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91128 Palaiseau, France
E-mail: lopez@lms.polytechnique.fr

Sergio Pellegrino

Joyce and Kent Kresa Professor of Aeronautics and Professor of Civil Engineering
California Institute of Technology

1200 E. California Blvd, MC 301-46
Pasadena, CA 91125

E-mail: sergiop@caltech.edu

Thin sheets of unidirectional carbon fibers embedded in a
silicone matrix can be folded to very high curvatures, as
elastic microbuckles with a half-wavelength on the order of
1 mm decrease the maximum strain in the fibers near the
compression surface. This paper shows that probabilistic
failure models derived from tension tests on individual fibers
can be used to predict accurately the value of the outer sur-
face curvature of the sheet at which a small percentage of
fibers break when a crease is formed in the sheet. The most
accurate results are obtained by using a strain-based Weibull
distribution of the failure probability in tension.

Nomenclature
a amplitude of fiber microbuckle
A fiber cross sectional area
Ac area of fiber section under compression
At area of fiber section under tension
E Young’s modulus
Et tensile Young’s modulus of fiber
Ec compressive Young’s modulus of fiber
F end force on looped fiber
G shear modulus of matrix
h out of plane distance between points of looped fiber
H distance from line of action of F to point of maximum
curvature of looped fiber
I second moment of area of fiber
I1, I2 integrals to calculate Weibull failure probability
L length of fiber
m,m′ stress-, strain-based Weibull modulus of tensile failure
mB Weibull modulus of bending failure

M bending moment
n number of buckles in micro-buckled fiber
N sample size
P probability of failure
R fiber radius
r f fiber radius of curvature at failure
s curvilinear coordinate along fiber
t thickness of sheet
V volume of tested fiber
V0 normalizing Weibull fiber volume
Vf fiber volume fraction
ε strain
ε0 normalizing Weibull strain
ε f fiber tensile failure strain
λ half-wave length of fiber microbuckle
λ0 initial half-wave length of fiber microbuckle
κ curvature of fiber, curvature of sheet
σ stress
σ0 normalizing Weibull stress
ξ, η coordinate system in fiber cross section

1 Introduction
Carbon fiber composites are attractive for aerospace ap-

plications due to their high stiffness to density ratio and their
high thermal stability, but their applicability to deployable
structures has been limited by their brittle behavior. Recently
an alternative type of composite material has been developed,
in which the fibers are embedded in a matrix that is many or-
ders of magnitude softer than the fibers. It has been shown
that deployable structures made of these materials can be



packaged tightly. Examples of structures based around this
approach are the elastic memory composite hinges developed
by Francis et al.[1], where the carbon fibers are embedded in
a shape-memory polymer, and the deployable reflector con-
cept proposed by Datashvili et al.[2], consisting of a triaxial-
weave carbon fiber fabric with a silicone matrix. A striking
property is that localized creases can be introduced in thin
sheets of these materials, leaving little or no damage when
the creases are removed. Murphey et al. [3] have explained
that the fibers in the compression region of the sheet form a
series of elastic microbuckles and, through this mechanism,
they can be subjected to a large geometric strain while the
material strain in the fibers is actually relatively small. The
present authors [4] have recently shown that the shearing
of the matrix between the fibers induces such high strains,
and hence damage in the matrix and/or matrix-fiber interface,
that the bending stiffness of the composite sheet significantly
decreases when the sheet is subjected to cyclic bending.

However, one important effect that has yet to be under-
stood is the onset of failure in the fibers. A simple estimate
of the maximum bending strains in the most heavily buckled
fibers, based on estimated buckle wavelength and amplitude
combined with the tensile failure strain of the fibers, leads
to vastly overconservative predictions. We show in this pa-
per that by adopting a Weibull-type probabilistic description
of the brittle failure of carbon fibers under pure tension one
can estimate quite accurately their failure curvature proba-
bility. We apply these results to the folding of composites of
uniaxial carbon fibers in a silicone matrix and obtain accu-
rate estimates for the probability of fiber failure for different
degrees of tightness of the fold.

The layout of the paper is as follows. Following a re-
view of the relevant literature in the next section, Section 3
obtains analytical expressions for the probability of failure of
carbon fibers in bending. Sections 4 and 5 present the results
of tensile and bending tests on HexTow AS4 carbon fibers; it
is shown that the probability distribution obtained from the
tension tests can be used to generate with good accuracy the
failure probability distribution for the bending tests. These
results are then applied in Section 6 to composite sheets of
unidirectional AS4 fibers in a silicone matrix; the predictions
obtained from our theory are compared with experimental
observations. Section 7 summarizes our findings and con-
cludes the paper.

