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Abstract

The general scaling trend for brittle materials, in which the strength increases when the sample size decreases, is

reversed in plain-weave laminates of Astroquartz R© and cyanate ester resin. Specifically, both the shear stiffness and

the compressive strength decrease for test samples with widths smaller than 15 times the wavelength of the fabric,

and observations at the microscale explain this behavior. The derived scaling is applied to the analysis of a deployable

thin shell forming a 90◦ corner hinge with five cutouts on each side. The cutouts leave narrow strips of material with

width as small as one fabric wavelength (1 mm), forming structural ligaments whose strength and stiffness are subject

to strong size-scaling effects. A numerical simulation of the folding process followed by a failure analysis is presented,

using two alternative material models and failure criteria. The size independent model predicts that the structure will

remain damage-free after it is folded and deployed, whereas the size-scaled model predicts that failure will occur. The

correctness of the size-scaled model prediction is verified by measuring localized damage in a physical prototype, using

x-ray CT scans.
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1 Introduction

This study is motivated by recent advances in deployable thin

shell structures in which cutouts are introduced to facilitate

folding and to achieve desirable snap-back behavior at the

end of deployment (Miura and Pellegrino 2020). The regions

near the cutouts are subject to high strain and the object of

this study is to carry out a detailed material failure analysis

of these regions.

Recent studies of thin shell deployable structures with

cutouts include Greschik (1996) and Tibbalds et al. (2004),

which introduced cutouts in parabolic dishes to allow tight

packaging. Tan and Pellegrino (2006, 2012) introduced long

and narrow cutouts (slits) along the seam between a parabolic

dish and a stiffening rim, to allow the rim to fold elastically.

Yee and Pellegrino (2005b); Mobrem and Adams (2009);

Mallikarachchi and Pellegrino (2011) made self-deployable

and self-latching hinges by introducing parallel cutouts in

thin-walled composite cylindrical shells, forming a set of

parallel tape springs that allow the hinge to elastically fold,

deploy and self-latch.

Studies of the strain distribution near cutouts, in the

folded configuration of such structures, show small regions

of very high strain but previous studies have not analyzed

in detail the true magnitude and effect of these high

strain concentrations. However, there has been evidence

of cracks forming and propagating through the structures

(Mallikarachchi and Pellegrino 2014).

As an example, Fig. 1 shows the numerically predicted

rapidly varying distribution of the mid-plane strain ε11

(where the 1-direction is along the longitudinal axis of the

shell) reproduced from Ferraro (2020) in a thin-walled shell

forming a 90◦ corner. An elastic hinge has been formed

by introducing five cutouts on each side of the shell, the

width of these narrow strips of material ranges from 3

mm to 1 mm. The hinge has been folded 45◦ and the

strains in this folded configuration have been plotted on

the undeformed configuration of the structure. The figure

shows strain localization by up to 10 times on the edges and
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ends of the narrow strips of material formed by the cutouts.

The highest strain, marked by a red contour in Fig. 1, is

concentrated in an area measuring less than 0.2 mm2.
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+0.2%
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Figure 1. Contour plot of longitudinal strain ε11 in center region
of corner hinge with multiple cutouts. The shell has been folded
45◦ and the strains are mapped on the deployed configuration.

An analysis of these strain concentrations, which

considers both the changes in stiffness and the failure

properties of the composite material near the cutouts is

presented in this paper.

For a broader perspective about this problem, it should be

noted that the effect of scale on the stiffness and strength

of solids is a problem of continuing research interest (Bažant

and Chen 1999). Both a statistical approach based on Weibull

distributions (Weibull 1939; Bullock 1974; Wang et al. 1980;

Zweben 1981; Wisnom 1991) and a fracture mechanics

approach (Atkins and Caddell 1974; Carpinteri and Bocca

1987; Bažant et al. 1999) have been used to analyze

scale effects on the strength of fiber-reinforced composite

materials. A comprehensive review of both statistical and

deterministic size effects has been provided by Bažant and

Le (2017).

The application of the statistical approach is based on

the assumption that larger specimens will inherently exhibit

a higher number of imperfections, causing a reduction in

nominal strength. A concise formulation of this theory

(Bullock 1974) yields the result:

σc
m

σc
p

=

(
Vp

Vm

) 1
β

(1)

where the subscripts m and p refer to laboratory scale model

and full-scale prototype, respectively; σc is the ultimate

stress; V is the volume of the sample; β is a parameter that

provides a measure of the scatter in the strength data.

A fracture mechanics model (Atkins and Caddell 1974)

describes the size-strength relationship for notched, brittle,

and isotropic materials with the equation:

σc
m

σc
p

=
√
λ (2)

where λ is a geometric scaling parameter, defined as the ratio

of the prototype length to the model length.

