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Abstract

The paper shows that the behaviour of mechanical systems subject to unilateral con-

straints differs from that of standard systems in subtle and yet important ways; therefore a

proper theoretical formulation is required for simulating their behaviour. After showing that

the equilibrium equations for a multibody system subject to unilateral constraints have the

same form as the standard Kuhn-Tucker conditions in optimisation theory, the first-order

equilibrium equations are derived and their integration is discussed. At a general integra-

tion step one has to distinguish between constraints that are strongly active, weakly active,

and inactive. Whereas strongly active constraints can be treated like bilateral constraints

and inactive constraints can be neglected, weakly active constraints need to be constantly

re-analysed to determine if they switch to a different state. The outcome is that, in addition

to the well-known limit points and bifurcation points, a new type of limit point can exist,

where the path is non-smooth and the first-order equilibrium equations —after elimination

of any strongly active constraints— non-singular. Such points are called corner limit points.

In analogy with common limit points, the degree of instability of the system changes by one

at a corner limit point.
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Nomenclature

E, E0, E+ constraint matrices of bilateral, weakly and strongly active unilateral

constraints

G matrix defined in Equation 50

H, H+ reduced Hessian matrices

H+/H Schur complement of H in H+

I, I∗, I∗
+ index sets of unilateral constraints, and of active and strongly active

constraints

L Lagrangian function

T, T+ matrices of vectors that span the nullspace of ET or ET
+

U potential energy

W matrix of eigenvectors of reduced Hessian

W+ matrix defined in Equation 74

c1, c2, c3, c4 coefficients

dii elements of diagonalized reduced Hessian

gj , g, g0 constraint function, column vector of constraint functions, corre-

sponding column vector for weakly active constraints

ĝ vector defined in Equation 51

m number of bilateral or unilateral constraints

m+ number of unilateral constraints that are strongly active

n number of generalized coordinates

p control parameter

s path parameter

ti i-th row of T

t0 column vector defined Equation 55

wi i-th column of W

x, y, z vectors

ϕj , ϕ generalized coordinates, column vector of generalized coordinates

λj , λ, λ0, λ+ Lagrange multipliers, column vector of Lagrange multipliers, corre-

sponding column vectors for weakly (subscript 0) and strongly active

(subscript +) constraints
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1 Introduction

A common problem in structural mechanics is the determination of the static equilibrium path

of a structure for varying values of a certain parameter, which may be an external load, a

displacement, or the arc-length of the path itself. The reason why it is useful to know the

equilibrium path, and also which of its parts are stable or unstable, is that it characterises

the behaviour of the structure. Designers are, of course, interested in any special features of a

structure that might cause it to suddenly collapse. Special points of the equilibrium path are

very important. For example, in a shallow arch or dome a catastrophic change of configuration

occurs at the limit point, and the load-carrying capacity of a thin-walled cylindrical shell in

compression suddenly decreases at the bifurcation point. Therefore, much work has been done

on the computation of the equilibrium paths of all kinds of structures, and also on robust solution

procedures to handle special features that are encountered in certain cases. See, for example,

Crisfield (1991) for more details.

More recently, there has been a growing interest in mechanical systems that consist of rigid,

or elastically deformable elements, such as rods or shells, connected together by passive joints,

such as hinges or sliders, driven by motors or other kinds of actuators. These are known as

multibody systems and are covered by a now extensive literature (Garcia de Jalon and Bayo

1994, Shabana 1989). Multibody systems have a variety of applications, including robotic arms

and automotive suspensions.

The particular type of system that we are interested in is a linkage of flexible elements

connected by mechanical joints that undergo large changes of configuration. This is a model for

a type of deployable structure that is packaged for storage and/or transportation, and can be

automatically deployed into its operational configuration (Pellegrino and Guest 1999). Many

such structures have a small mobility and hence can be analysed by a purely kinematic approach,

see for example Kumar and Pellegrino (1997). However, there is an increasing tendency to design

systems with a mobility of zero, whose flexible elements are able to store strain energy during

folding and to release it during deployment (Hayman, Hedgepeth and Park 1994).