2 Background
Carbon fibers are brittle materials whose strength is con-

trolled by the distribution and size of flaws. The failure pro-
cess, known as the Reynolds-Sharp mechanism [5], consists
in an initial flaw forming a crack that is driven by the shear
stress acting on misoriented graphite planes [6]. Because
of the variation in flaw size and the orientation of graphite
planes, there is considerable spread in the tensile strength
of carbon fibers and so standard weak link theory is used to
model their probability of failure[7]. The failure probability
P of a fiber subject to uniform tensile stress σ is given by the
Weibull distribution

P(σ,V ) = 1− exp
(
− V

V0

(
σ
σ0

)m)
(1)

where V is the volume of the fiber, V0 is the volume of the
fiber used to characterize the material, σ0 is a reference stress
for which a fiber of volume V0 has a probability of failure of
P = 1− exp(−1) ≈ 0.632, and m is the Weibull modulus,
whose value controls the spread of strength variation. For
carbon fibers m usually lies between 3 and 8 [8, 9]; the values
of m have been increasing through the years, as a result of
improvements in fiber manufacturing.

The failure of fibres subject to bending was first studied
by Sinclair [10], who introduced a test that consists in form-
ing a loop with a single fiber and then pulling the ends until
the fiber fails. Sinclair’s original test measured the short-
ening of the fiber, which was then related to curvature by
assuming that the shape of the looped fiber is given by the
elastica. Sinclair’s tests on glass fibers showed that the ten-
sile strength under bending (defined as the maximum stress
in the outermost surface of the fiber) is typically more than
double the tensile strength under pure tension.

The Sinclair loop test has become one of the standard
ways to test the bending properties of fibers. Due to the dif-
ficulty of performing a pure compression test [11] it is also
used to analyze their compression behavior. The response
during the loop test often shows softening at large strains
[12], and Jones and Johnson [13] showed that the shape of
the fibers during the test deviates from the shape predicted by
the elastica, due to softening at large curvatures. This nonlin-
earity differs from the observations in [14] and it is usually
explained as the result of buckling of the graphite layers on
the compression side of a fiber. Its dependence on the type of
fiber precursor, heat treatment temperature and microstruc-
ture has been extensively studied [15, 16, 17, 18]. Obser-
vations of a shift in the neutral axis of bending using x-ray
diffraction [19] have confirmed that the two moduli have dif-
ferent values, with the ratio between the two varying greatly,
depending on the type of fiber.

Studies of the flexural failure of carbon fibers have
focused on the mean and standard deviation of properties
such as the maximum bending stress or strain. Recent
studies[20, 21] have characterized the failure probability of
several types of carbon fiber under three point bending or
the loop test using Weibull distributions but the connection
between tensile and flexural failure of carbon fibers has not
been investigated.

Turning to the behavior of thin sheets of uniaxial carbon
fibers embedded in a soft matrix, analytical expressions for
estimating the wavelength and amplitude of the microbuck-
led fibers were obtained by Francis et al. [22, 23]. These au-
thors assumed that the buckles can be described by the sine
function

y = asin
πx
λ

(2)



where a is the amplitude and λ the half-wavelength, defined
as corresponding to a phase of π radians. They determined
the following expression for the initial buckle wavelength λ0
from energy considerations, assuming plane sections to re-
main plane. They also assumed the fibers to have a circular
cross-section with radius R and to be arranged according to
a square lattice with spacing b = R

√
π/Vf and obtained

λ0 =

(
9π3Vf t2EI

8R2 log
( 3t

b

)
G

) 1
4

(3)

where Vf is the fiber volume fraction, t the thickness of the
sheet, E and I the modulus and second moment of area of the
fibers and G the shear modulus of the matrix.

3 Analysis of Failure Probability in Bending
When the stress is not uniform and it is reasonable to

assume that failure in compression is ductile, the probability
of failure is obtained by integration of Equation 1 over the
volume where σ is tensile, Vt

P = 1− exp
(
− 1

σm
0 V0

∫
Vt

σmdV
)

(4)

It should be noted that the assumption of ductile behav-
ior in compression is based on a somewhat simplified inter-
pretation of the body of existing evidence, which indicates
that compressive failure depends on the type of fiber and the
manufacturing process [11, 18, 24].

