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Abstract

We present an experimentally-based failure criterion for symmetric two-ply plain-weave lami-
nates of carbon-fiber reinforced plastic. The criterion is formulated in terms of six force and
moment stress resultants and consists of a set of three inequalities, related to in-plane, bending,
and combined in-plane and bending types of failure. All failure parameters in the criterion are
measured directly from five sets of tests. The new criterion is validated against an extensive data
set of failure test results that use novel sample configurations to impose different combinations
of stress resultants. It is found that the proposed criterion is safe for all test conditions and yet
avoids excessive conservatism.
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1. Introduction and Background

Predicting failure in composite materials is challenging. Even for the simple case of unidi-
rectional laminates under in-plane loading conditions the recent World-Wide Failure Exercise [1]
has shown that standard and now widely-used failure criteria have limited predictive accuracy.
For woven laminates the situation is more complex as the weave geometry introduces stochastic
variations in the distribution and arrangement of the fibers that are responsible for stress concen-
trations. These effects become more significant in thin laminates, i.e. laminates of only one or
two plies, which are of particular interest for lightweight deployable space structures.

We have been working on stored-strain-energy composite deployable booms with tape-spring
hinges made from a two-ply laminate of plain weave carbon fiber reinforced plastic (CFRP) and
have developed high fidelity computer simulation techniques for folding and dynamic deploy-
ment of these booms. [2, 3] In these simulations the laminate is modeled as a Kirchhoff thin plate
with elastic properties provided by its ABD stiffness matrix, which relates the mid-plane strains
and curvatures to the corresponding force and moment resultants. This matrix, obtained from
micro-mechanical homogenization, defines a continuum-shell model of the boom with which
folding and deployment analyses were successfully carried out.

The results of this macro-level analysis can be used to determine in detail the stress and strain
distribution in the representative volume element which, in combination with a failure criterion

∗Currently at: Department of Civil Engineering, University of Moratuwa, Sri Lanka.
Email addresses: yasithcm@gmail.com (H.M.Y.C. Mallikarachchi), sergiop@caltech.edu (Sergio Pellegrino)

Preprint submitted to Journal of Composite Materials April 14, 2012



such as Tsai and Wu [4] or Hashin and Rotem [5], should be able to provide an estimate for
the onset of failure at a point of the boom. This approach is well established and is generally
known as Direct Micromechanics Method[6] but, when we applied it to the prediction of failure
of two-ply laminates we obtained poor correlation between predictions and experiments.

The relevant literature on woven composites provides some useful clues but no definitive an-
swer. Chou [7] summarizes various mechanics based models for stiffness and strength prediction
of 2D and 3D woven composites. It reports that micro-mechanical models have been success-
fully employed in predicting thermoelastic properties but their use for strength prediction under
multi-axial loading is still under development. Cox et al. [8] have developed a binary model
which performs Monte Carlo simulations of failure under monotonic and fatigue loading. They
have highlighted the importance of realistic representation of the pattern of reinforcing tows,
random irregularity in tow positioning, randomness of the strengths of constituent elements and
the mechanics of stress distribution around sites of local failure. Whitcomb and Srirengan [9]
have shown that quadrature order and mesh refinement of the finite element model have a signif-
icant effect on the prediction of failure of plain weave composite subjected to in-plane extension.
Song et al. [10] have shown that there is a significant difference between compressive failure
strength obtained from a single unit cell and multiple unit cells, for two-dimensional braided
textile composites.

Here we consider the laminate shown in Fig. 1 and present an alternative approach that for-
mulates a stress-resultant failure criterion in terms of failure parameters directly measurable from
five sets of tests. Our starting point is the quadratic polynomial criterion proposed by Karkkainen
et al. [6], which was a generalization of the Tsai-Wu failure criterion to force and moment re-
sultant space. Karkkainen et al. [6] estimated the parameters that define this failure criterion
with finite element calculations carried out on a representative unit cell, and used the Tsai-Wu
criterion to define point-wise failure conditions. An analogous approach, but using a strain based
criterion was adopted by Manne and Tsai [11] in the design optimization of composite plates.
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Figure 1: (a) Repeating unit cell of two-ply plain weave laminate and (b) definition of stress
resultants for homogenized plate model.
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The failure criterion proposed by Karkkainen et al. [6] can be expressed in the general form

fiσi + fi jσiσ j = 1 (1)

where σi = Nx, Ny, Nxy,Mx, My, Mxy for i = 1, . . . , 6 are the stress resultants defined in Fig. 1.
The parameters fi and fi j represent respectively 6 and 21 (note that fi j = f ji) failure coefficients
such that Equation 1 defines a failure condition when its magnitude exceeds 1. The parameters
fi and the diagonal terms fii correspond to individual loading conditions in which only one stress
resultant is non-zero; the non-diagonal terms fi j with i , j, deal with coupling between different
stress resultants.

Due to the four-fold rotational symmetry about the z-axis of the laminate, the parameters fi
and fi j should not change if x and y are exchanged. This is equivalent to requiring f1 = f2,
f4 = f5 and f11 = f22, f44 = f55, f13 = f23, f14 = f15 = f24 = f25, f16 = f26, f34 = f35, f46 = f56.
These equalities reduce the 27 failure coefficients to only 16.

The same four-fold symmetry also requires the strength of the laminate to be independent
of the sign of the in-plane shearing and twisting resultants and it can also be shown that the
strength of the laminate is independent of the sign of the out-of-plane bending moment. Because
the laminate is not symmetric with respect to its xy mid-plane, this last property can be shown by
considering an alternative unit cell that is translated by half the width of the unit cell shown in
fig. 1a, and then arguing that since both unit cells have the same bending strength its magnitude
has to be independent of the sign of the moment. Thus it is concluded that all parameters that
multiply a linear term in Nxy,Mx,My, or Mxy should also vanish and this condition sets fi = 0 for
i = 3, . . . 6 and fi j = 0 for i = 1, . . . , 6 and j > i, apart from f12.

