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Abstract This paper presents a study of the folding of a new self-powered, self-latching tube
hinge for deployable structures. This hinge is made by cutting three parallel slots in a thin-
walled carbon fibre reinforced plastic (CFRP) tube, thus leaving three tape springs connecting
the two ends of the tube.
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Introduction and Background

There is a growing trend in the aerospace industry towards simpler, cheaper and more
reliable deployable structures. Hence, research is being carried out into structural con-
cepts that can provide at the same time enhanced levels of functionality in comparison
with previous designs for deployable booms, solar arrays, etc. and also require a smaller
number of separate parts. One approach that is being pursued is to combine several
functions in each structural element, and also to reduce the number and complexity of
separate operations involved in constructing that element.

An example of this new approach is a self-powered, self-latching tube hinge made
by cutting three parallel slots in a thin-walled carbon fibre reinforced plastic (CFRP)
tube with circular cross-section. The slots divide the tube into three strips that are
transversally curved; these strips —known as tape springs— can be flattened transver-
sally and then bent longitudinally to form a localised fold, as shown in Figure 1. This
structure is a replacement for a traditional pin-and-clevis hinge and is currently being
considered for several space missions.

Tube hinges are designed such that their deformation during folding is entirely
elastic. The uncut tube ends remain essentially undeformed, hence the deformation
is almost entirely in the tape springs. The folding of a tube hinge can be simply
described in terms of the inner tape springs deforming in opposite sense bending and
the two outer tape springs deforming in equal sense bending. Here equal sense bending
indicates that the bent tape spring has the same convexity as the straight one, see
Fig. 2(a); in this case the edges of the tape spring are under compression. Conversely,
opposite-sense bending indicates that the bent tape spring has opposite convexity to
the bent one, Fig. 2(b), in which case the edges of the tape spring are under tension.
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Figure 1: CFRP tube hinge (unfolded, folded 110◦, folded 180◦).

When an initially straight tape spring is subject to gradually increasing equal
and opposite end rotations, initially it takes a uniform longitudinally curved shape.
Its moment-rotation relationship is linear for sufficiently small rotations. If the tape
spring is subject to opposite-sense bending, as the end rotations are increased the tape
spring suddenly snaps and forms an elastic fold that is approximately straight in the
transverse direction and has approximately uniform longitudinal curvature, Fig. 2(b).
Then, if the rotations are further increased, the arc-length of the fold increases while
its curvature remains constant. If, however, the tape spring is subject to equal-sense

(b) Opposite sense bending(a) Equal sense bending

Figure 2: Two different ways of folding a tape spring.

bending, it deforms by gradually twisting over two adjacent, but separate regions whose
lengths grow until the two folds merge into a single, localised fold, Fig. 2(a). Once
this single fold has formed, further increasing the end rotation results —again— only
in an increase of the arc-length of the fold region.

A folded tape spring has a natural tendency to deploy, thus resuming its straight
configuration, and the combination of three tape springs in a tube hinge has the effect
of increasing the deployment moment of the hinge, as well as increasing the moment
that the hinge can resist without folding.

Tape springs made of isotropic materials (typically beryllium-copper or steel) have
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been used for many years (Rimrott 1965). Rimrott (1970) and later Calladine (1988)
have proposed an analytical model for predicting the longitudinal radius, r, of the
uniformly curved region at the centre of an isotropic, folded tape spring with transverse
radius of curvature R. An extension of this model to orthotropic shells of thickness t
by Yee and Pellegrino (2003a) gives

r =
√
D11

D22
R (1)

whereD11, D22 are the bending stiffnesses of the shell in the longitudinal and transverse
directions, respectively. This result is valid for both equal- and opposite-sense bending
of the tape spring. The longitudinal strain in this curved region can be estimated from

εx = ±
√
D22

D11

t

2R
(2)

where the sign is + for equal-sense bending and z = +t/2, or for opposite-sense and
z = −t/2; the sign is − for equal-sense bending and z = −t/2, or for opposite-sense
and z = +t/2. And the transverse strain from

εy = ∓ t

2R
(3)

where the sign is − at z = +t/2 and + at z = −t/2, regardless of the sense of bending.
This paper considers a particular tube hinge design, which requires the tape springs

to fold so tightly that they have to operate close to failure. For this design, the paper
presents a finite element analysis of the peak strains induced by the folding process.
The geometric and material properties of the hinge are presented in the next section.
Then a series of finite-element simulations of the folding of a single tape spring and
of a tube hinge. The predictions obtained from the simulations are compared with
predictions from Equations 1, 2 and 3 in the section Results. A Discussion concludes
the paper.