Consider a circular fiber of radius R and total length L
subject to a bending curvature κ= κ(s). Assuming the stress-
strain relationship to be linear in the tensile region, the cur-
vature and tensile stress are related by

σ = Etκη (5)

where η is the distance from the neutral axis and Et the ten-
sile modulus. Substituting into Equation 4 gives

P = 1− exp
(
− 1

σm
0 V0

∫ L

0

∫
At

(Etκ(s)η)m dAds
)

(6)

where At is the area of section under tension.
Next, it is assumed that the position of the neutral axis

does not depend on κ. Hence the two integrals in Equation 6
can be evaluated independently and so the probability of fail-
ure is expressed as:

P = 1− exp
(
− 2

m+1
(Etκmax)

m

σm
0 V0

I1I2

)
(7)

where κmax is the maximum curvature along the fiber and the
quantities I1, I2 are defined as:

I1 =
∫ L

0

∣∣∣∣κ(s)κmax

∣∣∣∣m ds (8)

I2 =
∫ ξn

0

(√
R2 −ξ2 −ηn

)m+1

dξ (9)

where ηn and ξn define the position of the neutral axis, see
Figure 1.

The value of I1 depends only on the curvature of the
fiber and the value of the Weibull modulus m. There are
several situations in which κ(s) scales with κmax and so the
ratio κ(s)

κmax
is a particularly convenient choice. This is the case

for the fiber loop test and the three-point bending test, two
common experiments used to calculate the failure properties
of carbon fibers under bending, as well as for the case of fiber
microbuckling in composites with a soft matrix. The value
of I2 has a constant value for a given type of fiber.

tension

compression

n

n

Fig. 1. Position of neutral axis in the fiber cross section, for Et >Ec.

Note that the above analysis does not require the neutral
axis to pass through the center of the fiber. If the tensile
and compressive moduli, Et ,Ec, have different (but constant)
values we can can solve for (ξn,ηn) as a function of Et/Ec
by setting the axial force resultant equal to zero, which leads
to

π
2

(
1− Et

Ec

)
+

[
arcsin

(ηn

R

)
+

ηnξn

R2

](
1+

Et

Ec

)
= 0 (10)

with

ξ2
n +η2

n = R2 (11)

For example, values of Et
Ec

equal to 1.5, 2 and 5 corre-
spond to a shift of the neutral axis by 0.16, 0.27 and 0.59
times the radius, respectively.



4 Tensile Failure of AS4 Fibers
The failure probability in tension of AS4 fibers has been

investigated. AS4 is a PAN-based, high strength, high strain
fiber produced by Hexcel. Its properties are given in Table 1.

Longitudinal tensile modulus, Et 231 GPa

Tensile strength 4.433 GPa

Tensile failure strain, ε f 1.8%

Radius, R 3.55 µm

Table 1. AS4 properties, provided by Hexcel.

A total of 99 fibers with a gauge length L = 20 mm
were tested following the ASTM D 3379-89 standard (see
also[25]), using an Instron 5569 testing machine with a 10 N
load cell. Retro-reflective strips were attached at the ends of
the gauge length, to measure the fiber strain with an Epsilon
LE01 laser extensometer. A uniform displacement rate of
0.5 mm/min was applied until the fiber failed.

Figure 2(a) shows a plot (with the natural logarithm
of the failure probability on the vertical axis) of the re-
sults obtained from these tests. The stress at failure, ob-
tained by dividing the maximum force by the fiber cross-
sectional area (assuming a diameter of exactly 7.1 µm, see
Table 1) has been normalized by σ0, calculated as explained
in Section 2. The reference volume V0 was calculated as
πR2L = 7.92× 10−4 mm3. The probability of failure Pi for
the i-th strength was estimated from[26]

Pi =
i−0.5

N
(12)

where N is the sample size. Two test results were discarded
as clear outliers.

A Weibull distribution, Eq. 1, was then fitted to the ex-
perimental results using least squares, to obtain the Weibull
modulus m = 8.86 and reference stress σ0 = 4.68 GPa.

An alternative approach is to consider the strain at fail-
ure, which is a more direct outcome of the experiments, and
to determine the Weibull modulus for the probability of fail-
ure in terms of strain. Then Equation 1 becomes

P(ε,V ) = 1− exp

(
− V

V0

(
ε
ε0

)m′)
(13)

Both the experimental results and the Weibull fit have
been plotted in Figure 2(b) and it is interesting to note that
in this case the Weibull modulus is m′ = 10.397 with ε0 =
1.898.