The net outcome of the stated symmetry conditions is that there are only 6 non-zero failure
parameters: f1 = f2, f11 = f22, f12, f33, f44 = f55, f66 and so the failure criterion has the
expression:

f1(Nx + Ny) + f11(N2
x + N2

y ) + f12NxNy + f33N2
xy + f44(M2

x + M2
y ) + f66M2

xy = 1 (2)

where the failure parameters can be obtained as follows. It should be noted that Karkkainen et
al. [6] considered only the symmetry conditions fi = 0 for i = 3, . . . 6 in defining their locus.

Consider a purely tensile loading condition for the laminate, where the load is acting in the
x-direction and F1t is the measured tensile strength. Substituting Nx = F1t and Ny = Nxy = Mx =

My = Mxy = 0 into Equation 2 gives

f1F1t + f11F2
1t = 1 (3)

Similarly, consider a purely compressive loading in the x-direction and denote by F1c the
measured compressive strength. Substituting Nx = −F1c and Ny = Nxy = Mx = My = Mxy = 0
into Equation 2 gives

− f1F1c + f11F2
1c = 1 (4)

Equations 3 and 4 can be solved for f1 and f11

f1 =
1

F1t
− 1

F1c
(5a)

f11 =
1

F1tF1c
(5b)
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Similarly, considering pure shear, bending and twisting loading conditions one finds that

f33 =
1

F2
3

(6a)

f44 =
1

F2
4

(6b)

f66 =
1

F2
6

(6c)

where F3, F4 and F6 are respectively the measured strengths in shear, bending and twisting.
The last failure coefficient, f12, is in general difficult to determine experimentally. Liu and

Tsai [12] have shown that for typical carbon and glass fiber composites it can vary between
-0.9

√
f11 f22 and 0. They have also shown that a reasonable approximation is

f12 = −
√

f11 f22

2
(7)

which is referred to as generalized von Mises model.
In conclusion, incorporating the previously noted symmetry conditions, the failure coeffi-

cients are given by:

f1 = f2 =
1

F1t
− 1

F1c
(8a)

f11 = f22 =
1

F1tF1c
(8b)

f12 = −
f11

2
(8c)

f33 =
1

F2
3

(8d)

f44 = f55 =
1

F2
4

(8e)

f66 =
1

F2
6

(8f)

where Fi represent directly measured strengths in the tow directions of the laminate, and the
subscripts t and c denote tension and compression, respectively.

In the next section we will present a set of five test configurations that provide the required
failure strengths, plus an additional set of five tests to measure the failure strengths under the
action of combined stress resultants. These additional results provide experimental data that
will be used to validate the failure criterion. The results from these tests are presented in Sec-
tion 3. Then, in Section 4 it is shown that the quadratic criterion in Equation 2 is unable to fully
capture the interaction between stress resultants and thus a new failure criterion is proposed in
Section 5. The parameters for the new criterion are still obtained from the original set of five fail-
ure strengths but the new criterion works much better for all combined loading cases. Section 6
discusses the new failure criterion and Section 7 concludes the paper.
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2. Strength Measurements

Useful background to the tests presented in this section is provided in Masters and Portanova
[13]. Also, ASTM D6856 [14] provides general guidelines for testing textile composites as
well as some changes that should be made before using standards developed for unidirectional
laminates.

The strength properties of two-ply T300-1k/Hexcel 913 plain weave laminates were charac-
terized by means of a range of failure tests on sets of nominally identical samples. All laminates
were made by impregnating T300-1k [15] plain weave dry fabric with Hexcel 913 [16] epoxy
resin. Lay-ups of resin impregnated fabric were cut to the required dimensions and cured in
an autoclave under vacuum for 1 h at 125◦C and under a pressure of 600 kPa. The fiber vol-
ume fraction of the samples was 0.62, the areal density 280 g/mm2 and the average thickness
0.22 mm.

All tests were done on an Instron 5569 materials testing machine, using either a 50 kN or a
1 kN load cell. All strain measurements were made with Epsilon LE01 and LE05 laser exten-
someters.

Figure 2 shows the material directions, x and y, aligned with the tows and the loading di-
rections x′ and y′, at an angle ϕ to x and y. Note that if x′ and y′ coincide with x and y, they
will be denoted as x and y. Next we describe the test configurations and measurement system
to obtain failure data in the x′, y′ coordinate system. These results will then be converted to
material coordinates in Section 3.

x
y

x’

y’

φ

Figure 2: Definition of material and loading directions.

2.1. Tension Tests

The tension tests were conducted according to ASTM D3039 [17]. Six 227 mm long and
25 mm wide specimens were reinforced with 50 mm long by 25 mm wide aluminum-alloy
end tabs with 5◦ bevel angle, bonded to the sample with high strength adhesive Devcon Plastic
Welder. Two pairs of retro-reflective strips were attached near the center of the exposed region,
at gauge lengths of 50 mm and 15 mm respectively to measure the longitudinal and transverse
strains.

Each sample was connected to the testing machine with wedge clamping jaws and was pulled
at a rate of 2 mm/min while measuring the load with a 50 kN load cell. A few additional samples
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were subjected to four cycles with maximum load of 80% of failure to confirm linearity and lack
of hysteresis.

2.2. Compression Tests
Standard compression test procedures are not applicable to thin composites as failure would

occur by macroscopic buckling. Hence, following Fleck and Sridhar [18], the compression tests
were performed on short sandwich columns where two-ply laminate face skins are bonded to
a foam core. The geometry of the columns and the stiffness of the foam core are chosen such
as to achieve failure by fiber microbuckling while avoiding both global and local (face-sheet)
buckling [18]. The test samples were made by bonding two 60 mm long by 40 mm wide com-
posite face sheets to 12.5 mm thick Divinicell H200 PVC foam core with Devcon Plastic Welder.
U-shaped aluminum-alloy end caps were held parallel and perpendicular to the sample and were
bonded to it, Figure 3a, to achieve a uniform load distribution across the two faces.

End cap

Retro-reflective tape

PVC foam core

Face sheets

(a) Compression sample

Aluminum plate

PVC foam

Sample

10 mm gap
Clamp

(b) Lateral support system

Figure 3: Compression test.

During the test, lateral supports were provided to prevent the face sheets from debonding
from the core, by pressing four PVC foam blocks with 1 mm thick aluminum-alloy plates against
the face sheets, as shown in Figure 3b. These blocks left 10 mm wide central gaps, through which
the extensometers measured the extension of the face sheets. The samples were loaded at a rate
of 0.06 mm/min while measuring the applied load with the 50 kN load cell.

