably accurate; both the 
periodicity, and the magnitudes of peaks and troughs, of the 
actual behavior are reproduced by the simulation. 

Finally, it is interesting to note how this paper fits in with 
the work described in the previous two papers. The two Irathane 
and Al-alloy cylinders were of the simple type described in 
Section 1 of Part I made from isosceles triangles that fold down 
to prismatic stacks of plates. The Cu-Be and steel cylinder is 
not of this simple type, and was the first to be designed using 
the more general geometric formulation presented in the remain
der of Part I to limit the amount of deformation required during 
folding. 

The computational modelling techniques of Part II have been 
shown to predict many of the characteristics seen in the folding 
process. Also, although the changes to the model described 
here have radically changed some aspects of the compressive 

~,-------,-------,--------,-----, 

15 

R(N) 

10 (\/\ 
I ' 
I 
I 

5 I 

---Simulation 

-------- Exper1ment 

' -·' 

' ,, ' 
/ \ / ' ,, 

' 

' ' ' 

%~-------4~0--------~80~------7.12~0----~ 
5 (mml 

Fig. 7 Comparison of the force required to compress lrathane and Al
alloy cylinder no. 1, and a computer simulation 
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Table 2 Comparison of computational re~ults for cylinders 
with m = 1, n = 7, lblla = 1, and !Jl. = v3 

! €a I max I Ebl mox IE, I max RmaxiAE 

!If= 0. e = 0 s.o· 10-3 6.9 ·10-3 8.7 · 10-3 1.8 · 10-3 

!If= 1 · 10-". 
e = 0 4.8 · 10-3 7.8 · 10-3 8.9 ·10-3 13.1. 10-3 

!If= 0. 
e = 2.5 percent 6.8 · 10_' 8.3 ·10-3 10.1. 10-3 1.8. 10-3 

behavior of the cylinder, the internal deformation of the cylinder 
during folding has not changed greatly. The maximum internal 
deformation. as measured by the strain in the c-bars of the 
modeL has risen by no more than 16 percent in any simulation 
performed. A complete comparison of the computational results 
is made in Table 2. The original model remains a valid tool 
for predicting and comparing many aspects of the behavior of 
foldable cylinders, particularly the amount of deformation they 
undergo during folding. Also, the usefulness of having a simple 
computational model has been shown, as it can easily be modi-

Journal of Applied Mechanics 

fied to test the validity of different explanations for observed 
experimental behavior. 
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