The discrepancy between the two approaches can be ex-
plained by noting that the longitudinal modulus of each fiber,
defined as the ratio between stress and strain at failure, has
an average value of 237.61 GPa, with a standard deviation of
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Fig. 2. Weibull fit to probability of tensile failure for AS4 fibers versus
(a) applied stress and (b) strain.

6.96%. Since the actual modulus is unlikely to vary to such
an extent, a more likely explanation is that the calculation of
the failure stress is affected by variations in the fiber diam-
eter, whereas the failure strain has been measured directly.
It should be noted that a variation of 5% in fiber diameter
would explain a variation of up to 10% in the calculated stiff-
ness. This range of values agrees with the standard deviation
of the fiber diameter, which typically ranges from 3.07% to
7.66% [9].

5 Bending Failure of AS4 Fibers
In this section we compare the failure probability in

bending, obtained by carrying out direct loop tests on indi-
vidual fibers, with predictions based on the approach pre-
sented in Section 3.

5.1 Loop Tests
The bending failure tests followed a procedure similar to

the Sinclair loop test [10]. A loop was formed with a single
fiber, and was placed between two glass surfaces lubricated
with a drop of light mineral oil. One end of the loop was held
fixed, while the other end was attached to a slider. Moving
the slider had the effect of increasing the distance between
the two ends, thus increasing the curvature of the loop. The



tests were performed under a Nikon Eclipse LV100 micro-
scope with a Nikon DS-Fi1 digital camera. A video of the
complete test was recorded and the last frame before failure
was used to calculate the radius of curvature at failure, r f , by
computing the least-squares best fit to several points near A
in Figure 3. This test was done on 58 fibers.

A

B'B

C

Fig. 3. Example of image used to measure r f .

It should be noted that the curvature at failure is not ex-
actly 1

r f
, since the test configuration permits an out of plane

displacement of the fiber, hence the shape of the fiber at fail-
ure is helical. The pitch of the helix at the point of high-
est curvature is approximately h/π, where h is the vertical
distance between points B and B′. This distance can be mea-
sured by focusing the microscope on either B or B′ and it was
found to be approximately 50 µm. Hence the failure curva-
ture is given by

κ =
r f

r2
f +(h/π)2

(14)

Two important differences between the loop test and the
tensile test should be mentioned. First, the curvature is not
constant along the fiber and hence the failure curvature has
been defined as the measured maximum curvature of the
fiber. Second, the test configuration determines its own in-
trinsic fiber length, which decreases as the maximum curva-
ture increases. In other words, in the tension test we could
arbitrarily choose the specimen length, but here it is deter-
mined by the test itself.

Assuming these effects to be small, in Figure 4 we
have plotted the failure curvature normalized by κ0 =12.349
mm−1 vs. the failure probability determined from Equa-
tion 12. These results can be closely approximated with a
straight line, indicating that a Weibull distribution with mod-
ulus mb = 6.182 provides a reasonably accurate representa-
tion of the experimental results.

5.2 Analysis of Loop Test Results
PAN based fibers of modulus similar to AS4 have sim-

ilar compressive and tensile elastic modulus [24]. Hence, it
will be assumed that the neutral axis passes through the cen-
troid, ηn = 0.

If it is further assumed that the two moduli remain con-
stant at larger strains, and hence that the two-dimensional so-
lution for the shape of the fiber during the loop test is given

10
−1

10
0

10
1

10
−3

10
−2

10
−1

10
0

10
1

  
lo

g
 (

1
 /
 (

1
−

P
) 

 

κ / κ
0
 

Fig. 4. Weibull fit of probability of failure in bending versus applied
curvature for AS4 fibers; κ0 = 12.349 mm−1.

by the elastica[27]. The shape of the elastica can be deter-
mined by integrating the following equations:

dt1
ds

= κt2 (15)

dt2
ds

=−κt1 (16)

dx
ds

= t1 (17)

dy
ds

= t2 (18)

where ti is the i-th component of the tangent vector. Also,

κ =
M
EI

=
F (H + y)

EI
(19)

where M is the bending moment, F the end force and H the
distance from the line of action of F to the point of maximum
curvature, see Figure 5. The values of H and F to form a
stable loop (i.e., with M = 0 when s → ∞) can be obtained
from:

H =
4

κmax
(20)

F =
κ2

maxEI
4

(21)

xA

B'H

C

y

B

F F

Fig. 5. Elastica.