2.3. Shear Tests
These tests were carried out according to the ASTM D3518 [±45]ns shear test method [19]

which has been developed for measuring the shear strength of a lamina. Since this test applies
biaxial tension in addition to shear, a correction has to be made for estimating the strength in
pure shear. The details will be explained in Section 3.3.

Ten two-ply ±45 samples with the same dimensions of the tension samples described in
Section 2.1 were made. However, the ends were covered with 50 mm long emery cloth tabs
instead of aluminum-alloy tabs. Two retro-reflective strips were attached 50 mm and 15 mm
apart, respectively for the longitudinal and transverse strain measurements. Each sample was
pulled under tension at a rate of 2 mm/min until failure.
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2.4. Bending Tests

Standard three-point or four-point flexural strength tests are not applicable for thin laminates,
because their elastic deformation range is too large. Instead, the platen folding test [20],[21] was
used to determine the smallest radius to which the laminate can be folded before failure and the
corresponding bending moment. 100 mm long by 50 mm wide specimens were attached to two
flat aluminum-alloy plates connected to the testing machine, Figure 4. The top platen was moved
down at a rate of 2 mm/min, while recording the applied force with a 1 kN load cell. Images of
the test sample were taken with a Sony Handycam HDR-XR500V digital video camera, at a rate
of 30 frames per second. The last image taken prior to failure was used to measure the failure
radius rx and the corresponding moment Mx was obtained from the known geometry at failure
and the measured applied force at failure.

Figure 4: Platen folding test setup.

2.5. Twisting Tests

It is impractical to measure the twisting moment at failure of a thin laminate by applying large
torsional rotations, as twisting would induce rapidly increasing non-linear mid-plane stretching.
Instead, an off-axis bending test configuration was selected, based on the platen folding test
described in Section 2.4. This test was carried out on five two-ply ±45 laminates and five two-
ply 30/-60 laminates. Due to the off-axis fiber orientation of the samples, a twisting moment
is applied in the tow directions, together with biaxial bending moments. An analysis of these
moments is presented in Section 3.5.

2.6. Combined Loading Tests

The test configurations described in Sections 2.1-2.5 can be applied to initially curved and/or
off-axis samples to set up combined loading conditions. For example, by flattening an initially
curved sample and then taking it to failure under tension or bending allows us to determine the
axial force or bending moment at failure in the presence of a constant moment preload. The level
of preload can be varied by testing specimens with different initial radii. Additional tests were
carried out on samples with off-axis fiber directions, to introduce a combination of either axial
and shear loading or bending and twisting.
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2.6.1. In-Plane Loading
Off-axis tension tests are commonly used as biaxial loading tests to verify material properties

determined with standard uniaxial tests [22]. Five [30/-60]2 samples were tested; the sample
configuration and test procedure were similar to the shear tests described in Section 2.3, but this
time a combination of biaxial and shear loads was applied.

2.6.2. Coupled In-Plane and Bending Loading
This type of coupling was achieved by performing tension tests on two-ply 0/90 specimens

that were initially curved either in the longitudinal or transverse direction, Figure 5a.
All samples were 125 mm long and 25 mm wide, with 25 mm long emery cloth tabs glued to

each end. This provides a 75 mm clear region to measure the longitudinal and transverse strains
across two pairs of retro-reflective strips, at distances of 25 mm and 15 mm. The length of the
samples was limited by the maximum length of prepreg that could be wound on a cylindrical
mandrel. However, note that the clear test length included on the order of of 29 repeating unit
cells, where the length of a unit cell is 2.66 mm. ASTM D6856 [14] recommends that the gauge
area should be larger than at least two unit cells. Also note that the retro-reflective strips were
placed sufficiently far away from the supports to minimize edge effects.

First, each sample was loaded under four-point bending to measure the moment required to
remove the initial curvature, Figure 5b. After this initial bending test, the sample was set up for
a tension test and pulled at a rate of 2 mm/min until failure. This test was carried out on three
sets of respectively 5, 7, and 3 curved specimens with radii rx = 19.1, 25.4 and 38.1 mm, to
measure the interaction between Nx and Mx. A further sets of tests was carried out on samples
with initial transverse radii ry = 25.4 and 38.1 mm, to measure the interaction between Nx and
My. The transverse moment was assumed to be equal to the longitudinal moments with the same
longitudinal radii that had been previously measured.

(a) Longitudinally curved sample (b) Straightened-up sample

Figure 5: Coupled axial-bending tests.

2.6.3. Coupled Shear and Twist Loading
Longitudinally curved two-ply ±45 samples with rx′ = 38.1 mm were tested in shear as

described in Section 2.3. This configuration applies all six stress resultants simultaneously, and
different twisting moment preloads are applied by varying the initial curvature of the sample.
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2.6.4. Coupled Biaxial Bending
The bending test configuration described in Section 2.4 can be applied to 0/90 and ±45 trans-

versely curved samples to impose biaxial bending conditions. These samples were first flattened
and then subjected to longitudinal bending in the platen folding test, up to failure. The initial
curvature and the curvature applied during the test were in the opposite sense and hence the cur-
vature changes were of the same sign. These tests were carried out by Yee and Pellegrino [23]
and Yee [24], on the same laminates that are investigated in the present study, but cured with
LTM45 epoxy resin instead of Hexcel 913. Since there are no significant differences in the prop-
erties of these two resins the tests were not repeated, instead it was decided to use the published
results.

2.6.5. Coupled Bending and Twist Loading
The biaxial bending test described in Section 2.6.4 on an off-axis sample applies both biaxial

bending and twisting in the material directions. Hence, this test configuration was applied to
two-ply ±45 samples with transverse radii ry′ = 25.4 and 38.1 mm.