Jackson et al. (1992) compared these models to

experimental results obtained from graphite-epoxy laminates

under both tension and bending. The laminates used in their

experiments consisted of unidirectional plies arranged in

different stacking sequences, chosen to highlight individual

and interacting failure modes. Figure 2 shows a plot of the

results for cross-ply laminates, [+45n/− 45n/+ 45n/−
45n]s where the subscript n indicates the number of

plies used in one orientation, under bending. The smallest

samples, of AS4/3502 graphite-epoxy, were 12.7 mm wide

with 8 plies (n = 1).
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Figure 2. Jackson et al. (1992) compared the normalized
failure load versus scale factor with statistical and fracture
mechanics models for graphite-epoxy cross-ply samples from
50.8 mm wide and 32 plies (Scale Factor = 1) to 12.7 mm wide
and 8 plies (Scale Factor = 0.19), tested in bending.

These results, as well as the published literature on size-

scaling of the strength of brittle materials, including fiber-

reinforced composites (Weibull 1939; Bullock 1974; Jackson

et al. 1992; Bažant and Chen 1999), indicate that there is an

increase in strength at smaller scales. Several examples can

be found in Bažant (2019).

The present study shows experimentally that the shear

strength ±45 plain weave Astroquartz R© follows a different

size-scaling trend than previously studied materials. Its

initial increasing trend is reversed to a decreasing trend

for samples narrower than 15 weave wavelengths, and

becomes smaller than the strength of the pure resin for

sample widths smaller than 2 wavelengths. Observations

at a microstructural level explain this trend. In parallel,

an experimental characterization of the shear stiffness of

this composite material shows a somewhat slower, but still
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significant decrease from the full value at 15 wavelengths

down to 50% at 1 wavelength.

The implications of these scaling results for the design

of deployable shell structures with cutouts are significant.

Because of the more rapid decreases in the shear strength

than the stiffness, a detailed analysis that accounts for

material non-linearity as well actual strength near a cutout

may predict failure in cases where a less detailed analysis

would have predicted no failure. This is demonstrated

through the analysis of a specific shell structure and is

verified by direct measurement of residual damage after

folding and unfolding a prototype shell structure made of

plain weave Astroquartz R©.

The paper is organized as follows. The next section

introduces the composite material system that is the object

of the present study, and lists the relevant mechanical

properties. It then determines its macro-scale stiffness and

strength parameters, though a combination of analytical and

experimental methods. Section 3 presents the size-scaling

variation of the stiffness and strength parameters and also

provides an explanation for the observed variation. Section 4

analyzes an exemplar deployable shell structure with cutouts,

using two alternative material models and failure criteria.

The size-scale independent model predicts that the structure

will remain damage-free after it is folded and deployed,

whereas the size-scaled model predicts that failure will occur.

Section 5 presents an experimental verification that damage

in this shell structure does indeed occur, using images of the

micro-scale from which the residual strains after folding and

deployment are shown to be well above the noise threshold

of the measurements. Section 6 concludes the paper.

2 Macroscale Stiffness and Strength
Parameters

The material used in the present study is plain-weave 525

Astroquartz R© II fabric, supplied by JPS Composite Materials

(JPS 2017), pre-impregnated with PMT-F6 cyanate ester

resin by PATZ Materials & Technologies (PATZ 2019).

Its properties, obtained from the suppliers’ datasheets (JPS

2017; PATZ 2019), are listed in Table 1. The fabric is a weave

of 50 fiber yarns, with a wavelength (measured by the present

authors, on cured laminates) of 1 mm.

Table 2 lists the measured thickness of each laminate,

cured in an autoclave on a flat mandrel. The next sub-sections

present the laminate stiffness and strength properties at the

macroscale.

Fibers
E1f = E2f 72 GPa

ν12f 0.16

G12f 31 GPa

diameter 9 μm

Matrix
Em 3.64 GPa

νm 0.35

Gm 1.35 GPa

Fabric and Cured Lamina
Vf 0.62

Fabric thickness 80 μm

Areal density (dry) 68 gsm

Wavelength 1 mm

Table 1. Astroquartz R© fiber and cyanate ester matrix
properties.

Laminate Thickness (μm)

1 ply 90

2 plies [45pw]2 160

3 plies [45pw/0pw/45pw] 230

4 plies [45pw]4 280

6 plies [45pw/45pw/0pw]s 390

Table 2. Thickness of laminates.

2.1 Stiffness

A linear elastic model of plain-weave Astroquartz R©

laminates was obtained from Classical Lamination Theory

(CLT) (Daniel and Ishai 1994) and micromechanical models

for woven composites (Soykasap 2006), combined with

experimental results.

The 6 × 6 ABD stiffness matrix relates the stress

resultants per unit width, forces and moments N and M ,

to the mid-plane strains and out-of-plane curvatures, ε and

κ, respectively:

[
N

M

]
=

[
A B

B D

][
ε

κ

]
(3)

Since all of the laminates considered were symmetric, the B

matrix is null.