κ(s) was computed from the values of x(s) and y(s) that
had been obtained by numerical integration of Equations 15-
18; it has been plotted in Figure 6(a). Figure 6(b) shows plots



of the integral I1, calculated from Equation 8 for different
values of mb. This plot shows that I1 converges much faster
than κ decays and so, since in the present case mb = 6.18,
a good accuracy could be achieved by integrating only up to
point B.
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Fig. 6. Curvature κ and value of I1 for different values of m as a
function of the arc length s.

The probability of failure in the loop test can be calcu-
lated as a function of the maximum curvature, κmax, using
Equation 7 with the value of I1 obtained as above and I2 ob-
tained from Equation 9.

The experimental results in Figure 2 have been re-
plotted in Figure 7 together with the analytical predictions
obtained in the way described above, and using both the
stress-based, m, and strain-based, m′, Weibull moduli ob-
tained from the tension tests. Three vertical lines have been
added to the plot for reference. They correspond to the curva-
tures at which the maximum strain in the fibers is ε f , 1.5×ε f
and 2.0× ε f , where ε f = 1.8% is the mean tensile failure
strain given by the manufacturer. Note that the first vertical
line, κ= 5.07 mm−1, occurs well before any bending failures
are actually observed.

The distribution of experimental results in Figure 7
shown non-smoothness as well as jumps, particularly in the
range P = 0− 20%. These discontinuities are attributed to
the fact that the loop tests requires more manipulation of the
fibers than the tensile test, which results in some fibers fail-
ing prematurely. Overall, both sets of predictions provide an
accurate estimate of the maximum curvature for small values
of the failure probability. The strain-based Weibull modulus,
m′, provides a much closer fit to the full range of experi-
mental measurements, thus confirming the conjecture made
in Section 4 that the strain-based modulus captures more ac-
curately the actual diameter of the fibers.

It is concluded that the Weibull moduli for tensile fail-
ure provide good predictions for the probability of bending
failure in the loop test, with m′ providing a more accurate
description of the probability distribution. In the next sec-
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Fig. 7. Failure probability vs. maximum curvature for loop test; the
two sets of predictions are based on the stress- and strain-based
Weibull moduli for tensile failure.

tion they will be used to carry out an analysis of the failure
probability of fibers at a localized crease in thin sheets of
fiber-silicone composites.

6 Creasing of Composite Sheets
This section applies the results of Section 5 to the study

of fiber failure at a crease in a thin sheet made of unidirec-
tional fibers embedded in a silicone matrix. The macroscopic
curvature at which the fibers in the sheet begin to fail is mea-
sured experimentally and then compared to the predictions.

6.1 Experiments
The sheets used in these experiments were produced by

L’Garde using 12K unidirectional tows of AS4 fibers and a
silicone rubber with initial elastic modulus of 1 MPa and
shear modulus of 0.27 MPa. The sheets had a thickness of
0.54 mm and a fiber volume fraction Vf = 35%. For this par-
ticular combination of materials and fiber volume fraction,
microbuckling starts at very low curvatures of the sheet, and
the initial wavelength is λ0 ≈ 1.5 mm. As the sheet is folded
more tightly, the amplitude of the buckles increases and the
wavelength decreases. A view of the buckled fibers is shown
in Figure 8.

1 mm

Fig. 8. Fiber microbuckling on compression side of 0.54 mm thick
sheet.

In order to determine a quantitative relation between
curvature and fiber damage, 18 strips with a width of 5 mm
were folded under a Nikon ShuttlePix Digital Microscope.



From the images, the curvature of the outer (tensile) surface
of strip could be measured, see Figure 9(a). As the curvature
increases, the geometry of the outer surface tends to deviate
from a cylinder as the outer edges of the sheet form a three-
dimensional curve with maximum curvature higher than the
rest of the sheet. However, these higher curvatures occur
only in a relatively small boundary layer, see Figure 9(b),
and were not measured because failure is usually observed
away from the edges.

1.2 m
m

(a)

0.8 mm

(b)

Fig. 9. Examples of curvature measurement: (a) κ = 0.83 mm−1;
(b) κ = 1.25 mm−1 showing also edge waviness.

After the specimens had been folded, they were flat-
tened and the compression side was observed under a Nikon
Eclipse LV100 microscope to look for broken fibers. The
length of each line of broken fibers, see Figure 10, was mea-
sured and compared to the total width of the strip, to obtain
the percentage of fibers on the compressive surface that had
failed under the applied curvature. No attempt was made to
observe if any internal fibers had failed.