3. Experimental Results

This section analyzes the results obtained from the experiments described in Section 2. For
each experiment the sample average, x̄, standard deviation, sn−1, and coefficient of variation, CV ,
were determined. These parameters are defined as

x̄ =

n∑
i=1

xi

n
(9a)

sn−1 =

√√√√√√√√ n∑
i=1

x2
i − nx̄2

(n − 1)
(9b)

CV =
100 × sn−1

x̄
% (9c)

where xi is a general measured or derived property and n is the number of tested samples. Note
that, because of the brittle failure type that we are dealing with, for each set of tests the corre-
sponding failure strength will be simply taken as the minimum value obtained from that set.

Since we are dealing with sets the full set of plate stress resultants and only a limited number
of them can be determined from direct measurements, the standard elastic relationship between
out-of-plane stress resultants and the corresponding deformation variables will be used to deter-
mine any stress resultants that cannot be measured. Modeling the laminate as a thin Kirchhoff
plate and introducing a single correcting factor to account for geometry change effects in the
laminate near failure, this relationship has the form

∆Mx′

∆My′

∆Mx′y′

 = α
 D11 D12 D16

D21 D22 D26
D61 D62 D66



∆κx′

∆κy′

∆κx′y′

 (10)
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where the three by three constitutive matrix is the D matrix for the plate and α is a stiffness
reduction factor that is obtained experimentally. Its values are 0.6, 0.67 and 0.8, respectively for
0/90, 30/-60 and ±45 laminates, see Sections 3.4 and 3.5 for details.

Experimentally validated D matrices for two-ply T300-1k/Hexcel 913 plain weave 0/90 lam-
inate were obtained in Mallikarachchi and Pellegrino [2]. Assuming the tows in the two plies to
be in-phase[25] the following matrix was obtained:

D0 =

 41.3 1.5 0
1.5 41.3 0
0 0 2.3

 (11)

Standard transformations provide the ABD matrices for the two-ply ±45 and 30/60 lami-
nates:

D45 =

 23.6 19.1 0
19.1 23.6 0

0 0 19.9

 (12)

and

D30 =

 28.0 14.7 0
14.7 28.0 0

0 0 15.5

 (13)

The units are N and mm for all of these matrices.

3.1. Tensile Strength
Figure 6 shows the typical Nx vs. εx response obtained from the tension tests and Table 1

summarizes the failure values that were obtained. Note that failure occurred at multiple loca-
tions (failure code LMV in ASTM D3039 [17]). The cases in which failure occurred near the
ends of a sample are likely to have provided a lower bound on the actual strength, the smallest
measurement was taken to define the strength of the laminate.
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Figure 6: Typical tensile response.

The tensile strength is the smallest failure value reported in Table 1, hence:

F1t = F2t = 133.60 N/mm (14)
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Sample εx (%) Nx (N/mm)
TD90-1 0.96 133.60
TD90-2 1.05 135.80
TD90-3 1.06 143.20
TD90-4 1.04 141.00
TD90-5 1.01 138.50
TD90-6 0.99 144.70

x̄ 1.02 139.47
sn−1 0.04 4.30

CV (%) 3.80 3.08

Table 1: Tensile failure data.

3.2. Compressive Strength
The compressive failure strength is measured when failure occurs by fiber microbuckling,

Figure 7, however it should be noted that in a sandwich column it is quite rare for microbuckling
of both face sheets to occur simultaneously. Hence only the extensometer reading for the failed
side was considered and the failure stress-resultant was calculated by assuming that both sheets
had been equally loaded. This value was modified to account for the load taken by the foam core,
which is

Nx =
P − σcoreAcore

2w
(15)

where, σcore is the stress in the core that corresponds to the measured failure strain of the sand-
wich column, obtained from the stress-strain response curve for Divinicell H200 PVC foam, in
[18] where P, A, and w denote the total applied force, cross-sectional area, and width of the
column, respectively.

Figure 7: Fiber microbuckling.

Figure 8 shows the response of both faces of a single sandwich column. The particular test
shown gave the closest agreement among the two faces of any samples, however the failure
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strengths obtained for other samples were also comparable, Table 2.
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Figure 8: Compressive response measured on both sides of a specimen.

Sample |εx| |Nx|
(%) (N/mm)

CD90-1 0.69 63.23
CD90-2 0.70 77.89
CD90-3 0.61 67.50
CD90-4 0.64 60.56
CD90-5 0.59 57.36
CD90-6 0.66 64.96
CD90-7 0.49 59.50
CD90-8 0.56 59.49
CD90-9 0.56 60.39
CD90-10 0.61 63.66
x̄ 0.61 63.42
sn−1 0.06 5.75
CV (%) 10.59 6.10

Table 2: Compressive failure data

The compressive strength is the smallest failure value reported in Table 2, hence:

F1c = F2c = 57.36 N/mm (16)

3.3. Shear Strength
Table 3 lists the measured tensile strengths of all two-ply ±45 specimens that were tested.

The force resultants in the tow directions can be obtained from Nx′ with the transformation

Nx = cos2 ϕ Nx′ (17a)

Ny = sin2 ϕ Nx′ (17b)
Nxy = sin ϕ cos ϕ Nx′ (17c)
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from which
Nxy =

Nx′

2
(18)

The shear strain is also calculated by a coordinate transformation, as follows:

γxy = εx′ − εy′ (19)

A typical shear response, obtained by applying the transformation in Equation 19 to the
measurements obtained from an actual test, is shown in Figure 9.

Sample Nx′ Nx =Ny = Nxy †
(N/mm) (N/mm)

TD45-1 39.56 19.78
TD45-2 39.54 19.77
TD45-3 41.70 20.85
TD45-4 38.54 19.27
TD45-5 42.40 21.20
TD45-6 40.26 20.13
TD45-7 39.00 19.50
TD45-8 38.34 19.17
TD45-9 38.84 19.42
TD45-10 38.58 19.29

x̄ 39.68
sn−1 1.39

CV (%) 3.50

Table 3: Tensile strength of two-ply ±45 laminate († Values obtained from calculation).
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Figure 9: Typical shear response.