To simulate such systems, it is useful to think in terms of an equilibrium path in a config-

uration space that includes a set of independent coordinates augmented with a parameter that

controls the configuration of the system. Standard commercial multibody packages are currently

unable to handle the complex behaviour of these structures. Recently, a general computational

approach to systems with bilateral constraints has been proposed by Crisfield (1997), and some
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simple examples have been analysed by Cardona and Huespe (1998).

The research that is presented in this paper originated from the need to develop a realistic

simulation of a solid surface deployable antenna, recently developed in the Deployable Structures

Laboratory at Cambridge University (Guest and Pellegrino 1996). A physical model of the

antenna had shown that the antenna follows different paths during deployment and retraction;

in Schulz and Pellegrino (1998) we described in detail this behaviour. We showed, by analysing

a simple multibody system, that the observed behaviour can be explained by the existence of

two limit points on the equilibrium path; the first would cause a snap during deployment and

the second a snap during retraction. Thus, it would be possible for a deployable structure to be

in a particular configuration at the beginning of a deployment-retraction cycle and in a different

configuration at the end of it. Further work on systems that model more closely the real antenna

has shown, however, that the two limit points that are required to produce this behaviour exist

only for a small range of system parameters.

An important effect that was not included in our previous study and, as far as we know, has

not been previously considered in multibody systems, is the effect of unilateral constraints on

the equilibrium path. We have discovered that there are some important differences between

systems of this type and the better-known type of systems subject to bilateral constraints. Thus,

the aim of this paper is to develop a full understanding of the type of behaviour that can occur

in systems with unilateral constraints and, based on this understanding, to develop a proper

formulation for simulating such systems. Simple examples are used to illustrate key points, and

a full application is presented in the companion paper (Schulz and Pellegrino 1999).

The paper is laid out as follows. Section 2 derives the first-order equilibrium equations for a

multibody system that is subject to bilateral constraints, by generalising a formulation in terms

of independent coordinates in Thompson and Hunt (1973). A way of switching the integration

variable near a limit point is discussed.

Section 3 derives the first-order equilibrium equations for a conservative multibody system

subject to unilateral constraints. In addition to requiring that the Lagrangian of the system be

stationary in an equilibrium configuration, it is also required that the reactions of all unilateral

constraints be either zero, if the constraint is not active, or non-negative, if the constraint is

active. Mathematically, these conditions have the same form as the standard Kuhn-Tucker

conditions in optimisation theory.

It is important to distinguish between strongly active constraints, which in a particular
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configuration are active with non-zero reaction, and weakly active, whose reaction is zero. When

integrating the first-order equilibrium equations, at a general step all strongly active constraints

can be treated like bilateral constraints until they become weakly active or inactive, but weakly

active constraints need to be re-analysed to determine if they switch to a different state.

Section 4 shows that, in addition to the well-known type of limit points, there is a new

type where the path is non-smooth and the first-order equilibrium equations non-singular. Such

points are named corner limit points; they are associated with the change of state of a weakly

active constraint.

In Section 5 it is shown that, in analogy with common limit points, at a corner limit point

the degree of instability of a system also changes by one. A simple example is presented in

Section 6. Section 7 analyses the different cases that can be encountered when the first-order

equilibrium equations become singular.

A discussion, including a brief comparison of bilaterally and unilaterally constrained systems,

concludes the paper.

2 Systems with bilateral constraints

We consider a conservative multibody system which is described by a set of n generalized position

coordinates ϕ = [ϕ1 ϕ2 . . . ϕn]T and m scleronomic, bilateral constraints

gj(ϕ) = 0, j = 1, . . . , m (1)

The potential energy U of the system is assumed to be a function of the generalized coordi-

nates and a single control parameter p. It is assumed that the constraint functions, as well as

the energy function are C2-continuous. A standard procedure for enforcing m constraints is to

introduce the Lagrangian function

L(ϕ, p, λ) = U(ϕ, p) − gT λ (2)

where λ is a vector of Lagrange multipliers and

g = [g1 g2 . . . gm]T (3)

The equations of equilibrium for this system can be obtained by differentiating Equation 2

with respect to ϕ and λ, which gives

∇ϕL = ∇ϕU − Eλ = 0 , (4)

∇λL = −g = 0 . (5)
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Here E, of size n × m, is a constraint matrix, defined by

E = [∇g1 ∇g2 . . . ∇gm] (6)

It will be assumed that the gradients of the constraint functions are independent in all

configurations of interest, and hence E has full rank (regularity assumption). The term Eλ

represents the generalized constraint reactions.