6.2 Analysis
It has been shown in Section 5.2 that in the case of the

loop test the probability of bending failure of the Hexcel AS4
fibers can be computed with Equation 7. Since the same
fibers have been used to construct the strips tested in the pre-
vious section, the same approach can be used to estimate the
probability of failure of the fibers in the strips.

1009.70 µm

Fig. 10. Measurement of broken fibers after creasing.

The integral I1 in Equation 8 has to be calculated for the
buckled shape of the fibers, given by Equation 2 [22, 23].
The length of fiber in the crease can be expressed as L = nλ,
where n is the number of buckles to be considered and λ is
the half-wavelength of the buckled fiber. To calculate I1 we
express κ and ds as

κ =
y′′

[1+(y′)2]
3
2

(22)

ds = [1+(y′)2]
1
2 dx (23)

where ( )′ = d( )/dx. The maximum curvature of the fiber is
given by

κmax =
aπ2

λ2 (24)

and finally we introduce the variable x̂ = x
λ . Hence, I1 is

calculated as follows:

I1 =
∫ L

0

∣∣sin πx
λ

∣∣m(
1+
( a

λ πcos πx
λ
)2
) 3m

2
ds

= nλ
∫ 1

0

|sinπx̂|m(
1+
( a

λ πcosπx̂
)2
) 3m−1

2
dx̂ (25)

It should be noted that this integral depends only on m,
λ and a. The value of m has already been determined in Sec-
tion 5; the latter two parameters are a function of the applied
curvature and can be determined as follows.

To determine λ we will assume, for simplicity, the ex-
treme case where the neutral surface coincides with the ten-
sion surface of the creased sheet. Consider the deformation
of a sheet of initial length λ0. Assuming plane sections to
remain plane (an assumption consistent with Ref. [22, 23])
the half wavelength of the buckled fibers on the compression
side of the sheet is equal to, see Figure 11:

λ = λ0(1−κt) (26)



where λ0 is obtained from Equation 3.

λ0

λ0κt

  2

λ0κt

  2

t

Fig. 11. Kinematics of bending deformation for a segment of com-
posite sheet of initial length λ0, subject to a curvature κ. The neutral
surface is assumed to coincide with the tension surface.

Once λ is known, a can be calculated by assuming that
the buckled fibers do not carry any axial force and hence their
axial length is constant. This yields the equation

∫ 1

0

√
1+
(a

λ
πcosπx̂

)2
dx̂ =

1
1−κt

(27)

which can be solved for a.
Lastly, the number of buckled halfwaves depends on

both the wavelength of the microbuckles and the length of
sheet over which the crease extends. Since in the experi-
ments the imposed kink angle was π radians, n will be the
first integer that satisfies the condition:

n ≥ π
κλ0

(28)

6.3 Results
We have predicted the probability of failure for a fiber

that lies on the compression side of a sheet of thickness t =
0.54 mm, with a crease of π radians. The predictions were
obtained from Equation 7 as follows. For the material used
for our experiments, the initial wavelength λ0 = 1.57 mm
was obtained from Equation 3. This value is in good agree-
ment with the observed experimental wavelength reported in
Section 6.1. Then, for any given curvature κ, Equations 26
and 27 respectively provided the values of λ and a. The value
of I1 was obtained from Equation 25 and I2 from Equation 9.

The predicted probability of failure has been plotted
in Figure 12 together with the results from the tests de-
scribed in Section 6.1. The model provides a good predic-
tion for the curvature at which damage starts taking place,
κ ≈ 0.9 mm−1, and also provides a good lower bound for the
amount of damage as the curvature of the crease is increased.

The spread in experimental results in Figure 12 may be
due to the three-dimensional features of the fold and also
to the fact that the failure of one fiber affects the state of
neighboring ones.
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Fig. 12. Probability of failure for fibers on compression side of
0.54 mm thick sheet with a fold of π radians with curvature κ.