To determine the shear strength of the laminate it should be noted that in the chosen test con-
figuration the samples were subjected to the stress resultants Nx and Ny, in addition to Nxy. This
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biaxial loading is usually neglected for ±45 specimens made of unidirectional laminas [22], but
in the present case we can use the failure criterion to estimate the pure shear strength by remov-
ing the effects of the normal stress resultants. From Equation 17 the in-plane stress resultants in
the tow directions are Nx = Ny = Nxy = Nx′/2 and the moments are all zero. Hence, substituting
these values into Equation 2, solving for f33 and then using Eq. 8 to evaluate F3 we obtain

F3 =
1√
f33
=

|Nx′ |√
4 − (4 f1Nx′ + (2 f11 + f12)N2

x′ )
(20)

Hence the shear strength is calculated from Eq. 20 with the smallest value of Nx′ in Table 3,
which gives:

F3 = 16.91 N/mm (21)

3.4. Bending Strength

In the platen test configuration the maximum moment and curvature occur at the mid point
of the sample, as shown schematically in Figure 10. Sanford et al. [26] have shown that the
curve formed by an initially flat thin sample folded between two parallel platens is accurately
described by the elastica. Hence, the curvature at failure can be calculated by measuring the
distance between the two platens, δ, from the image taken just before failure and the failure
moment can be calculated from [26]

κx′ =
2.3963
δ

(22)

Mx′ =
0.8346 Pδ

w
(23)

where P denotes the force just prior to failure and w is the width of the sample.
The transverse moment, My′ can be estimated by substituting ∆κx′ = κx′ , ∆κy′ = ∆κx′y′ = 0

(where κx′ is obtained from Equation 22) into Equation 10. It turns out that even assuming α = 1
for simplicity, in the case of two-ply 0/90 test samples the transverse moments are on the order
of 4% of the longitudinal moments and hence can be neglected.

Platens

P

P

Max Mx’ and κx’

Sample

δ

Figure 10: Schematic diagram showing platen test sample configuration near failure.

Table 4 presents the failure moments and curvatures obtained from platen folding tests per-
formed on two-ply 0/90 test samples. From these data, the bending strength is given by the
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smallest failure value listed, hence:

F4 = F5 = 4.54 Nmm/mm (24)

Sample κx Mx

(1/mm) (Nmm/mm)
BDF90-1 0.218 5.021
BDF90-2 0.210 4.538
BDF90-3 0.200 5.118
BDF90-4 0.203 5.528
BDF90-5 0.187 4.990
BDF90-6 0.204 5.098
BDF90-7 0.202 5.180
x̄ 0.203 5.068
sn−1 0.010 0.293
CV (%) 4.72 5.79

Table 4: Bending failure data for two-ply 0/90 samples.

Comparing the values of Mx in Table 4 with the values obtained by substituting the corre-
sponding values of κx, also in Table 4, into Eq. 10 with the D matrix in Eq. 11 we determine the
average stiffness reduction factor for 0/90 samples, α0 = 0.6.

3.5. Twisting Strength

The platen folding tests described in Section 2.5 were carried out on initially flat two-ply ±45
and 30/-60 laminates and the failure curvature κx′ and bending moments Mx′ were obtained after
each test, as explained in Section 3.4. The results are presented in columns 2 and 3 of Tables 5
and 6.

In the present case My′ is not negligible. Its value is obtained by substituting ∆κx′ = κx′ ,
∆κy′ = ∆κx′y′ = 0 into Equation 10, where α was estimated by comparing Mx′ from Equation 10
with the measured Mx′ from Table 5. Thus it was found that on average α±45 = 0.80 and α30 =

0.67. The results of these calculations have been presented in column 4 of Tables 5 and 6.
Once Mx′ and My′ are known they can be transformed to the tow directions with the transfor-

mations

Mx = cos2 ϕ Mx′ + sin2 ϕ My′ (25a)

My = sin2 ϕ Mx′ + cos2 ϕ My′ (25b)
Mxy = sin ϕ cos ϕ (My′ − Mx′) (25c)

and the results are presented in columns 5 and 6 of Table 5 and in columns 5, 6 and 7 of Table6.
These equations confirm that the samples were subjected to bending resultants in addition to

Mxy, and hence this is not a pure twisting experiment. The procedure to obtain the pure twisting
strength is to substitute the values of all six stress resultants at failure into Equation 2. Since the
in-plane stress resultants are zero we have
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Sample κx′ Mx′ My′† Mx = My† Mxy†
(1/mm) (Nmm/mm) (Nmm/mm) (Nmm/mm) (Nmm/mm)

BD45-1 0.281 5.113 3.488 4.300 -0.813
BD45-2 0.262 5.357 3.654 4.506 -0.851
BD45-3 0.278 5.265 3.591 4.428 -0.837
BD45-4 0.280 4.942 3.371 4.157 -0.785
BD45-5 0.283 5.794 3.952 4.873 -0.921
x̄ 0.277 5.294 3.611
sn−1 0.008 0.321 0.270
CV (%) 3.01 6.06 6.06

Table 5: Bending failure data for two-ply ±45 laminates († Values obtained from calculation).

Sample κx′ Mx′ My′† Mx† My† Mxy†
(1/mm) (Nmm/mm) (Nmm/mm) (Nmm/mm) (Nmm/mm) (Nmm/mm)

BD30-1 0.254 5.397 2.833 4.756 3.474 -1.110
BD30-2 0.247 4.976 2.612 4.385 3.203 -1.023
BD30-3 0.270 4.334 2.275 3.819 2.790 -0.891
BD30-4 0.263 4.687 2.461 4.130 3.017 -0.964
BD30-5 0.296 4.507 2.366 3.972 2.901 -0.927
x̄ 0.266 4.780 2.510
sn−1 0.019 0.419 0.220
CV (%) 7.06 8.76 8.76

Table 6: Bending failure data for two-ply 30/-60 laminates († Values obtained from calculation).
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f44(M2
x + M2

y ) + f66M2
xy = 1 (26)

From which we obtain:

F6 =
1√
f66
=

|Mxy|√
1 − f44(M2

x + M2
y )

(27)

However, there is a problem with this result because, as it will be seen in Section 4, the
assumption of a quadratic interaction between Mx and My leads to poor results. Hence we will
use the following modified equation to calculate F6 (the reason for making this change will
become clear in Section 5.2)

F6 =
1√
f66
=

|Mxy|√
1 − f44M2

x

(28)

To evaluate F6 we substitute into Equation 28 all data sets in Tables 5 and 6, and we find that
the critical set of moment resultants that gives the smallest F6 for flat ±45 and 30/-60 laminates
is Mx = 2.790 Nmm/mm and Mxy = -0.891 Nmm/mm. The corresponding twisting strength is

F6 = 1.10 Nmm/mm (29)

3.6. Combined Loading Strengths
This section presents the results obtained from tests involving multiple stress resultants.