Following Soykasap (2006), the longitudinal modulus and

major Poisson’s ratio of the tows were calculated using the

rule of mixtures (Daniel and Ishai 1994):

E1 = VfE1f + (1− Vf )Em (4)

ν12 = Vfν12f + (1− Vf )νm (5)
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The transverse modulus and the in-plane shear modulus

were obtained from the Halpin-Tsai semiempirical relations

(Haplin and Tsai 1969) as:

E2 =
Em(1 + ξηEVf )

1− ηEVf
(6)

G12 =
Gm(1 + ξηGVf )

1− ηGVf
(7)

with:

ηE =
E2f − Em

E2f + ξEm
(8)

ηG =
G12f −Gm

G12f + ξGm
(9)

where it was assumed ξ = 1, as standard for laminates with

high fiber volume fraction.

Finally, the minor Poisson’s ratio of the yarn was

calculated from the reciprocity relationship:

ν21 = ν12
E2

E1
(10)

The thickness of each tow was assumed to be half

the thickness of a single plain-weave lamina. Hence, the

homogenized material properties of a lamina were obtained

from the rule of mixtures, assuming that half the fibers are

in the longitudinal direction while the other half are in the

transverse direction. For example, the longitudinal modulus

was calculated as:

E1 = E2 = 0.5VfE1f + (1− Vf )Em (11)

Using the tow properties described above, the mosaic

model (Soykasap 2006) was used to estimate the A matrix

for each of the four laminates. For example, the matrix for

the thinnest laminate, [45pw]2, is:

A[45pw]2 =

⎡
⎢⎣
3403.2 1872.0 0

1872.0 3403.2 0

0 0 2150.3

⎤
⎥⎦ (N/mm) (12)

The bending stiffness matrix, D, was calculated with the

mosaic model and each term was divided by a reduction

factor α that accounts for the over-prediction by the mosaic

model for small numbers of plies (Soykasap 2006).

The reduction factor is defined as:

α =
D11mosaic

D11expt

(13)

where D11expt
was obtained from four-point bending tests,

see Table 3. As expected, the gap between the prediction

made with micromechanical models and the experimental

results decreases as the number of plies increases. It should

be noted that this correction has no relation with size scaling.

In fact, it is mostly due to a mismatch between the geometry

assumed by the mosaic model, which neglects the undulation

in the yarns and introduces discontinuities in the fibers,

and the actual, three-dimensional geometry of plain-weave

laminates (Soykasap 2006). Because the geometric effects

that cause the coefficient D11expt
to be over-predicted by

the mosaic model are related to the out-of-plane bending

and twisting stiffnesses of the laminate, recent research has

assumed a single reduction factor for the whole D (Sakovsky

and Pellegrino 2019). A higher-fidelity model, based on a

three-dimensional representative volume element, that does

not use a reduction factor was used in Mallikarachchi and

Pellegrino (2011).

Laminate Average

D11expt

Samples Standard

Deviation

α

[45pw]2 3.1 3 0.26 2.34

[45pw/0pw/45pw] 10.0 5 0.34 2.19

[45pw]4 23.0 5 1.10 1.69

[45pw/45pw/0pw]s 69.8 5 1.30 1.30

Table 3. Bending stiffness D11 (Nmm) and reduction factor α
for two- to six-ply laminates.

Using the experimental results, correction factors were

calculated for each layup, Eq. (13), and were applied to

every term of the D matrix, while matrices A and B were

left unchanged. For example, the D matrix for the two-ply

laminate [45pw]2 is:

D[45pw]2 =

⎡
⎢⎣
3.10 1.71 0

1.71 3.10 0

0 0 1.96

⎤
⎥⎦ (Nmm) (14)

2.2 Strength

Failure predictions were made using a laminate failure crite-

rion for ultra-thin, plain-weave composites (Mallikarachchi

and Pellegrino 2013). The criterion applies to layups with

same orientation plies and uses three non-dimensional failure

indices to capture in-plane, bending, and coupled in-plane

and bending failure. The failure indices are defined as fol-

lows:

FI1 = f1(Nx +Ny) + f11(N
2
x +N2

y )

+f12NxNy + f33N
2
xy < 1 (15)

FI2 = f44 ×max(M2
x ,M

2
y ) + f66M

2
xy < 1 (16)
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FI3 = max

(
Nx

Fx
,
Ny

Fy

)
+

max(|Mx|, |My|)
F4

< 1 (17)

where the failure coefficients, fi and fij , are given by:

f1 = f2 =
1

F1t
− 1

F1c
(18a)

f11 = f22 =
1

F1tF1c
(18b)

f12 = −f11
2

(18c)

f33 =
1

F 2
3

(18d)

f44 = f55 =
1

F 2
4

(18e)

f66 =
1

F 2
6

(18f)

The terms Fi represent directly measured or calculated

strengths in the tow directions of the laminate, and

the subscripts t and c denote tension and compression,

respectively.

For both tensile and compressive strengths the subscripts

1 and 2 refer to the directions parallel and perpendicular to

the fibers, respectively. Hence, for a plain-weave laminate

F1t = F2t and F1c = F2c.

The tensile strength was measured as the smallest stress

resultant at failure measured from tension tests on [0pw]2

and [0pw]4 laminates. 15 mm wide test samples were pulled

under tension at a rate of 2 mm/min until failure, according

to ASTM (2009).