Geometrical and Material Properties

The tube hinges considered in this paper are 82 mm long and have a circular cross-
section with radius R = 6.5 mm. They are made from woven T300/913 prepregs
(913C-814-40%, produced by Hexcel, which have 60% fibre content). The material
properties of this prepreg are given in Table 1. In the central section there are three
50 mm long tape springs, each subtending an angle of 70◦, which leaves 50◦ for each
slot. The slots are machined with a radius of 3 mm at both ends.

One-ply and two-ply laminates are considered, corresponding to tube thicknesses
of 0.27 mm and 0.47 mm. Yee and Pellegrino (2003b) have found that when T300/913
[0,90] laminates are folded in a direction that is perpendicular to one set of fibres and
parallel to the other set, a one-ply laminate fails when it is subjected to a peak bending
strain of about 2.7% in the direction of the fibres, whereas the two-ply laminate fails
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at a bending strain of about 2.0%. On the other hand, when they are folded at 45◦

to the fibres, these laminates fail at peak strains around 5%, the corresponding fibre
strains being around 2.5%. On this basis, it will be assumed that a one-ply tube hinge
can survive bending strains along the fibres of up to 2.5% whereas for a two-ply hinge
the bending strain limit is 2.0 %.

Table 1: Properties of 913C-814-40% prepregs
Elastic Moduli, E11 ≈ E22 (GPa) 46.0
Shear Modulus, G12 (GPa) 4.5
Poisson’s ratio, ν12 = ν21 0.065

Simulation of Folding Process

Detailed simulations of the folding of a single tape spring and of a complete tube
hinge, consisting of three identical tape springs, were carried out with the ABAQUS
(2001)package. Both one-ply and two-ply tape springs were analysed, and the linear-
elastic material properties presented in Table 1 were assumed.

These simulations allow us to compare the deformation of a single tape spring
with that of a hinge that is part of a tube hinge, so that we can better understand the
structural behaviour of the actual tube hinge.

Element Choice

Since the interaction between bending and stretching stiffness of the tape springs plays
an important role in determining the overall structural behaviour of a tube hinge,
thin shell elements are clearly the most appropriate choice. ABAQUS offers several
shell elements, and preliminary runs were carried out with 4-node quadrilateral full
integration general purpose elements (S4); these elements have six degrees of freedom
at each node. 4-node reduced integration shell elements (S4R5) with five degrees of
freedom per node were also investigated. Eventually, the latter element was adopted, as
it performs well for large rotations with only small strains. Furthermore, it uses reduced
integration with hourglass control to prevent shear locking. It is also considered to be
computationally economical and possesses high accuracy in modelling shell structures,
as long as is not significantly distorted in plane. A typical mesh for a tape spring

(a) Tape spring (b) Tube hinge 

spring A

springs B, C

Figure 3: Typical FE models of tape spring and tube hinge.
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involved 200 elements lengthwise by 30 elements widthwise. The mesh for a complete
tape tube hinge had a similar mesh density and hence the number of elements was
proportionally larger.

Simulation Techniques

The multiple point constraints (MPC ) option was used to define the boundary condi-
tions. For both the tape spring and the tube hinge models, the nodes on either end
were tied to a MPC node, located at the centroid of the end cross section, through
rigid beam elements. The main reason for locating the MPC nodes at the centroid is
because the structure will be under pure bending when rotations are applied at the
ends.

The three tape springs that constitute a tube hinge interact during the folding
process, hence contact between these tape springs needs to be suitably modelled.
ABAQUS defines the contact conditions between two bodies using a strict “master-
slave” algorithm. The (*CONTACT PAIR) option needs to be specified for the two
deformable surfaces, one of which is defined as the master surface and the other as the
slave surface. In addition, the INTERACTION parameter is used to associate the con-
tact pairs being defined with a surface interaction model, such as friction. The SMALL
SLIDING parameter was chosen, instead of FINITE SLIDING, to achieve greater sen-
sitivity to local initial gaps at the interface, caused by mismatch in the discretization of
the meshed surfaces that come into contact. The SLIDING parameter sets up a slave
node that interacts with the same region of the master surface throughout the analysis,
despite the large displacements that occur during the simulation. The SURFACE BE-
HAVIOR parameter was set to the default, PRESSURE-OVERCLOSURE=HARD,
which provides arbitrarily large contact forces as soon as the surfaces are in contact.