3.6.1. In-Plane Strength
Table 7 lists the in-plane strengths measured for two-ply 30/-60 laminates.

Sample Nx′ Nx† Ny† Nxy†
(N/mm) (N/mm) (N/mm) (N/mm)

TD30-1 45.69 34.27 11.42 19.78
TD30-2 45.44 34.08 11.36 19.68
TD30-3 45.53 34.15 11.38 19.72
TD30-4 48.01 36.01 12.00 20.79
TD30-5 50.62 37.97 12.66 21.92
x̄ 47.06 35.29 11.76 20.38
sn−1 2.26
CV (%) 4.80

Table 7: Tensile failure data for two-ply 30/-60 laminate († Values obtained from calculation).

3.6.2. Coupled In-Plane and Bending Strength
Table 8 presents the failure strengths Nx measured from longitudinally curved specimens.

The value of Mx was obtained from a four-point bending test, as explained in Section 2.6.2. In
all of the tests from which these data were obtained failure occurred near the center of the sample.

Table 9 lists the values of Nx at failure for different set values of My, obtained from tension
tests carried out on transversely curved samples. The transverse moment My was not measured
during these tests but instead it was taken as the average for the curved specimens with the same
initial curvature, in Table 8.
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Sample κx Nx Mx

(1/mm) (N/mm) (Nmm/mm)
TBD90-D1.5-1 52 × 10−3 68.96 1.986
TBD90-D1.5-2 52 × 10−3 72.37 1.986
TBD90-D1.5-3 52 × 10−3 81.52 1.986
TBD90-D1.5-4 52 × 10−3 110.10 1.854
TBD90-D1.5-5 52 × 10−3 93.75 1.722
TBD90-D2-1 40 × 10−3 73.80 1.357
TBD90-D2-2 40 × 10−3 81.17 1.265
TBD90-D2-3 40 × 10−3 119.00 1.447
TBD90-D2-4 40 × 10−3 86.12 1.327
TBD90-D2-5 40 × 10−3 87.56 1.560
TBD90-D2-6 40 × 10−3 99.25 1.600
TBD90-D2-7 40 × 10−3 104.70 1.610
TBD90-D3-1 26 × 10−3 108.20 0.989
TBD90-D3-2 26 × 10−3 104.70 0.775
TBD90-D3-3 26 × 10−3 103.90 0.743

Table 8: Tensile failure data for longitudinally curved two-ply 0/90 laminates. Note that Ny =

Nxy = My = Mxy = 0.

Sample κy Nx Mx † My

(1/mm) (N/mm) (Nmm/mm) (Nmm/mm)
TBD90-D2Y-1 40 × 10−3 145.20 0.048 1.349
TBD90-D3Y-1 26 × 10−3 136.80 0.031 0.836
TBD90-D3Y-2 26 × 10−3 136.10 0.031 0.836

Table 9: Tensile failure data for transversely curved two-ply 0/90 laminates († Values obtained
from calculation). Note that Ny = Nxy = Mxy = 0.
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3.6.3. Coupled Shear and Twist Strength
Table 10 lists the force resultants in the loading direction at failure, together with the moment

resultants required to straighten four curved samples with a longitudinal radius of curvature rx′ =

38.1 mm.

Sample κx′ Nx′ Mx′ Nx = Ny = Nxy† Mx = My = Mxy†
(1/mm) (N/mm) (Nmm/mm) (N/mm) (Nmm/mm)

STD45-1 26 × 10−3 42.42 0.043 21.21 0.022
STD45-2 26 × 10−3 39.30 0.039 19.65 0.020
STD45-3 26 × 10−3 42.04 0.042 21.01 0.021
STD45-4 26 × 10−3 38.36 0.040 19.18 0.020
x̄ 40.53 0.041
sn−1 2.01 0.002
CV (%) 4.95 4.45

Table 10: Tensile failure data for longitudinally curved two-ply ±45 laminates (†Values obtained
from calculation). Note that Ny′ = Nx′y′ = My′ = Mx′y′ = 0.

3.6.4. Coupled Biaxial Bending Strength
Table 11 lists the failure curvatures that were measured by Yee. The corresponding moments

have been calculated by substituting ∆κx′ = κx′ , ∆κy′ = κy′ , ∆κx′y′ = 0 into Equation 10. In the
present case ϕ = 0 and hence x′ = x, y′ = y.

κx(1/mm) κy (1/mm) Mx (Nmm/mm) My (Nmm/mm)
0.20 0.100 5.046 2.658
0.20 0.067 5.016 1.840
0.21 0.050 5.249 1.428
0.21 0.040 5.240 1.180
0.20 0.033 4.986 0.998

Table 11: Bending failure curvatures from Yee[24] and calculated values of corresponding failure
moments. Note that Mxy = 0.

3.6.5. Coupled Bending and Twist Strength
Table 12 lists seven combinations of moment resultants at failure, obtained by testing trans-

versely curved two-ply ±45 samples. The moment resultants in the tow directions were calcu-
lated by following the same procedure described in Section 3.5, however note that in the present
case ∆κy′ = κy′ , 0.

4. Inadequacy of Quadratic Polynomial Criterion

The failure strengths obtained in Sections 3.1-3.5 are summarized in Table 13 and from these
strengths the six coefficients that define the quadratic polynomial criterion can be calculated
using Equations 8, thus fully defining the six-dimensional hyper-ellipsoid in Equation 2.
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Sample κx′ κy′ Mx′ My′ † Mx = My † Mxy †
(1/mm) (1/mm) (Nmm/mm) (Nmm/mm) (Nmm/mm) (Nmm/mm)

BTD45-D2Y-1 0.314 40 × 10−3 5.923 5.549 5.736 -0.187
BTD45-D2Y-2 0.339 40 × 10−3 6.460 5.991 6.226 -0.234
BTD45-D3Y-1 0.304 26 × 10−3 5.158 4.615 4.887 -0.271
BTD45-D3Y-2 0.330 26 × 10−3 5.057 4.491 4.774 -0.283
BTD45-D3Y-3 0.302 26 × 10−3 4.739 4.244 4.491 -0.248
BTD45-D3Y-4 0.272 26 × 10−3 4.712 4.265 4.488 -0.224
BTD45-D3Y-5 0.268 26 × 10−3 4.678 4.239 4.459 -0.219

Table 12: Bending failure data for transversely curved two-ply ±45 laminates († Values obtained
from calculation). Note that Nx′ = Ny′ = Nx′y′ = Mx′y′ = 0.