Our aim is to determine equilibrium configurations of the system for varying values of the

control parameter p. Excluding bifurcational behaviour, for the moment, the tangent to the

equilibrium path in the ϕ-p space is uniquely defined at every point of the path. The equilibrium

path can be expressed with the aid of a parameter s:

ϕ = ϕ(s), λ = λ(s), p = p(s) (7)

A suitable choice for s would be the arc-length of the path itself or —away from limit

points— the control parameter p. Note that the symbol ϕ is being used to denote both a

general configuration of the system and an equilibrium configuration.

Starting from a given equilibrium configuration (s = 0) the equilibrium path can be traced

by applying a continuation method, i.e. the parameter s is incremented in finite steps and the

nonlinear algebraic equations, Equations 4-5 are solved iteratively for the current value of s.

Efficient techniques for doing this exist (Riks 1979, Crisfield 1980).

A different approach will be followed in this study. The idea is to define the equilibrium

path in terms of a set of differential equations in ϕ and λ that are numerically integrated with

a standard solver. This is conceptually similar to using a continuation algorithm that evaluates

derivatives in order to obtain improved initial estimates in each step. These differential equations

are the first-order equilibrium equations for the system (Thompson and Hunt 1973), obtained

by differentiating Equations 4-5 with respect to s

(∇2
ϕL)ϕ̇ + (∇ϕU ′)ṗ − Eλ̇ = 0 (8)

ET ϕ̇ = 0 (9)

where (˙) denotes total differentiation with respect to s; ( )′ denotes partial differentiation with

respect to p; and the Hessian of the Lagrangian function

∇2
ϕL = ∇2

ϕU −
m∑

j=1

λj∇2gj = ∇2
ϕU − [E,ϕ1λ E,ϕ2λ . . .] (10)
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is not necessarily regular.

Equation 9 is equivalent to stating that ϕ̇ is in the nullspace of the constraint matrix trans-

posed. Hence, considering a matrix T whose columns span the nullspace

ϕ̇ = Tx (11)

where x ∈ Rn−m. Substituting Equation 11 into Equation 8 and premultiplying by T T yields

Hx + T T (∇ϕU ′)ṗ = 0 (12)

where

H = T T (∇2
ϕL)T (13)

is the reduced Hessian.

If the reduced Hessian is regular we can solve Equation 12 for x and substitute the result

into Equation 11

ϕ̇ = −TH−1T T (∇ϕU ′)ṗ (14)

Then, the path derivative of λ is obtained by pre-multiplying Equation 8 by ET and solving

the resulting equation

λ̇ = (ET E)−1ET {(∇2
ϕL)ϕ̇ + (∇ϕU ′)ṗ} (15)

Note that the matrix ET E is positive definite due to the regularity assumption.

If we choose the control parameter as the path parameter, s = p, Equations 14 and 15

become

dϕ

dp
= −TH−1T T ∇ϕU ′ (16)

dλ

dp
= (ET E)−1ET {(∇2

ϕL)
dϕ

dp
+ ∇ϕU ′} (17)

2.1 Singularities

In some equilibrium configurations the reduced Hessian H may become singular. Let W =

[w1 . . . wm] be the matrix of the eigenvectors of H; the diagonalised form of H is

W T HW =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

d11

d22

. . .

dmm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (18)
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Introducing the transformation

x = Wy (19)

the diagonalized form of Equation 12 is

W T HWy + W T T T ∇ϕU ′ṗ = 0 . (20)

Assuming that only the first eigenvalue is zero, the first equation in Equation 20, which

corresponds to this eigenvalue, reads

0y1 + wT
1 T T ∇ϕU ′ṗ = 0 (21)

If wT
1 T T ∇ϕU ′ = 0, it is likely that the system is at a bifurcation point, in which case a

higher-order analysis is required (Thompson and Hunt 1973). A corresponding equation has

been derived, for the case of unconstrained systems, by Riks (1979). The post-critical behaviour

can be determined by applying a branch switching procedure (Stein, Wagner and Wriggers 1990).

