
1/10

Fifth International Conference on Space Structures, 19-21 August 2002, University of Surrey

Expandable Structures formed by Hinged Plates

F JENSEN and S PELLEGRINO, Department of Engineering, University of Cambridge, UK

Abstract This paper presents a family of two-dimensional expandable structures formed by
flat plates connected by cylindrical (scissor) joints. These structures are kinematically
equivalent to previously known expandable bar structures. Special shapes of the plates are
determined for which the plates do not overlap or interfere during the expansion of the
structure, and for which the structure forms a gap-free disk in the closed configuration and an
annulus in the open configuration.

INTRODUCTION
This paper is concerned with the geometric design of symmetric expandable structures
consisting of rigid, flat plates connected by joints that allow only a relative rotation about one
axis, i.e. cylindrical hinges or scissor joints. We are interested in assemblies of identical
plates forming a complete ring, and which are able to move relative to one another between
two extreme configurations. In the closed configuration these structures form a gap free disk
and in the open configuration they form an annulus with, for example, a circular opening in
the middle. These structures are visually pleasing and have potential applications in the
design of retractable roofs.

A limited number of structures with properties broadly similar to those studied in this paper
have been known for some time. Verheyen [1] made extensive studies of transformable
structures based on pairs of overlapping elements connected by a cylindrical hinge in the
middle, with neighbouring  pairs connected by spherical joints.  Wohlhart [2] and You [3]
have considered expandable structures formed by  rigid  elements connected through hinged
links. Due to the relative rotation between the elements in each pair in the former case, and
between the main elements and the links in the latter case, these structures can vary in size
while maintaining essentially the same geometric shape.

The approach that is presented in this paper starts from a two-dimensional expandable bar
structure and replaces the bars with flat plates which are connected with scissor joints at
exactly the same locations as the original bar structure. Thus, the kinematic behaviour of the
bar structure is unchanged. Then, the shape and size of these plates are determined for which
the largest motion of the plate structure is possible.

The layout of this paper is as follows. The next section briefly reviews existing solutions for
expandable bar structures. A solution for n-fold symmetric structures consisting of multi-
angulated bars is of particular interest, and the following section obtains expressions for the
inner and outer radii of this type of structure in the open and closed configurations. Then, the
section Cover Elements for the Bar Structure determines certain special shapes of flat plates
that can be attached to the bar structure without affecting its range of motion. This solution is
then used in the following section for the design of some practical structures. A brief
discussion concludes the paper.
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BACKGROUND: EXPANDABLE BAR STRUCTURES
Expandable bar structures based on the concept of scissor hinges have been known for a long
time, initially only as two-dimensional, lazy-tong-type structures that extend linearly. More
recently, curved structures that expand in three dimensions have been pioneered by the
Spanish engineer Pinero [4] and further developed by Escrig [5] and Zeigler [6]. A major
advantage of these structures compared to other expandable structures is the relative
simplicity of their joints.

A considerable advance in the design of this kind of structures was made by Hoberman, with
the invention of the simple angulated element [7]. In its simplest form, shown in Figure 1, this
element consists of two identical angulated bars with central kinks of equal amplitude α
(“angulated bars”), connected by a scissor hinge at the centre, i.e. at node E.  This element has
the special property that lines through the end nodes A, D and B, C subtend a constant angle
when the angle between the two angulated bars is changed; in other words, an angulated
element subtends a constant angle when it is opened and closed.
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Figure 1: Angulated element

Because of this property, simple two-dimensional expandable structures can be obtained by
forming one or more closed, concentric rings of identical angulated elements. For example,
the expandable structure shown in Figure 2 could be made by joining with scissor hinges two
such rings, each consisting of 12 elements. Three-dimensional expandable structures, such as
the Hoberman sphere [8], are also formed from closed rings of identical angulated elements.