Strength Value
F1t = F2t (N/mm) 133.60
F1c = F2c (N/mm) 57.36
F3 (N/mm) 16.91
F4 = F5 (Nmm/mm) 4.54
F6 (Nmm/mm) 1.10

Table 13: Measured failure strengths of 2-ply 0/90 T300-1k/Hexcel 913 laminates.

At this point, the additional test data from Section 3.6 can be used to study the accuracy of this
hyper-ellipsoid in defining a region of six-dimensional space in which no failure occurs. A visual
check can be made by considering lower-dimensional sections of the ellipsoid that correspond to
failure under in-plane loading, biaxial bending or in-plane-bending only conditions. It was found
that the failure criterion works well the additional in-plane loading conditions, but it does not for
the remaining two.

For example, Figure 11 is a plot of the test results involving in-plane and bending interactive
failure obtained in Section 3.6.2, together with the results in Sections 3.1, 3.2, and 3.4. There
are two sets of points in this plot, the experimentally obtained data points denoted by stars, and
the corresponding points obtained by swapping x and y (in view of the symmetry of the laminate
with respect to the material directions) denoted by circles. This plot shows that many failure
data points lie inside the quadratic polynomial criterion. Also, the distribution of failure data
points suggests that, instead of using a smooth, quadratic relationship to describe the interaction
between Nx and Mx, a less continuous, e.g. polygonal, criterion would work better.

5. Alternative Failure Criterion

It has been shown in the previous section that a failure criterion defined by a single quadratic
polynomial in six-dimensional stress resultant space does not work well for two-ply plain-weave
laminates. We will now construct an alternative failure envelope inspired by a series of experimentally-
based observations. Our approach is to consider three projections of the failure criterion, and for
each projection to make use of the existing experimental evidence to propose a meaningful,
physically based analytical description of the failure envelope. The three projections that are
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Figure 11: Axial-bending interaction.

considered correspond to: failure under pure in-plane loading, failure under biaxial bending and
failure due to the interaction between in-plane and bending loads.

5.1. In-Plane Failure
In-plane failure has already been satisfactorily captured by the inequality

f1(Nx + Ny) + f11(N2
x + N2

y ) + f12NxNy + f33N2
xy < 1 (30)

Figures 12a and 13a show the cross-sections of Equation 30 for Ny = 0 and Nxy= 0, respec-
tively, along with the failure data points used to construct the locus. The off-axis tension test
results presented in Section 3.6.1 have then been used to provide an independent check. This has
been done in Figures 12b and 13b show the cross-sections of the locus when Ny = 11.77 N/mm
and Nxy = 20.38 N/mm, respectively. Note that these figures present all of the failure points
obtained from the off-axis tests, although the cross-sections were drawn for the average values of
Ny and Nxy. In both figures all of the additional data points lie outside the locus which confirms
that Equation 30 is a good choice.

5.2. Bending Failure
The results presented in Table 11 suggest that the value of Mx at failure is practically in-

dependent of the value of My. Hence, instead of considering the quadratic interaction that was
assumed in the quadratic polynomial criterion in Equation 2, it is assumed that only the largest
of the two bending moments is responsible for failure. Thus, for pure bending we define a square
failure criterion bounded by |Mx| = F4 and |My| = F5. Figure 14 shows this square locus to-
gether with the experimental failure data in Table 11, denoted by stars, and the corresponding
points obtained by swapping x and y and also reversing the signs of the moments, denoted by
circles.

Next we consider the effects of a twisting moment Mxy in addition to the bending moments.
has the effect of reducing the bending strengths in the tow directions. The experimental failure
data from Tables 4, 5, 6 and 12, plotted in Figure 15, indicates that a good description of the
reduction in twisting moment due to an applied bending moment is provided by a quadratic
interaction.
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Figure 12: Axial-shear interaction for (a) Ny = 0 and (b) Ny = 11.77 N/mm.
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Figure 13: Failure under biaxial in-plane loading for (a) Nxy = 0 and (b) Nxy = 20.38 N/mm.
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Hence, it is concluded that an accurate failure criterion for bending and twisting is defined
by the following pair of inequalities: f44M2

x + f66M2
xy < 1

f44M2
y + f66M2

xy < 1
(31)

which can be written more compactly as

f44 ×max(M2
x ,M

2
y ) + f66M2

xy < 1 (32)

In three-dimensional moment resultants space, Equation 32 defines two cylinders with axes
along Mx and My, hence the safe region defined by Equation 32 is the region defined by the
intersection of these two cylinders.

5.3. In-Plane-Bending Failure

The tension tests performed on transversely curved specimens gave results, see Table 9, prac-
tically indistinguishable from the failure loads for pure tension, which suggests that the in-plane
strength Nx does not change when a transverse moment My is applied. Similarly, the shear
strength, see Table 10, remains practically unchanged when a twisting moment is applied. Thus
it can be concluded that the only significant interaction to be captured is between in-plane and
bending resultants of the same type, that is Nx interacts only with Mx and Ny interacts only with
My. Figure 11 suggests that a linear interaction between |Nx| and |Mx| and, due to symmetry of
the laminate, a linear interaction will also be assumed also between |Ny| and |My|.