If wT
1 T T ∇ϕU ′ �= 0, then Equation 21 requires

ṗ = 0 (22)

and the system is likely to be at a limit point (Thompson and Hunt 1973), in which case the

solution of Equation 20 is

y = [y1 0 . . . 0]T (23)

and hence, from Equations 19 and 11

x = w1y1 (24)

ϕ̇ = Tw1y1 (25)

Because ṗ = 0, the control parameter p cannot be chosen as path parameter and hence an

alternative choice is required. Any generalised coordinate such that ϕ̇i �= 0 can be chosen and,

considering Equation 25, this requires that the i-th component of Tw1 be not equal to zero.

In practice, it is best to switch parameters before getting too close to a limit point, and a

reasonable strategy is to choose the particular generalized coordinate that corresponds to the

largest magnitude component of Tw1. Letting ϕi be the new path parameter, Equation 12 is

supplemented by

ϕ̇i = 1 (26)
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Hence, Equations 11 and 12 yield
⎡
⎢⎣ H T T ∇ϕU ′

ti 0

⎤
⎥⎦

⎡
⎢⎣ x

ṗ

⎤
⎥⎦ =

⎡
⎢⎣ 0

1

⎤
⎥⎦ (27)

where ti denotes the i-th row of T . After solving Equation 27 we can compute the path deriva-

tives of the generalized coordinates according to Equation 11.

3 Systems with unilateral constraints

This section extends the formulation presented in Section 2 to systems with unilateral con-

straints, representing frictionless contacts between different parts of the system. Consider a

system with m unilateral constraints

gj(ϕ) ≥ 0, j ∈ I (28)

where I = {1, 2, . . . , m} identifies the full set of constraints. For simplicity, it is assumed that

there are no bilateral constraints, and that the coordinates ϕ are a set of independent coordinates

when all unilateral constraints are inactive.

As in the previous section, the potential energy U of this conservative system depends on

the generalized coordinates ϕ plus a single control parameter p. The same assumptions on the

continuity of U and gj are made, and an analogous Lagrangian function is defined

L(ϕ, p) = U −
∑
j∈I

λjgj . (29)

The differentiation of this function with respect to ϕ is unchanged from Section 2 and yields

an equation equivalent to Equation 4. Equation 5 is now replaced by inequality constraints and,

additionally, the Lagrange multipliers must be non-negative, and cannot be non-zero together

with the corresponding constraint function (complementarity condition). That is, a constraint

is either inactive (gj > 0) or it is active (gj = 0) and its reaction is positive (λj ≥ 0). See Pfeiffer

and Glocker (1996) for further details. Mathematically

∇ϕL = ∇ϕU −
∑
j∈I

λj∇gj = 0 , (30)

∂L
∂λj

= −gj ≤ 0, λj ≥ 0, λjgj = 0, j ∈ I . (31)

In optimization theory Equations 30-31 are known as Kuhn-Tucker conditions (Fletcher

1987). It is well-known that their validity is subject to a regularity condition, see below.
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We distinguish between active constraints, for which gj = 0, whose index set is

I∗ = {j ∈ I|gj(ϕ) = 0} (32)

and inactive constraints, for which gj > 0. Active constraints can be further subdivided into

strongly active, λj > 0, whose index set is

I+ = {j ∈ I|gj = 0, λj > 0} (33)

and weakly active constraints, λj = 0, whose set is simply I∗\I+. The regularity condition

requires that the gradient vectors ∇gj of all active constraints be linearly independent.

We are interested in tracing the equilibrium path of this system following an approach similar

to Section 2. However, the path in the ϕ-p space is in general non-smooth, due to the change

of state of unilateral constraints from active to inactive, or viceversa. Therefore, whereas for

systems with bilateral constraints the equilibrium path is smooth and the path derivatives are

continuous, now we will have to consider left-hand side and right-hand side derivatives, which

may not coincide.