Figure 2: Expandable structure consisting of multi-angulated bars

You and Pellegrino [9,10] noted that consecutive angulated bars in Figure 2 maintain a
constant angle equal to α when the structure is expanded, and thus can be replaced with a
single multi-angulated bar. Thus, the structure of Figure 2 could also be made from a total of
24 bars, each having four segments with equal kink angles: 12 bars are arranged in a
clockwise direction and 12 anti-clockwise.  At each cross-over point, there is a scissor joint.



3/10

Note that the whole structure is arranged according to a pattern of identical rhombuses, which
are “sheared” when the structure expands. It is also possible to design much less symmetric
expandable structures, e.g. with elliptical shape [10], but this is beyond the scope of the
present paper.

A general expandable structure consisting of identical multi-angulated elements, such as that
shown in Figure 2, is defined by the number of segments in each angulated element, k, and
the number of angulated elements in each layer, n, plus the segment length. Thus, apart from
a scaling factor, this structure is fully defined by the parameters n;k, see Figure 3 for an
example. Note that, since the structure has n-fold symmetry
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Figure 3: One layer of 6;3 structure

If the structure is allowed to rotate while it expands, i.e. the scissor hinges are not required to
move on radial lines, the structure can be connected to n fixed points, which are the centres of
the n circles of radius r* defined by the multi-angulated elements that make up one layer, see
Figure 3. Thus, the motion of one layer of the structure is a pure rotation of each of its
elements about the centre of its corresponding circle. Using r* to define the size of the
structure, the segment length is

l = 2r∗ sinα
2

(2)

Either rigid or flexible covering elements can be attached to the structures described above to
create retractable roofs [8,11], but in previous studies these elements were allowed to overlap
in some, or all configurations.

EXTREME CONFIGURATIONS OF BAR STRUCTURES
The total rotation undergone by a multi-angulated element during the motion of the structure
from the fully-closed to the fully-open configuration will be called the rotation angle, β. This
angle can be found from Figure 4, showing the closed position. Note that all of the angulated
elements meet at the centre O, and their circles of motion also intersect at O. The open
configuration is reached when neighbouring multi-angulated elements touch at the point of
intersection of their respective circles of motion, P.
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Figure 4: Definition of  angles for a multi-angulated element

Because the angle subtended by a single bar on the circle of motion is equal to α, the element
angle subtended by a multi-angulated element is

γ = kα (3)

The limit angle subtended by the intersection points of two neighbouring circles of motion,  O
and P, corresponds to the two limits for the motion of the multi-angulated element. It is found
from:

δ = π −α (4)

The rotation angle can then be calculated from:

β = 2π − γ −δ = π + 1− k( )α (5)

In practice, the bar structure will not be able to reach these extreme configurations, due to the
physical size of elements and joints. Therefore, we introduce two reduction angles, γ1 and γ2,
to denote the corrections needed respectively for the closed and open positions. The reduced
rotation angle is thus

β∗ = π + 1− k( )α − γ1 − γ 2 (6)

Now, consider the two extreme configurations of the bar structure. Denoting by r and R its
inner and outer radii, respectively, and using the subscripts min and max for the open and
closed configurations, respectively, the following expressions can be derived by analysing
Figure 5:

rmax = 2r∗ sin 1
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Rmax = 2r∗ sin π − γ 2
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rmin = 2r∗ γ1
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Rmin = 2r∗ υ + γ1
2

 

 
 

 

 
 (10)

Joint Size Effects
Because the bar structure is composed of two distinct layers, the only possible interference is
between elements in the same layer. Assuming the joints to be circular with radius rj the two
reduction angles are

γ1 = γ 2 = 2arcsin
rj
r∗

1
2sin α 2( )

 

 
 

 

 
 (11)

COVER ELEMENTS FOR BAR STRUCTURE
We begin by considering what limitations are imposed on the motion of only a small piece of
the bar structure when covering plates are attached to it.

Consider a linkage consisting of two parallel bars AiAi+1 and B i+1Bi+2 and a pair of parallel
linking bars, as shown in Figure 6(a). Bar Bi+1Bi+2 is assumed to be fixed so no rigid body
motions are allowed and this leaves one internal mechanism which allows the linking bars to
rotate and bar AiAi+1 to translate. The top-left angle defines the rotation angle, β, as shown in
Figure 6(a); this angle is positive clockwise.