Hence, the third type of failure interaction is captured by the following inequalities:
Nx

Fx
+
|Mx|
F4
< 1

Ny

Fy
+
|My|
F4
< 1

(33)

Here the in-plane failure strength Fx is calculated by imposing that Equation 33 matches
Equation 30 when Mx = My = 0. Hence, we set Nx = Fx, replace < with = in Equation 30, and
then solve the resulting quadratic equation for Fx. Similarly, Fy is obtained by setting Ny = Fy,
etc. and then solving for Fy. Their expressions are as follows:

Fx =
−( f1 + f12Ny) ±

√
( f1 + f12Ny)2 − 4 f11( f1Ny + f11N2

y + f33N2
xy − 1)

2 f11
(34a)

Fy =
−( f1 + f12Nx) ±

√
( f1 + f12Nx)2 − 4 f11( f1Nx + f11N2

x + f33N2
xy − 1)

2 f11
(34b)

The pair of inequalities in Equation 33 can be written more compactly as

max
(

Nx

Fx
,

Ny

Fy

)
+

max(|Mx|, |My|)
F4

< 1 (35)
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6. Summary and Discussion

We have proposed a failure criterion for two-ply plain weave laminates subjected to force
and moment resultants. The criterion is defined by the set of three inequalities:

f1(Nx + Ny) + f11(N2
x + N2

y ) + f12NxNy + f33N2
xy < 1

f44 ×max(M2
x ,M

2
y ) + f66M2

xy < 1

max
(

Nx

Fx
,

Ny

Fy

)
+

max(|Mx|, |My|)
F4

< 1

(36)

and, defining the three failure indices (FI):

FI#1 = f1(Nx + Ny) + f11(N2
x + N2

y ) + f12NxNy + f33N2
xy (37a)

FI#2 = f44 ×max(M2
x ,M

2
y ) + f66M2

xy (37b)

FI#3 = max
(

Nx

Fx
,

Ny

Fy

)
+

max(|Mx|, |My|)
F4

(37c)

avoiding failure simply requires that all three failure indices be < 1.
This set of inequalities defines a six-dimensional region which is best visualized by consid-

ering a series of projections onto selected three-dimensional spaces, where each project explains
about the interaction between a group of stress resultants. Thus, in Figure 16 we have considered
in-plane failure, defined by FI#1=1, for which the failure criterion is an ellipsoid identical to
the Tsai-Wu failure criterion, but expressed in terms of stress-resultants. Next, in Figure 17 we
have considered failure due to bending and twisting moments, defined by FI#2=1, for which the
failure criterion is formed by the intersection of two cylinders with axes along Mx and My. Note
that when Mxy = 0 this locus reduces to the square seen in Figure 14.
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Figure 16: Failure criterion for in-plane forces.

The interactive nature of our failure criterion becomes apparent when we consider the enve-
lope generated by FI#3=1, which defines the interaction between in-plane and bending effects.
This interaction is illustrated by the seven projections in Figure 18. The interaction between
Nx, Ny and Mx (and similarly, the interaction between Nx, Ny and My) in Figure 18a; it is de-
scribed by two cones intersecting along an ellipse base. The interaction between Mx, My and Nx

(and similarly, the interaction between Mx, My and Ny) is described by a rhombic prism whose
25
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faces are defined by the linear interaction between an axial force and the corresponding moment,
Figure 18b; the distance between the two bases of this prism is related to the bending strength.

There is no interaction between shear and bending; hence the projection onto Nxy, Mx and
My is a cuboid limited by the shear and bending failure strengths, Figure 18c. Similarly, there
is no interaction between the axial strengths and the twisting strength, hence the Nx, Ny, Mxy

projection is an elliptic cylinder, Figure 18d.
Lastly, the interaction between Nxy, Mx and Mxy is defined by an elliptic cylinder cut by the

planes Nxy = |F3|, Figure 18e. Similarly, the interaction between Nx, Nxy and Mxy is an elliptic
cylinder cut by the planes Mxy = |F6|, Figure 18f. Note that axis of this cylinder does not go
through the origin due to the difference between tensile and compressive strengths. Lastly, the
interaction between Nx, Nxy and Mx is defined by two cones intersecting along an ellipse, see
Figure 18g.

Plastic failure criteria for thin cylindrical shells are well established [27, 28, 29] and our
proposed failure criterion resembles Calladine’s[27] locus for Tresca-type yielding, however in
the present case the five strength properties of the laminate have to be measured from actual
material tests. This approach required us to make the following two key assumptions. First that
the micro-structure of the laminate does not change significantly (and hence its failure properties
are unaffected) when manufacturing flat or curved laminates. This was a reasonable assumption
since the weave wavelength is much shorter than the radius of curvature of the cylindrical shells
that were tested. Second, the D matrix for the laminate, corrected by a single experimentally
obtained coefficient, can be used to estimate the transverse moments at failure. Since, the ini-
tial curvature of any test sample can be measured before the test, the longitudinal curvature just
before failure in the platen bending test can also be measured, and the corresponding transverse
curvature is always approximately zero because any thin cylindrical shell tends to form cylindri-
cal fold regions, in order to minimize mid-plane stretching. Hence, the transverse moment can be
estimated using the D matrix of the laminate, however since this matrix has only been developed
for the initial geometry of the laminate, a comparison was made of the measured longitudinal
moment with the moment estimated using the same matrix and a 20% stiffness reduction was ob-
served. The same reduction coefficient was then used in estimating the transverse moments. This
stiffness reduction can be explained by the laminate thickness being reduced, due to the stretch-
ing of the tows making them flatter. Also, failure by delamination was not considered in this
research, since this failure mode has not been observed in any laminate strength measurement
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Figure 18: Interactions between in-plane and bending effects.
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tests or indeed in any tests on tape-spring hinges [2, 30, 31].
The proposed failure criterion has a number of advantages over the quadratic polynomial

considered in Karkkainen et al. [6] and Manne and Tsai [11], which results in a single hyper-
ellipsoid. Most importantly it has successfully excluded unsafe regions of the stress resultant
space, where the laminate is subjected to a combination of in-plane and bending stress resultants.
Also, all material symmetries can be satisfied without having to reconcile any contradictions
between directly obtained test data that provided five strength parameters.

7. Conclusion

This paper has presented a failure locus for a symmetric two-ply plain weave laminate in
terms of force and moment resultants making a six dimensional loading space. Failure parame-
ters were estimated from direct measurements through five sets of tests and five additional com-
bined loading test configurations were tested to generate for validation.
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