The compressive strength was calculated using elasto-

plastic fiber microbuckling theory (Fleck and Budiansky

1991):

F1c =
G

1 + φ0

γy

t (19)

where φ0 is the fiber misalignment angle, γy is the in-plane

yield shear strain, and t is the tow thickness. γy was derived

from direct measurements of the shear strength τy , with

γy =
τy
G

(20)

and G is the shear modulus of a composite tow

G =
Gm(G12f +Gm + Vf (G12f −Gm))

G12f+Gm−Vf (G12f−Gm)
(21)

The fiber misalignment angle was measured from

micrographs of one, two, and four ply plain-weave laminates,

as shown in Fig. 3.

The in-plane shear strength, F3, was measured as the

smallest failure value obtained from tension tests on [45pw]2

Figure 3. Micrographs of one- and four-ply plain weave
Astroquartz R© laminates showing measurements of fiber
misalignment angle, φ0.

and [45pw]4 laminates:

F3 = Nxy = cosα sinαNx′ =
1

2
Nx′ (22)

where x′ is the loading direction, x and y are the fiber

directions, and α = 45◦ is the fiber orientation angle. The

test samples were 15 mm wide and were pulled at a rate of 2

mm/min until failure, according to ASTM (2007). It should

be noted that, since this test does not apply a pure shear, the

value of the shear strength neglects the effects of the applied

tension.

A typical shear response, obtained by applying the

transformation in Eq. 22 to the measurements, is shown

in Fig. 4. The plot shows a first region where the shear

stress resultant vs. strain response has the highest slope,

followed by a second region of lower slope. Finally, the

slope increases again and remains approximately constant

until failure. This behavior is characteristic of toughened

interface systems (Nguyen et al. 2019). The lower slope in

the second region is associated with matrix shear cracks

and the length of this region depends on the evolution of

macro-cracking, finally reaching a saturated state. Hence,

the material under study behaves as a toughened interface

system, which exhibits intralaminar micro-cracking and

macro-cracking, thus delaying the onset of delamination

and prolonging the ultimate failure. This behavior could

be explained by the three-dimensional pattern of the plain-

weave, which acts as the particles dispersed within the resin-

rich regions of a toughened interface system.

The bending strength, F4, was obtained from the

smallest failure moment measured from platen bending tests

Prepared using sagej.cls
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Figure 4. Typical shear response of two-ply laminate.

(Mallikarachchi and Pellegrino 2013; Yee and Pellegrino

2005a; Murphey et al. 2015) on [0pw]2 and [0pw]4 laminates.

Lastly, the twisting strength, F6, was obtained from the

smallest failure moment measured from platen bending tests

of [45pw]2 and [45pw]4 laminates:

F6 = Mxy = cosα sinαMx′ =
1

2
Mx′ (23)

It should be noted that, since this test does not apply a pure

twisting moment, the value of the twisting strength neglects

the effects of the applied bending moment.

Table 4 summarizes the strength parameters for two-ply

and four-ply laminates.

Strength Parameter Average

Value

Samples Standard

Deviation

Two-ply laminates
F1t = F2t (N/mm) 76.16 5 2.83

F1c = F2c (N/mm) 34.50 - -

F3 (N/mm) 14.55 5 0.12

F4 (N) 3.26 4 0.28

F6 (N) 1.10 4 0.06

Four-ply laminates
F1t = F2t [N/mm] 150.00 4 1.47

F1c = F2c [N/mm] 65.69 - -

F3 (N/mm) 30.88 5 0.21

F4 (N) 8.78 4 1.28

F6 (N) 3.65 4 0.10

Table 4. Macroscale strength parameters for two-ply and
four-ply laminates.

3 Size-Scaling of Stiffness and Strength

Samples with seven different widths, in the range 25 mm

to 1 mm, were laser cut to replicate the manufacturing

procedure used to form cutouts in deployable shell structures.

The samples were tested to characterize their stiffness and

strength in shear, by loading them in tension at 45◦ to the

fiber directions. The dimensions of the samples were scaled

according to ASTM (2007, 2009). The samples had uniform,

rectangular cross-section and a minimum length defined by

the sum of the grip length (2×10 mm), two times the width of

the sample, and gauge length (11 mm). The width tolerance

was ±1%. Figure 5 shows the test setup. Five to ten samples

of each width were built and tested. Only tests in which

failure occurred within the gauge length, as shown for a

1.5 mm wide sample in Fig. 5, were considered successful.

Figure 5. Tension test setup, with 1.5 mm wide sample that has
failed within the gauge length.

Average shear stress resultant curves for two-ply samples

of widths in the range 15 mm to 1 mm, plotted against the

longitudinal strain, are shown in Fig. 6. Size-scaling effects

are very noticeable. Specifically, the initial slope (stiffness),

maximum stress resultant and strain at failure decrease with

the width of the samples. Note that the shear strength of

1 mm wide samples is approximately one third of the shear

strength of the 15 mm wide samples.