6.4 More General Cases
The results presented thus far have been for a specific

sheet, in order to demonstrate the accuracy achieved by the
present model. Readers interested in potential applications
of silicone-reinforced carbon fiber composites will want to
know how tightly thin sheets of different thicknesses and
with a variety of fiber and matrix properties can be packaged
with little or no damage. Answers to such questions can be
obtained from Figure 13, where it has been assumed that a
failure probability of 1% in the most compressed layer of
fibers is acceptable. For any value of λ0, which is computed
from Equation 3 for any given set of material/geometric
properties of the sheet, this plot provides the value of κt and
also the corresponding value of the maximum strain in the
fibers, εmax, reached at the point of maximum curvature of
the buckled fibers. In computing the probability of failure it
has been assumed that there is only one buckle, in order to
eliminate the dependence on the thickness t, and the remain-
ing parameters have been left unchanged from the previous
study, in particular we have used the strain-based Weibull
modulus m′ = 10.397.

0.5 1 1.5 2 2.5
0.2

0.4

0.6

0.8

0.5 1 1.5 2 2.5
2.9

3

3.1

3.2

λ0 (mm)

κt εmax (%)
κt

εf 

Fig. 13. Values of κt and ε f for creases with a single buckle and a
failure probability of 1%.

In Figure 13 it is interesting to note that the smallest
value of εmax is 2.93%, which is 63% higher than the failure



strain of the fibers, in Table 1.

7 Discussion and Conclusion
This paper has presented a study of the failure of carbon

fibers, linking their failure probability under pure tension to
failure under bending. The results of this study were applied
to the creasing of thin sheets of composite materials of uni-
directional fibers embedded in a silicone matrix. It has been
shown that probabilistic failure models derived from tension
tests on individual fibers can be used to predict accurately the
outer surface curvature of the sheet at which a small percent-
age of fibers break when a crease is formed in the sheet.

The most accurate results were obtained using a strain-
based Weibull distribution of the failure probability in ten-
sion, which for the case of Hexcel AS4 fibers was determined
to have a modulus m′ = 10.397. The corresponding failure
probability for fibers under bending can be calculated from

P = 1− exp

(
− 2

m′+1
(Etκmax)

m′

σm′
0 V0

I1I2

)
(29)

where

I1 =
∫ L

0

∣∣∣∣κ(s)κmax

∣∣∣∣m′

ds

I2 =
∫ ξn

0

(√
R2 −ξ2 −ηn

)m′+1

dξ

The validity of this approach was confirmed by compar-
ing the maximum curvatures measured from loop tests on
58 fibers to predictions in which the failure probability was
computed from Equation 29 and the curvature of the fiber
was assumed to vary according to an elastica curve.

The same probability distribution was then used to cal-
culate the fiber failure probability in a composite sheet made
of unidirectional carbon fibers in a silicone matrix. Assum-
ing that the outer surface of the sheet does not stretch, the
buckling wavelength and amplitude of the innermost fibers
were estimated as functions of the curvature of the crease
from Equations 26 and 27, with the initial buckling wave-
length given by Equation 3. With this assumption, and also
also assuming that a single buckle will be responsible for
fiber failure, the integral I1 has the expression

I1 = λ
∫ 1

0

|sinπx̂|m
′(

1+
( a

λ πcosπx̂
)2
) 3m′−1

2

dx̂ (30)

Again, the validity of this approach was checked against
direct measurements of percentages of failed fibers on the
inner surface of thin sheets that had been creased by different
amounts.

The results of the present study could have major impli-
cations in the design of space structures made of carbon-fiber

silicone composites, as the results in Figure 13 show that thin
sheets made of these materials can be subjected to localized
curvatures that are at least 63% higher than the curvature lim-
its that would be calculated by using the failure strain of the
fibers, provided by the supplier, if it is accepted that only 1%
of fibers on the most compressed surface of the sheet are al-
lowed to break. It should also be noted that there are other
cases in which unexpectedly high fiber strains have been ob-
served in thin composite plates [28]; it may be possible to
explain these observations by an approach analogous to that
presented here.
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[4] F. López Jiménez and S. Pellegrino. Folding of fiber
composites with a hyperelastic matrix. International
Journal of Solids and Structures, 49:395-407, 2012.

[5] W. N. Reynolds and J. V. Sharp. Crystal shear limit to
carbon fibre strength. Carbon, 12:103–110, 1974.

[6] S. C. Bennett, D. J. Johnson, and W. Johnson. Strength-
structure relationships in PAN-based carbon fibres.
Journal of Materials Science, 18:3337–3347, 1983.

[7] J. B. Donnet, T. K. Wang, J. C. M. Peng, and S. Re-
bouillat. Carbon Fibers. Marcel Dekker, New York,
third edition, 1998.