In analogy with Section 2, we have to differentiate Equation 30 with respect to s. Due to

the non-smoothness of the path, we replace ordinary derivatives with right-hand side derivatives

with respect to s, denoted by (˙)

(∇2
ϕL)ϕ̇ + (∇ϕU ′)ṗ − E+λ̇+ − E0λ̇0 = 0 , (34)

∇2
ϕL = ∇2

ϕU −
∑
j∈I+

λj∇2gj (35)

where the constraint matrices for the strongly and weakly active constraints, E+ and E0 re-

spectively, and the corresponding column vectors of path derivatives of Lagrange multipliers,

are

E+ = [∇gj ], λ̇+ = {λ̇j}, j ∈ I+ , (36)

E0 = [∇gj ], λ̇0 = {λ̇j}, j ∈ I∗\I+ . (37)

The reason why the last two terms in Equation 34 include only the active constraints is

because for every point ϕ̃ of the equilibrium path, excluding end points, there exists a neigh-

bourhood on the path where the strict inequality gj > 0 holds for all constraints which are

inactive at ϕ̃. In this neighbourhood, the corresponding Lagrange multipliers λj are equal to

zero, due to the complementarity condition gjλj = 0, and thus their path derivatives λ̇j are also

zero at ϕ̃.
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Next, we turn to Equation 31. Since ∇ϕU and ∇gj are continuous on the equilibrium path

in the ϕ-p space, the regularity assumption and Equation 30 imply that λj is also continuous.

For this reason, at every equilibrium point ϕ̃ there exists a neighbourhood on the equilibrium

path —excluding end points— where the strict inequality λj > 0 holds for all constraints which

are strongly active at ϕ̃. The corresponding constraint functions are equal to zero in this

neighbourhood because of the complementarity condition, and hence also their path derivatives

at ϕ̃. In conclusion,

ġj = 0, j ∈ I+ . (38)

The corresponding equation for systems with bilateral constraints would be identical. In

analogy with Section 2, we replace Equation 38 with

ϕ̇ = T+x , (39)

where the columns of T+ span the nullspace of ET
+.

For weakly active constraints the path derivatives of the constraint functions and of the cor-

responding Lagrange multipliers are greater than or equal to zero. Moreover, complementarity

must hold for these path derivatives

ġj ≥ 0, λ̇j ≥ 0, λ̇j ġj = 0, j ∈ I∗\I+ . (40)

Otherwise, the constraint functions and the Lagrange multipliers could become negative and

there would exist points where the complementarity condition, Equation 31, would be violated.

At this point, we eliminate the strongly active constraints by introducing a reduced Hessian,

as in Section 2

H+ = T T
+ (∇2

ϕL)T+ . (41)

Defining

ġ0 = {ġj}, j ∈ I∗\I+ (42)

we can write Equations 34 and 40 as

H+x + T T
+ (∇ϕU ′)ṗ − T T

+E0λ̇0 = 0 , (43)

ġ0 ≥ 0, λ̇0 ≥ 0, λ̇T
0 ġ0 = 0 , (44)

where x and ġ0 are linked by

ġ0 = ET
0 T+x . (45)
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The inequalities in Equation 44 are to be interpreted in the sense that all elements of a

vector are greater than or equal to zero.

Equations 43 and 44 are the first-order equilibrium equations of a multibody system with

unilateral constraints. Similar equilibrium equations were derived by Björkman (1992) for struc-

tures that come into contact with a single rigid obstacle. Björkman made use of the mathe-

matical concept of B-differentiability. Our derivations are more straightforward, as no advanced

mathematical concepts are required.

Consider the case of systems with bilateral constraints. The standard stability condition for

a solution ϕ, λ of Equations 4-5 is

zT (∇2
ϕL)z > 0 (46)

for any z �= 0 in the nullspace of the constraint matrix transposed. This is a sufficient condition

for uniqueness of the solution and regularity of the reduced Hessian. In the case of systems with

unilateral constraints the stability condition would have to be satisfied only for those elements

z �= 0 of the nullspace of the matrix of strongly active constraints transposed that also satisfy

the condition

zT ∇gj ≥ 0 ∀j ∈ I∗\I+ . (47)

However, this will not guarantee the reduced Hessian H+ to be positive definite, or indeed

Equations 43 and 44 to have a unique solution.