The measured shear strengths have been plotted in Fig. 7,

which displays two different size-scaling trends. For widths

of 25 mm to 15 mm the test data shows an increase in

strength as the width decreases, following the general trend

of theoretical and experimental studies of size effects on the

strength of brittle materials (Weibull 1939; Bullock 1974;

Jackson et al. 1992; Bažant and Chen 1999; Bažant 2019).

For widths of 15 mm to 1 mm the trend reverses and the shear

strength decreases as the width of the samples is decreased.

In particular, note that the shear strength of 1 mm wide

samples is lower than the shear strength of unreinforced

cyanate ester resin.
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Figure 7. Shear strength scaling of [45pw]2 laminates. The
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reference.

Size scaling of the stiffness of the test samples was studied

by analyzing the small strain shear response, Fig. 8. Here,

the stress resultant vs. strain responses were approximated

with straight lines and the slopes of these lines showed

a monotonic decreasing trend for decreasing width of the

samples. Note that two of the five curves plotted in Fig. 8

show a lower stiffness near the origin, due to a small amount

of initial slackness in the tests.

This behavior corresponds to a reduction of the shear

stiffness of the material at a scale of less than 15 mm, and

was modeled by introducing a shear stiffness scaling factor,

β, defined as the ratio between the measured stiffness and the

coefficient A66 in section 2.1. The values of β for different

widths are presented in Table 5.

A further scaling effect needs to be considered. Because

the compressive strength is related to the yield shear stress,

through Equations 19-21, the compressive strength F1c must

also be scaled to account for the reduction in the shear
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Figure 8. Initial part of shear stress curves and trend lines
showing stiffness scaling.

Sample

Width

(mm)

Shear

Strength F3

(N/mm)

Compressive

Strength F1c

(N/mm)

Stiffness

Scaling

Factor β
15 14.55 34.50 1

3 10.34 29.07 0.902

2 6.91 25.94 0.739

1.5 6.76 25.70 0.717

1 4.27 19.37 0.520

Table 5. Size-scaling of shear strength, compressive strength,
and stiffness of [45pw]2 Astroquartz R© laminates.

stiffness and the yield shear stress. The resulting scaling of

the compressive strength has been included in Table 5.

In conclusion, it has been shown that both the shear

strength and stiffness of Astroquartz R© and cyanate ester

resin laminates decrease with decreasing width in the range

15 mm to 1 mm, as shown in Table 5. Since the wavelength

of the Astroquartz R© fabric is 1 mm, the sample widths in the

first column of the table are in fact equal to the number of

wavelengths.

These experimental results can be explained by three

microscale effects:

1. The in-plane stiffness of a woven material is decreased

by the presence of free edges. This effect can be

understood by modeling the material as a two-

dimensional lattice of finite width, whose axial

stiffness increases asymptotically towards the stiffness

of the infinite lattice (Aoki and Yoshida 2006; Fan et

al. 2009).

2. Edge effects due to dry spots in the laminates. This

is a common type of imperfection in pre-impregnated

composites with high fiber volume ratio (Vf = 0.62).

When the laser beam cuts through a dry spot, the void
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between consecutive weaves of fibers is exposed, thus

creating a notch on the edge.

3. Fiber pull-out due to short fibers. Near the edges and

cutouts only a short length of fiber is embedded in the

matrix, and hence the fibers can more easily be pulled

out of the surrounding matrix when a tension load is

applied.

Figures 9 and 10 show two images of a 3 mm wide

Astroquartz R© and cyanate ester sample, [45pw]2, taken with

a Nikon Eclipse LV150N microscope with a Nikon TU Plan

Fluor 5X/0.15 objective lens set at a magnification of 5X

and a numerical aperture of 0.15. The exposure time was 7.9

ms. The edges of the thin strip of composite material had

been laser cut and the two photos show the edge of the same

sample at two different locations. While in Fig. 9 there is

no visible imperfection near the edge, Fig. 10 shows many

imperfections.

Circled in red in Fig 10 is a notch on the edge of the

laminate. This type of defect appears frequently along the

edges. It is caused by the laser beam cutting through a dry

spot and exposing the void between consecutive weaves of

fibers. These edge defects measure tens of microns, and can

propagate and cause premature failure of the sample under

tension. These effects are particularly important when testing

samples only a few millimeters wide.

Figure 9. Edge of 3 mm wide, laser cut laminate without visible
defects.

Another effect that needs to be taken into account is fiber

pull-out. Fibers oriented at ±45◦, in samples that are 3 mm

wide or less, can only be as long as 4.25 mm. There are

no fibers running through the entire length of these narrow

samples, as it would happen if the fibers were oriented at 0◦.

Hence, when these samples are loaded in tension, bundles of

fibers can pull out of the surrounding matrix, thus causing

failure of the sample as sketched in Figure 11. This edge

effect also introduces additional compliance.

Figure 10. Edge of 3 mm wide, laser cut laminate with defects,
mostly due to dry spots.

Figure 11. Illustration of fiber pull-out due to short fibers in the
samples under study.

4 Introducing Size Effects in Numerical
Analysis of Deployable Shells

Geometrically nonlinear simulations of the folding of a

deployable thin shell structure forming a corner hinge were

carried out with the finite element software Abaqus 2017.