After having unsuccessfully attempted to use a default contact definition, a sym-
metric master-slave approach was adopted, i.e. two sets of contact pairs were defined
for the same two surfaces, switching the roles of master and slave between the two tape
springs. Despite involving additional computations, this approach provided improved
convergence and accuracy.

A geometrically non-linear (*NLGEOM) incremental analysis was carried out
using the Newton-Raphson solution method, with automatic stabilization provided
through the STABILIZE function. This solution option automatically introduces
pseudo-inertia and pseudo-viscous forces at all nodes when an instability is detected.
Instead of continuing with the standard quasi-static analysis, ABAQUS automatically
switches to a pseudo-dynamic integration of the equations of motion for the structure,
thus avoiding numerical singularities. The pseudo viscous forces are calculated based
on the model’s response in the first increment of the analysis step, by assuming that the
dissipated energy is a fraction of the strain energy during the first step. This fraction is
known as damping intensity, which has a default value of 2× 10−4. To attain accurate
results, it is desirable to set this parameter to the lowest value where convergence is
still possible. In most of the analyses presented in this paper the damping intensity
was set to 1 × 10−8.
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Results

This section presents the finite element analysis results for both the tape spring and
the tube hinge, and compares the maximum strains and fold radii obtained from these
detailed analyses with results from Equations 1-3.

Folding of Tape Spring

Figure 4 shows a series of snapshots from the folding sequence of a one-ply [±45◦] tape
spring subject to opposite-sense bending under monotonically increasing end rotations
of the two MPC nodes. The tape spring has radius R = 6.5 mm and subtends an angle
θ = 130◦.

(a) (b) (c) (d)

Figure 4: Folding sequence of tape spring subject to opposite-sense bending.

Figures 5, 6 shows contour plots of the principal strains, for opposite-sense and
equal-sense bending of the tape spring. The strains on only one surface of the tape
spring are shown, as the distribution on the opposite surface is practically identical, but
with the sign reversed. This indicates that the mid-plane normal strains are negligibly
small in this case. Note that both sets of strains are uniform through the central part
of the tape spring, corresponding to the fold region, hence confirming that this region
is uniformly curved.

Figure 7 shows contour plots of the strain distribution along the fibres at +45◦,
for opposite-sense and equal-sense bending of the tape spring. The first thing to note
in Figure 7 is that the largest strain, of around −2.3%, occurs when the tape spring is
subject to opposite-sense bending. In the case of opposite-sense bending, Figure 7(a),
fairly large tensile strains occur in two small regions on either side of the fold. There
are only two such regions, not four, because we are considering the strain along one
particular set of fibres. In the case of equal-sense bending, Figure 7(b), the strain in
the central part of the fold region is quite small and so the largest strains occur in the
small regions on either side of the fold. These peak localised strains are of the same
magnitude as for the case of opposite-sense bending.

The characteristic tape-spring behaviour in which the strains localise around a
uniformly curved region, requires that the angle θ subtended by the cross-section be
sufficiently large to trigger this type of behaviour (as opposed to the standard bending
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(a)

(b)

+0.69 %
+1.03 %
+1.37 %
+1.71 %
+2.05 %
+2.39 %

-2.70 %
-2.36 %
-2.02 %
-1.68 %
-1.35 %
-1.01 %
-0.67 %
-0.33 %
+0.13 %
+0.35 %

Figure 5: Principal strains on surface z = +t/2 of 1-ply [±45◦] tape spring under
opposite-sense bending; (a) maximum principal strain; (b) minimum principal strain.

(a)

(b)

+0.69 %
+1.03 %
+1.37 %
+1.71 %
+2.05 %
+2.39 %

-2.70 %
-2.36 %
-2.02 %
-1.68 %
-1.35 %
-1.01 %
-0.67 %
-0.33 %
+0.13 %
+0.35 %

Figure 6: Principal strains on surface z = +t/2 of 1-ply [±45◦] tape spring under
equal-sense bending; (a) maximum principal strain; (b) minimum principal strain.
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of a plate). How large this angle needs to be depends on the interaction between out-
of-plane bending and in-plane stretching, as well as on the degree of anisotropy of the
tape spring. In the absence of a general, analytical expression for this limiting value of

(a)

(b)

+0.69 %
+1.03 %
+1.37 %
+1.71 %
+2.05 %
+2.39 %

-2.70 %
-2.36 %
-2.02 %
-1.68 %
-1.35 %
-1.01 %
-0.67 %
-0.33 %
+0.13 %
+0.35 %

f

x

y

Figure 7: Strain along fibres at +45◦, on surface z = +t/2 of 1-ply [±45◦] tape spring
for (a) opposite-sense bending and (b) equal-sense bending.