Consider a rigid plate attached to bars A iAi+1 and Bi+1Bi+2. This rigid body eliminates the
mechanism of the parallelogram. If a straight cut at an inclination angle θ is made in the plate,
then the mechanism is restored; the line of the cut is called the inclination line. So, now we
have two plates attached to the linkage, which are not allowed to overlap; depending on the
inclination angle, β  can either increase or decrease. In each case, the motion of the
parallelogram has to stop when the gap between the two plates is closed again. The two limits
on the rotation angle are denoted by β1 and β2, and once they are known θ can be found from
Figure 6(b) by considering the sum of the internal angles in ABC:

θ =
π − β1 − β2

2
(12)
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Figure 5: Definition of maximum and minimum radii and reduction angles
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Figure 6: Motion of simple linkage with two plates

As no length variables are present in Equation 12, the position of the inclination line relative
to the linkage does not affect the limits of the motion. Figure 6(b) shows that bar A iAi+1

translates by a distance L parallel to the inclination line

L = l2 + l2 − 2l2 cos β2 − β1( ) = l 2 − 2cos β2 − β1( ) (13)

Next, we consider two neighbouring multi-angulated elements, A1-A5 and B1-B5, which are
part of an expandable bar structure with k = 4, as shown in Figure 7. Together with bars A1B2,
A2B3, etc., these multi-angulated elements form three interconnected linkages, which are free
to move within certain limits.

In the closed configuration, Figure 7(a), the bars A1A2 and B1B2 form an angle α, giving for
the first linkage β1′ = α. Since the kink angles in the multi-angulated element are equal to α,
the third linkage has

′ ′ ′ β 1 = ′ β 1 + k − 2( )α = 3α (14)

The limit for the open position is found by noting that bars A3A4 and B4B5 of the third linkage
become collinear and thus ′ ′ ′ β 2 = π , as shown in Figure 7(b). Therefore,

′ β 2 = ′ ′ ′ β 2 − k − 2( )α = π − 2α (15)

A rigid plate is then attached to these interconnected linkages and cut along a single straight
line, as before. Now the inclination will be defined with respect to the line B1B2, hence the
inclination angle is

′ θ =
π − ′ β 1 − ′ β 2

2
+ α (16)

Substituting ′ β 1 = α  and Equation 15 into Equation 16 we obtain

( )
2

1
α

θ −=′ k (17)
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Figure 7: Two extreme positions of neighbouring angulated elements

Now, turning to the complete bar structure, we consider n inclination lines between the
angulated elements. These lines define n identical wedge-shaped covering elements with
wedge angle α. In the closed configuration these wedges meet at the origin O and form a gap-
free surface; in the open configuration they form a gap-free annulus; and they never overlap
in any intermediate configurations, as was first observed in Ref. [11].

The reduction angles are included in the definition of the inclination angle by modifying the
limits for the linkages:

β1
∗ = ′ β 1 + γ1 (18)

β2
∗ = ′ β 2 − γ 2 (19)

Substituting Equations 18 and 19 into Equation 16 the reduced inclination angle is obtained:

θ∗ = k −1( ) α
2

−
γ1
2

+
γ 2
2

(20)

From this equation it can be seen that if the two reduction angles are equal, then the solution
is a line parallel to that of the original solution in Equation 17.