The shell geometry was defined by the intersection of two

cylindrical surfaces with diameter of 38 mm and axes at 90◦.

The outer part of the intersection was rounded with a 14 mm

radius and the inner part with a radius of 3 mm. Because in

the folded configuration the sides of the corner region are the

most highly deformed part of the structure, this part of the

structure used the thinnest laminate (two-plies) to minimize

the strains induced by bending.

The finite element model consisted of reduced integration

S4R quadrilateral shell elements. The simulations were

carried out with the Abaqus implicit solver, where after each

increment the analysis starts Newton-Raphson iterations to

enforce equilibrium of the internal forces with the external

loads. Convergence settings based on “half-increment

residual tolerance” were used. This tolerance represents the

equilibrium residual error (out-of-balance forces) halfway

through a time increment. If the half-increment residual

is small, it indicates that the accuracy of the solution is
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high and that the time step can be increased; conversely, if

the half-increment residual is large, the time step used in

the solution should be reduced. The Abaqus default half-

increment residual tolerance was used, which is set at 1000

times the time average force and moment values.

A folding simulation imposed a relative rotation of 45◦

between the ends of the cylindrical surfaces, thus increasing

the angle between them from 90◦ to 135◦. At the end of

the simulation, the three failure indices in Eqs 15-17 were

evaluated in the folded configuration for the central region of

the hinge, which is most highly strained. For further details

see Ferraro (2020).

Two analyses were carried out. The only difference was

that the stiffness and strength parameters, which in the first

analysis were based on the macroscale values obtained in

section 2, were replaced in the second analysis with the

appropriate scaled values.

In the first analysis the macroscale stiffness and strength

parameters were used to simulate folding and evaluate the

failure criterion. A contour plot of the highest failure index,

i.e. the in-plane failure index FI1 in the two-ply region of

the shell is shown in Fig. 12. The highest value of the failure

index is 0.85, and hence this analysis predicts that the shell

will not be damaged when it is folded.

0.85

0.72

0.58

0.44

0.31

0.17

0.04

-0.01

-0.23

Figure 12. Contours of in-plane failure index, FI1 over two-ply
region of thin shell forming a corner hinge, plotted on
undeformed configuration.

In the second analysis the two-ply region of the shell was

divided into different sections, as shown in Fig. 13, each

corresponding to a different set of stiffness and strength

parameters in Table 5. The Abaqus feature “general section

properties” was used to input the ABD stiffness matrix of

each material section. Size effects were accounted for by

modifying the shear stiffness A66 depending on the average

size of the section. Hence, the A matrix was modified to :

⎡
⎢⎣
A11 A12 0

A12 A22 0

0 0 βA66

⎤
⎥⎦ (24)

Also, the scaled failure parameters listed in Table 5 were

used for each material section.

15 mm

3 mm

2 mm

1.5 mm

1 mm

Figure 13. Sections of two-ply region simulated with lower
stiffness and strength.

A contour plot of the in-plane failure index, FI1, in the

two-ply region of the folded shell is shown in Fig. 14. Black

contours correspond to regions where the failure index is

smaller than 1. White regions correspond to cutouts or parts

of the shell that were excluded from the failure analysis.

All of the elements plotted with a color other than white or

black have reached a failure index greater than 1, and hence

correspond to regions that are predicted to fail. Note that

these regions are very small, with an area of approximately

0.2 mm2.

2.66

2.46

2.25

2.04

1.83

1.62

1.41

1.21

1.00

-0.51

ROI1

ROI2

Figure 14. Contour plot of in-plane failure index FI1 over
two-ply region of thin shell forming a corner. Size-scaling effects
were included in this analysis. The Regions of Interest ROI1
and ROI2 are discussed in section 5.2.

In conclusion, while the analysis that did not consider size-

scaling effects, Fig. 12, showed no signs of damage in the

folded shell, the more refined analysis has shown failure in

one of the thin strips that separate the cutouts.

However, since the extent of the localized damage

predicted by the analysis is five times smaller than the

smallest test sample in the size-scaling study in section 3 an

experimental verification of this result is in order, and will be

presented in the next section.
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5 Localized Damage Near Cutouts

X-ray computed tomography (CT) allows imaging of

materials in three dimensions with high spatial resolution

(Stock 2008; Bale et al. 2013). It combines X-ray

measurements of a specific area of a scanned sample, taken

from different angles, to produce cross-sectional images,

called slices. Using software, the slices are combined to

produce a three-dimensional (3D) image.

An example scan of a plain weave Astroquartz R© shell with

cutouts in the central two-ply region, matching the structure

analyzed in section 4, is shown in Fig. 15. A ZEISS Xradia

VersaXRM-510 CT scanner was used with the following

settings: optical magnification 4X, exposure time 1 s, voltage

80 kV, power 7 W, and number of projections 3001. The

area of interest corresponds to the left side of the region

with FI1 > 1 in Fig. 14. The slices were reconstructed in

a 3D rendering using the software Dragonfly 2019.1. The

resolution for the scan shown in Fig. 15 was:

1 voxel = 4.38 μm × 4.38 μm × 4.38 μm (25)

At this setting, the field of view in a single scan is

approximately 4.5 mm × 4.5 mm. In Figs 14 -15 note that

ROI1 does not extend all the way to the edge of the sample.