θ, a parametric study was carried out of the effects of gradually increasing θ in one-ply
[±45◦] and two-ply [±45◦]2 tape springs. The study focussed on tape springs under
opposite-sense bending but, once the critical value of θ had been identified, it was
checked that this value would give satisfactory behaviour also for equal-sense bending.
In all cases, a total rotation of 170◦ of one end of the tape spring with respect to the
other was imposed.

The variation of the radius of curvature at the centre of the tape spring, and the
peak tensile and compressive strains are presented in Table 2. Because θ does not
appear in Eq. 1, the analytical prediction for r is 6.5 mm in all cases, as shown.

Table 2: Fold radii and maximum strains in tape springs

Laminate Bending Mode θ r, Eq. 1 r, FE εf , FE
(deg) (mm) (mm) (%)

1-ply Opposite sense 70 6.50 9.27 -1.91, 1.77
[±45◦] 90 ” 8.11 -2.01, 1.97

110 ” 7.35 -2.17, 2.10
120 ” 6.96 -2.27, 2.17
130 ” 6.52 -2.37, 2.25

Equal sense 130 ” 6.57 -1.26, 1.02
2-ply Opposite sense 130 ” 7.16 -3.78, 3.61
[±45◦]2 140 ” 6.65 -3.93, 3.73

150 ” 6.49 -4.10, 3.88
Equal sense 150 ” 6.53 -2.06, 1.68
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Folding of Tube Hinge

Figure 8 shows four configurations of a one-ply ±45◦ tube hinge. In Fig. 8(a) the tube
hinge is unstrained. In Fig. 8(b), corresponding to a relative rotation ψ ≈ 43◦ between
the two ends, a localised fold has formed in Spring A, which is under opposite-sense
bending. Springs B and C are under equal-sense bending plus twisting; two localised
folds have formed in each spring, but have yet to join up. The first contact between
spring A and springs B and C occurs at ψ ≈ 79◦, and they remain in contact from then
on. Figure 8(c), corresponding to ψ ≈ 82◦, shows a single localised fold in each tape
spring. In Fig. 8(d), corresponding to a rotation ψ ≈ 170◦, the end tubes almost come
into contact. This can be avoided by adding two small, equal and opposite shear forces
at the ends of the tube hinge, in addition to the pure moments applied throughout the
folding process.

spring A

(a) (b)

(c) (d)

spring A

Figure 8: Folding sequence of tube hinge; (a) ψ = 0◦ (b) ψ ≈ 43◦; (c) ψ ≈ 82◦; (d)
ψ ≈ 170◦ .

Figure 9 shows contour plots of the surface strains along the fibres at +45◦. The
strain distribution in the outer surface of spring A, Fig. 9(a), is practically identical
to that on the surface +t/2 of a tape spring on its own, Fig. 7(a). Also, the strain
distribution on the inner surface of spring A, Fig. 9(b), is essentially equal and opposite
to that in the outer surface. This indicates that, as for the case of a tape spring on its
own, the mid-plane strains are again negligibly small.

Figure 9(c,d) shows contour plots of the surface strains on spring B; note that they
are much smaller than in spring A. It is interesting to note that, because spring B has
been twisted as well as bent, the regions of high localised fibre strains in Fig. 9(c,d)
are both on the same edge of the tape spring, whereas in Fig. 7(b) they are on either
edge.

The moment-rotation plot obtained from this simulation is shown in Fig. 10. Note
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that the hinge behaves in a linear-elastic fashion for rotations ψ < 3.7◦; at ψ = 3.7◦ a
limit point is reached and the corresponding moment is 852 Nmm. The tube hinge then
gradually softens, reaching a minimum moment of ≈ 238 Nmm in the range ψ = 77◦

to 104◦. The moment remains approximately constant when ψ is further increased.

If the direction of ψ is reversed the hinge response is again initially linear, but this
time springs B and C are under opposite-sense bending and so a higher limit moment
is reached.