Shape of Cover Elements
So far, only straight-edged cover elements have been considered, but in fact non-straight
shapes of a periodic type are also possible. Consider the motion shown in Figure 6(a); for the
upper and lower cover plates to fit together without any gaps or overlaps in both
configurations, the boundary edges must also match in both configurations. Hence, non-
straight features are allowed, provided that they repeat with period L, as shown in Figure 8. If
the common boundary between the two plates is longer than L, then the same features of the
lower plate must also be repeated in the upper plate. More generally, plates with common
boundaries must be shaped such that all features have a periodic pattern.
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Figure 8: Periodic pattern of  non–straight boundary

There are two important restrictions to the above periodicity rule, as obviously a boundary
that deviates significantly from the original straight line would inhibit the motion of the
linkage. First, when the plates are in contact the initial velocity of any point on the boundary,
which is perpendicular to the linking bars, needs to form an angle with the inclination line
greater than the slope of the boundary. This is to avoid that the plates jam when the motion is
about to begin, Figure 9(a). Second, any deviations of the boundary shape from the original
straight line need to lie within a region bounded by two circular arcs that pass through the
extreme points P and Q of the repeating length of the boundary; the centres of these circles
are defined by the intersections of lines through P and Q, and parallel to the linking bars in
the open and closed configurations. This is to avoid interference between points on the
boundary during the motion of the two plates, Figure 9(b).

The maximum distance, h, from the inclination line to the boundary of either plate can be
shown to be given by:

h = l 1− 1−
L
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Figure 9: (a) Direction of velocity vectors  in the two extreme positions; (b) region defining
possible boundary shapes

DESIGN OF EXPANDABLE STRUCTURES
Having defined the limits within which the shape of the cover elements can be varied, it is
possible to design many different expandable structures. Two different types of structures will
be presented. The first is a bar structure covered by a layer of plate elements: as the motion of
this structure is controlled by the underlying bar structure, here the cover elements can be
fixed to the multi-angulated element in many different ways. The second is purely a plate
structure, consisting of two layers of identical plates; this structure is designed such that it is
kinematically equivalent to the previous bar structure.
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Bar Structure Covered by Plates
For cover elements with straight edges the shape of the individual elements is that of a wedge
bounded by the inclination lines, which in the closed configuration meet at the origin. Note
that in this case, in general, a single cover element will not cover completely the angulated
element beneath it.

For cover elements with non-straight edges it is possible to find particular designs that
achieve various design aims. For example, it is possible to design a structure that forms a
circular opening, in the open configuration. This requires the repeating part of the edge of the
cover elements to be a circular arc, since in the open configuration the innermost repeating
part forms the edge of the central opening, and the arc radius to be equal to the radius of the
opening, ropening. The smallest possible radius of the boundary arcs is l, hence the general
condition to create a circular opening is

l ≤ ropening (22)

Consider a circle through the tips of the cover elements in the open configuration, which
includes the effect of both reduction angles. Hence, effectively adding γ1 to γ,  the total
reduction angle is defined as γtot = γ1 + γ 2. The opening radius is then determined from
Equation 7

ropening = 2r∗ cos k −1( ) α
2

+
γ tot
2

 

  
 

  (23)

Substituting Equations 2 and 23 into Equation 22
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  ⇒ γ tot ≤ π − kα (24)
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Figure 10: Wedge shaped plate structures with (a) 2=k ; (b) 3=k ; (c) 4=k

Plate Structures
In a plate structure that does not rely on a separate supporting bar structure, it must be
possible to fit all joints within the plates, which is often a significant challenge. To date, it has
been impossible to construct structures with straight-edged plates and with k > 5; the solutions
that have been found, with k ≤ 4, are shown in Figure 10. Note that for all these solutions the
inclination lines do not meet at the centre, thus leaving a small hole at the centre of the
structure in the closed configuration. It is possible to close this opening by modifying the
basic wedge shape.
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Using non-straight boundaries it is possible to design structures with a circular opening, as
described above, and to minimize the gap, at the centre of the structure, that results from
using plates with straight boundaries, see Figure 11.

(a) (b) (c)

Figure 11: Model of expandable structure

DISCUSSION AND CONCLUSION
An analytical approach for finding the shape of hinged plates that can execute large motions
has been presented. It has been shown that a large variety of shapes are possible, which are all
variants of a simple wedge shape. These expandable plate structures could be used in a wide
variety of small and large scale applications where a continuous gap free surface is required
that has the ability to execute a large shape change, such as toys, flow and sound control
elements and roof structures.
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