This is because the strain data in an outer layer of width equal

to the size of the DVC interrogation window is inaccurate.
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Figure 15. Computed tomography scan of narrow ligament in
two-ply, plain-weave laminate thin shell forming a corner hinge.

Strain components are measured via digital volume

correlation (DVC) techniques (Xu 2018). DVC is the

three-dimensional extension of digital image correlation

(DIC), which provides quantitative measurements of the

displacement field (Bay 2008). Two tomographic images,

a reference image and a target image, are used to estimate

the displacement field by finding a unique correspondence

between features in the two images.

Since the two-ply laminate used in this study is very thin,

the introduction of artificial speckles could both compromise

the integrity of the test samples and cause complications in

the manufacturing process. Hence, the weave pattern from

the laminate itself was used, although it did not provide ideal

conditions for correlation and caused measurement noise, as

discussed in the next section.

A publicly available MATLAB based software for fast

iterative digital volume correlation (FIDVC) (Bar-Kochba

et al. 2015) was used to calculate the residual strains after

folding and unfolding the shell. This open source software

was chosen because it allows for 3D full-field measurement

of large-deformation internal displacement fields.

5.1 Measurement Noise and Calibration of
DVC Algorithm

A threshold for the measurement noise was estimated by

correlating a reference tomographic image and a target image

of a flat sample. Both the scan region and the measurement

are shown in Fig. 16. The sample has the same layup,

[45pw]2, as the region of interest in the deployable shell. A

reference image was taken by scanning an area of the sample,

shown by a red box in Fig. 16, at the same spatial resolution

used to scan the shell. A second image was taken after taking

the sample out of the CT scanner and putting it back without

applying any strain to it. Hence, the nominal residual strain

in the scanned sample was zero everywhere.

The in-plane E11 component of the residual strain,

calculated on the mid-plane, is shown in Fig. 16. The

contour plot shows fictitious residual strains as high as

0.43%. Measurement noise is to be expected in this kind of

tomographic images. It is mostly due to inconsistent speckle

patterns (Liu and Morgan 2007) and periodicity of the image,

due to the pattern formed by the plain-weave, which can lead

to mis-registration issues (Sutton et al. 2009).

Also, the process of acquiring different tomographic

images by scanning the same sample twice introduces noise.

Part of the noise comes from temperature fluctuation within

the CT scanner chamber. The most common source of

noise from an image acquisition system can be modeled
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as Gaussian random noise and conventional noise removal

filters are efficient in smoothing the noise (Jain 1989).

Therefore, after feeding the two images to the FIDVC

algorithm and calculating the residual strain, an additional

spatial filter was applied to the strain field. The purpose of

the filter is to eliminate high spatial frequency features, using

the repeating wavelength of the weave, λc, as cutoff value. A

low-pass Gaussian filter was implemented as follows:

GLP (u, v) = 1− e
−(u2+v2)

2σ2
c (26)

where u, v are the spatial frequencies in the X1, X2

directions, respectively; σc = 1/λc defines the width of the

Gaussian function and therefore the range of frequencies to

be filtered.

To show the effects of the Gaussian filter, two consecutive

scans of the same sample were taken. The sample was

not removed from the chamber between scans, thus

eliminating errors resulting from rigid body motions. The

two scans targeted exactly the same volume, and hence no

preregistration of the tomographic images was needed.

100 200 300 400 500

X
1
 (px)

100

200

300

400

500

X
2
 (

p
x

)

-4

-2

0

2

4

10
-3

0.0043

Figure 16. Measurement noise in tomographic images of a flat,
unstrained sample, correlated via FIDVC. The contour plot
shows the first, in-plane component of the Lagrange strain, E11.

When calibrating the FIDVC algorithm for the 3D images

used in this study, the fictitious residual strain was initially

in the 15% range. The following key steps were taken to

reduce the baseline noise, finally achieving the previously

mentioned value of 0.43%:

• Step 1. Find correct size of interrogation window

and mesh grid spacing using images of numerically

deformed sample (no experimental measurement

noise).

• Step 2. Measure baseline noise from numerical rigid

body motion and estimate admissible rigid body

displacements. This step helped greatly in reducing

rigid body motion between the two tomographic

images to an admissible range of less than 10 pixels.

• Step 3. Reduce noise from rigid body motion using

registration of images by decreasing rigid body offset

to an admissible range.

• Step 4. Reduce residual noise from experimental

measurement using a low-pass Gaussian filter.

By applying steps 1-4 of the calibration procedure, the

measurement noise was reduced to the level shown in

Fig. 16.

An example high resolution CT scan of a two-ply, plain-

weave, flat laminate is shown in Fig. 17. The spatial

resolution used to conduct this scan was:

1 voxel = 0.7 μm × 0.7 μm × 0.7 μm (27)

While each fiber is well resolved, as can be seen from the

tomographic reconstruction of the scanned volume, the field

of view is reduced to less than 1 mm.