[8] M. G. Bader, K. L. Pickering, A. Buxton, A. Rezaifard,
and P. A. Smith. Failure micromechanisms in contin-
uous carbon-fibre/epoxy-resin composites. Composites
Science and Technology, 48:135–142, 1993.

[9] K. Naito, Y. Tanaka, J-M. Yang, and Y. Kagawa. Ten-
sile properties of ultrahigh strength PAN-based, ul-
trahigh modulus pitch-based and high ductility pitch-
based carbon fibers. Carbon, 46:189–195, 2008.

[10] D. Sinclair. A bending method for measurement of the



tensile strength and Young’s modulus of glass fibers.
Journal of Applied Physics, 21:380–386, 1950.

[11] N. Oya and D. J. Johnson. Direct measurement of lon-
gitudinal compressive strength in carbon fibres. Car-
bon, 37:1539–1544, 1999.

[12] W. S. Williams, D. A. Steffens, and R. Bacon. Bending
behavior and tensile strength of carbon fibers. Journal
of Applied Physics, 41:4893–4901, 1970.

[13] W. R. Jones and J. W. Johnson. Intrinsic strength
and non-Hookean behaviour of carbon fibres. Carbon,
9:645–655, 1971.

[14] G. J. Curtis, J. M. Milne, and W. N. Reynolds. Non-
Hookean behaviour of strong carbon fibres. Nature,
220:1024–1025, 1968.

[15] J. L. G. Da Silva and D. J. Johnson. Flexural studies of
carbon fibers. Journal of Materials Science, 19:3201–
3210, 1984.

[16] H. M. Hawthorne. On non-Hookean behaviour of car-
bon fibres in bending. Journal of Materials Science,
28:2351–2535, 1993.

[17] M. Furuyama, M. Higuchi, K. Kubomura, H. Sunago,
H. Jiang and S. Kumar. Compressive properties of
single-filamente carbon fibres. Journal of Materials
Science, 28: 1611–1616, 1993.

[18] N. Oya and D. J. Johnson. Longitudinal compressive
behaviour and microstructure of PAN-based carbon fi-
bres. Carbon, 39:635–645, 2001.

[19] D. Loidl, O. Paris, M. Bughammer, C. Riekel, and
H. Peterlik. Direct observation of nanocrystallite buck-
ling in carbon fibers under bending load. Physical Re-
view Letters, 95:225501, 2005.

[20] H. Fukuda, M. Yakushijo, and A. Wada. A loop test
to measure the strength of monofilaments used for ad-
vanced composites. Adv. Composite Mater., 8: 281–
291, 1999.

[21] K. Naito, Y. Tanaka, J-M. Yang, and Y. Kagawa. Flex-
ural properties of PAN- and pitch-based carbon fibers.
Journal of the American Ceramics Society, 92:186–
192, 2009.

[22] W. H. Francis, M. S. Lake, and J. Steven Mayes. A
review of classical fiber microbuckling analytical so-
lutions for use with elastic memory composites. In
47th AIAA/ASME/ASCE/AHS/ASC Structures, Struc-
tural Dynamics, and Materials Conference, number
AIAA-2006-1764, Newport, RI, 2006.

[23] W. H. Francis, M.S. Lake, M.R. Schultz, D. Camp-
bell, M. Dunn, and H.J Qi. Elastic mem-
ory composite microbuckling mechanics: closed-
form model with empirical correlation. In 48th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics, and Materials Conference, number AIAA-
2007-2164, Honolulu, HI, 2007.

[24] N. Melanitis, P. L. Tetlow, C. Galiotis, and S. B.
Smith. Compressional behaviour of carbon fibres. part
II: Modulus softening. Journal of Materials Science,
29:786–799, 1994.

[25] I. M. Daniel and O. Ishai. Engineering mechanics of
composite materials, 2nd edition, Oxford University

Press, 2006.
[26] K. Trustum and A. De S. Jayatilaka. On estimating

the Weibull modulus for a brittle material. Journal of
Materials Science, 14:1080–1084, 1979.

[27] A. E. H. Love. A treatise on the mathematical theory
of elasticity. Fourth Edition. Dover Publications, New
York, 1944.

[28] Sanford, G., Biskner, A., and Murphey, T., Large Strain
Behavior of Thin Unidirectional Composite Flexures.
51st AIAA/ASME/ASCE/AHS/ASC Structures, Struc-
tural Dynamics, and Materials Conference, 12 - 15
April 2010, Orlando, Florida, 2010. AIAA 2010-2698