The situation can be illustrated with the aid of the example depicted in Figure 1. The two

generalized coordinates are subjected to two linear, unilateral constraints. The potential energy

U is a quadratic, positive semidefinite function of the generalized coordinates, whose contours

are shown in the figure. For s = 0, Figure 1(a), the intersection of the constraint functions

corresponds to a stable equilibrium point and Equation 46 holds for z �= 0 in the nullspace of

ET
+ and satisfying Equation 47. There is no other feasible equilibrium point. Both constraints

are weakly active at the point of equilibrium.

Let us now consider a continuous transformation of the potential energy from s = 0, Fig-

ure 1(a), to s = ε > 0, Figure 1(b). Obviously, all points on the segment AB correspond to

equilibrium solutions and, thus, the path derivative of ϕ at the equilibrium point of Figure 1(a)

is not unique. There are path derivatives with

1. ġ1 > 0, ġ2 > 0,

2. ġ1 > 0, ġ2 = λ̇2 = 0, and
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3. ġ1 = λ̇1 = 0, ġ2 > 0.

If, instead, the continuous transformation from s = 0, Figure 1(a), to s = ε > 0 produces

the result shown in Figure 1(c), the path derivative is unique and λ̇0 > 0. In the next sections

we discuss the solution of the first-order equilibrium equations depending on the features of the

reduced Hessian.

4 Regular H+

If the reduced Hessian is non-singular Equation 43 can be solved for x and the solution substi-

tuted into Equation 45. Together with Equation 44, this yields

ġ0 = Gλ̇0 + ṗĝ , (48)

ġ0 ≥ 0, λ̇0 ≥ 0, λ̇T
0 ġ0 = 0 (49)

where

G = ET
0 T+H−1

+ T T
+E0 , (50)

ĝ = −ET
0 T+H−1

+ T T
+∇ϕU ′ . (51)

This is a Linear Complementarity Problem (LCP) in standard form, which has been dealt

with by, e.g. Murty (1988), Lemke (1970), and Cottle (1977). Contact problems, both of a static

and dynamic nature, invariably lead to complementarity problems, in some cases of the linear

type. Examples of LCP in dynamic mechanical systems can be found in Pfeiffer and Glocker

(1996) and Klarbring (1988); structural mechanics examples can be found in Björkman (1991).

In tracing the equilibrium path of a system with unilateral constraints, when one or more of

these constraints are weakly active we have to determine in each step which of the weakly active

constraints become inactive and which remain active, in order to update the index sets I∗ and

I+. In general, λ̇j is discontinuous at a point where an inactive constraint becomes active, or

viceversa. Such an event can induce the transformation of other weakly active constraints into

strongly active or inactive.

For this reason, treating unilateral constraints as either bilateral if they are active, or alto-

gether neglecting them when their Lagrange multiplier becomes negative, without solving the

LCP can lead in some cases to non-convergence and errors.
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After solving the LCP, the right-hand side path derivatives of ϕ can be computed by substi-

tuting λ̇0 into Equation 43, solving for x, and substituting into Equation 39

ϕ̇ = T+H−1
+ T T

+

(
E0λ̇0 − (∇ϕU ′)ṗ

)
(52)

The right-hand side path derivatives of λ+ are obtained by solving Equation 34

λ̇+ =
(
ET

+E+

)−1
ET

+

(
(∇2

ϕL)ϕ̇ + (∇ϕU ′)ṗ − E0λ̇0

)
(53)

Equations 52 and 53 are integrated. At each step the constraint function of the inactive

constraints and the Lagrange multipliers of the strongly active constraints are checked for zeros.

In this way the index sets I∗ and I+ can be updated.

4.1 Positive definite H+

Due to the regularity assumption the matrix G is also positive definite and, therefore, the LCP

in Equations 48 and 49 has a unique solution both for ṗ < 0 and for ṗ > 0 (Murty 1988). The

two solutions that are obtained correspond to the two directions in which we can move on the

path, Figure 2.

It can be shown that Equations 48 and 49 represent the Kuhn-Tucker conditions for a solution

of the associated Quadratic Programming Problem (QP)

min
λ̇0

(
1
2
λ̇T

0 Gλ̇0 + ĝT λ̇0

)
, λ̇0 ≥ 0 (54)

which can be solved instead of the LCP.