5.2 Measurement of Damage

Scans of selected areas of a prototype deployable thin shell

forming a corner hinge were taken before and after folding

the structure. The reference tomographic images, from scans

taken before folding the shell, were then correlated to the

deformed images, from scans of the same regions of the shell

that were taken after folding it. No cracks or any signs of

damage were seen in the images. The results obtained for the

two regions of interest ROI1 and ROI2 previously identified

in Fig. 14, are presented.

Figure 18 shows the residual strain component E11

measured in ROI 1. The contour plot of the in-plane

component of the Lagrange strain, E11, calculated on the

mid-plane of the shell, shows a residual strain as high as

0.81%. This value is almost double the measurement noise

of 0.43%, thus indicating that localized damage occurred in

this region of the shell when it was folded. This experimental

finding is in agreement with the numerical predictions, in
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Figure 17. Tomographic reconstruction of CT scan of a two-ply,
plain-weave, flat laminate acquired with a spatial resolution of
0.7 μm.

Fig. 14, that localized damage would be caused in this

ligament by folding. Note that the size of the areas that

are numerically predicted to become damaged and are

experimentally showing damage are comparable.

The numerically predicted damage is localized near the

edge of the thin strip, in areas measuring approximately

0.2 mm2, and defined with a spatial resolution of 125 μm,

equal to the average finite element size near the cutouts. The

highest residual strain that was measured experimentally is

also localized near the edge of the thin ligament in an area
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Figure 18. Contour plot of E11 component of Lagrange strain
resulting from cross-correlation of tomographic images of
ROI 1, before and after folding the shell.
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Figure 19. Contour plot of E11 component of Lagrange strain
resulting from cross-correlation of tomographic images of
ROI 2, before and after folding the shell.

measuring approximately 0.04 mm2, with a spatial resolution

of 35 μm.

The spatial resolution of the obtained DIC results is

calculated as the product between the spatial resolution of the

tomographic images (voxel size) and the mesh grid spacing

(Xu 2018) chosen to run the FIDVC algorithm. Since a voxel

measures the same length in all three directions, X1, X2, and

X3, and the mesh grid spacing is also the same, the spatial

resolution is given by:

r = px× dm = 4.38μm × 8 = 35μm (28)

where px is the size of the pixel in the tomographic images

and dm is the chosen mesh grid spacing for the FIDVC

algorithm.

The residual strain in ROI 2 is shown in Fig. 19.

The contour plot of the E11 component of the Lagrange

strain shows a maximum residual strain comparable to the

measurement noise value of 0.43%. Hence, for this ROI it

is not possible to establish whether localized damage has

occurred.
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6 Conclusion

This study has found that the general strength scaling trend

for brittle materials, in which the strength increases when the

sample width decreases, is reversed in plain-weave laminates

of Astroquartz R© and cyanate ester resin, for sample widths

smaller than 15 wavelengths of the fabric. Specifically, both

the shear stiffness and the compressive strength decrease in

the width range of 15 to 1 wavelengths. These effects are

summarized in Table 5.

Two dominating effects at the microscale have been

identified. First, edge effects due to dry spots in pre-

impregnated composites with high fiber volume ratio.

Second, fiber pullout due to the short length of the fibers

oriented at ± 45◦ with respect to the loading direction.

These results have been applied to the analysis of a

deployable thin shell forming a 90◦ corner hinge with five

cutouts on each side of the corner region to allow damage-

free folding and snap-back latching at the end of deployment.

The cutouts leave narrow strips of material with width as

small as one wavelength of the fabric (1 mm), forming

structural ligaments whose strength and stiffness are subject

to strong size-scaling effects.

For a specific design of this deployable structure,

numerical simulations of the folding process have been

carried out, initially using a scale-independent stiffness

model and the scale-independent failure criterion in

(Mallikarachchi and Pellegrino 2013). The results of this

analysis predicted that folding the structure would not cause

damage anywhere. A more detailed simulation of the same

shell structure was then carried out, this time using in

the region of the cutouts the scale-dependent stiffness and

strength parameters derived in the present study. This more

detailed study led to a different outcome, namely that damage

would indeed occur in regions of sub-wavelength scale.

This result was verified by measuring the localized

damage of a prototype thin Astroquartz R© deployable shell

structure with the same pattern of cutouts considered in

the numerical simulations. Residual strains of 0.81% were

measured in a same strip of material using X-ray CT

scans scans and digital volume correlation techniques. The

magnitude of the residual strains exceeded the baseline

measurement noise, thus indicating that localized damage

had indeed taken place.

Localized damage in thin-walled composite structures

structures may be considered acceptable in some situations,

but it may also explain numerous failures that have

been reported after multiple fold-deploy cycles of similar

structures.

It is concluded that the scaling results measured in the

present paper have significant implications for the design

of deployable shell structures with cutouts. It has been

demonstrated that if size-scaling is not taken into account

then the failure analysis can be inaccurate and lead to non

conservative predictions.
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