A comparison of the fibre strains predicted by the simple analytical model with
finite-element predictions, using both the single tape-spring model and the complete
hinge model, is presented in Table 3. Note that the analytical predictions of the
largest fibre strain —which occur in the tape spring under opposite-sense bending—
are underestimated by 10% to 15% when compared with the most accurate estimate,
i.e. the complete hinge model.

+0.30 %
+0.64 %
+0.98 %
+1.32 %
+1.66 %
+2.00 %
+2.34 %

-2.41 %
-2.41 %
-2.07 %
-1.73 %
-1.39 %
-1.05 %
-0.72 %
-0.35 %
-0.04 %

(a)

(b)

(c)

(d)

Figure 9: Strain along the fibres at +45◦ (%) for 1-ply [±45◦] tube hinge. Spring A, (a)
outer surface and (b) inner surface; spring B, (c) outer surface and (d) inner surface.
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Figure 10: Moment-rotation relationship for tube hinge.
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Table 3: Maximum strains along fibres in tube hinges

Laminate Spring Bending Mode Location Anal. FE tape spring FE tube hinge
(%) (%) (%)

1-ply A Opposite sense Outer -2.08 -2.37 -2.41
[±45◦] Inner 2.08 2.25 2.34

B, C Equal sense Outer 0.00 -1.26, 1.23 -1.20, 1.20
Inner 0.00 1.02 -1.33 -1.27, 1.04

2-ply A Opposite sense Outer -3.62 -4.10 -3.72
[±45◦]2 Inner 3.62 3.88 3.31

B, C Equal sense Outer 0.00 -2.06, 1.90 -1.58, 1.48
Inner 0.00 -2.02, 1.68 -1.61, 1.48

Discussion and Conclusions

A detailed study of the deformation and strains induced by folding CFRP tape springs
and tube hinges with a ±45◦ lay-up has been presented. This study has shown that
the largest fibre strains in tape-springs under opposite-sense bending occur in the uni-
formly curved fold region and can be predicted with good accuracy using the analytical
expressions obtained by Yee and Pellegrino (2003a). The same approach also gives ac-
curate predictions for the maximum principal strains in tape-springs under equal-sense
bending, which also occur in the uniformly curved fold region, however in this case
the maximum fibre strains occur in small edge regions. For the two specific cases that
have been analysed in detail it has been found that the maximum fibre strains were
around 50% the maximum principal strain in the fold region.

A parametric study of the effects of varying the angle θ subtended by the cross-
section has been conducted, showing that the longitudinal radius at the centre of a
folded one-ply [±45◦] tape spring decreases by about 30% when θ is increased from
70◦ to 130◦. It approaches a value close to the analytical estimate, both for opposite-
sense and equal-sense bending. The two-ply [±45◦]2 tape spring also converges to the
analytically estimated r, but at an even larger subtended angle θ = 150◦. Clearly, the
increased bending stiffness of the thicker laminate requires a larger subtended angle
for the stretching-dominated behaviour to take over.

¿From a design viewpoint, the principal attraction of tape springs with larger θ’s
is that the they snap firmly into the straight configuration —a very attractive feature
in the design of self-latching deployable structures—. Also, their peak strains are
insensitive to the fold angle. However, tape springs with smaller θ’s will generally have
smaller strains for the same fold radius.

A complete tube hinge consisting of three tape springs has been investigated. This
study has shown that contact between the tape springs occurs at fold angles of about
80◦, but does not affect substantially the distribution and magnitude of the maximum
fibre strains. A finite element analysis of a single tape spring provided, for both cases
that have been considered, conservative estimates of the peak strains. These estimates
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were particularly accurate for the single-ply tube hinge.

Turning to the specific tube hinge designs that were considered in this paper, it
has been shown —in Table 3— that an 82 mm long tube hinge with cross-sectional
radius of 6.5 mm and 50 mm long tape springs would be subject to a maximum fibre
strain of −2.4% in the folded configuration, if it is made from a one-ply [±45], 0.27 mm
thick 913C-814-40% prepreg. This strain is just within the limit of the material. A
tube hinge made from a two-ply [±45]2 laminate, would be 0.47 mm thick and would
be subject to maximum strains well in excess of the material limit. For this laminate
to survive the folding process, the cross-sectional radius, or at least the radius of the
tape spring that goes into opposite-sense bending should be increased.
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