4.2 Non-positive definite H+

In this case, the uniqueness of the solution of the LCP is not guaranteed and hence bifurca-

tional behaviour can occur despite the fact that the reduced Hessian is not singular. This is an

important difference from systems with bilateral constraints.

If H+ is, for example, negative definite G is also negative definite. In fact, G can be negative

definite even in the case of an indefinite H+.

In practical situations often only one constraint is weakly active. In this case, if G is negative,

the possible solutions of the LCP are illustrated in Figure 3. The three lines plotted have the

same slope G (< 0). For ĝ = 0 the LCP has the same unique solution for ṗ > 0 and ṗ < 0,

as ṗĝ = 0. The weakly active constraint remains weakly active and the left-hand side and

right-hand side path derivatives of ϕ and λ coincide, see Equations 52 and 53.
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If ĝ �= 0 the LCP has two solutions for ṗĝ > 0 and no solution for ṗĝ < 0. Thus, if there

are two solutions for ṗ < 0 (ṗ > 0), there is no solution for ṗ > 0 (ṗ < 0). This means that the

equilibrium path has reached a maximum (minimum) in the ϕ-p space, which will be called a

corner limit point because of the non-smoothness of the path at this point.

At a common limit point the condition ṗ = 0 holds, but at a corner point it does not

necessarily hold, Figure 4(b). The reduced Hessian, H+, is singular at a common limit point,

whereas at a corner point it can be regular but not positive definite.

Note that the equilibrium path may also have reached a minimum or maximum in the ϕ-p

space if G = 0 (H+ regular but indefinite) and ĝ �= 0. In this case, the LCP has a unique solution

for ṗ = 0, corresponding to a horizontal tangent, and a unique solution for ṗĝ > 0, corresponding

to a non-horizontal tangent. In order to find out if the path has indeed reached a maximum or

minimum we have to derive the second order or possibly even higher order equilibrium equations.

If the number of weakly active constraints is greater than one, it is still possible to find corner

limit points. In addition, one can find mathematical examples where there is a unique solution

of the LCP for ṗ < 0 (ṗ > 0) and no solution for ṗ > 0 (ṗ < 0). In such cases the equilibrium

path has reached an end point, Figure 4(a). This is not possible with a single active constraint,

as in this case the plot in Figure 3 shows that there are either two solutions or none.

5 Stability at corner limit points

The stability of a mechanical system that is subject only to bilateral or strongly active constraints

can be analysed by considering the reduced Hessian, H+. The number of negative eigenvalues

of this matrix is equal to the degree of instability of the system (Thompson and Hunt 1973).

At a common limit point the degree of instability changes by one if a single stability coefficient

changes sign, and an obvious question is whether the behaviour at a corner limit point is the

same. Let us consider the case of a corner limit point, s = sP , where a single constraint is

weakly active. It is assumed that, in advancing on the equilibrium path with increasing s,

this constraint is transformed from strongly active into inactive. Therefore, the dimension of

H+ increases by one. Next, it will be shown that in this case the number of negative stability

coefficients also increases by one, and hence the degree of instability increases.

At such a corner limit point the basis of the nullspace of the matrix of strongly active

constraints transposed is obtained by augmenting with a vector t0 the basis of the nullspace of
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[E+ E0]T

T+ = [T t0] . (55)

Note that E0 is a column vector and that t0 has the property

tT0 E0 �= 0 (56)

because of the regularity assumption. Next, we partition the reduced Hessian

H+ =

⎡
⎢⎣ H T T (∇2

ϕL)t0

tT0 (∇2
ϕL)T tT0 (∇2

ϕL)t0

⎤
⎥⎦ (57)

where

H = T T (∇2
ϕL)T (58)

can be interpreted as the reduced Hessian to the left of sP . Since H+ is regular, assuming that

H and tT0 (∇2
ϕL)t0 are non-singular, the inverse matrix has the form

(H+)−1 =

⎡
⎢⎣ · · · · · ·

· · · (H+/H)−1

⎤
⎥⎦ (59)

where

H+/H = tT0 (∇2
ϕL)t0 − tT0 (∇2

ϕL)TH−1T T (∇2
ϕL)t0 (60)

is the Schur complement of H in H+ (Cottle 1974). Substituting Equation 59 into Equation 50

and evaluating

T T
+E0 =

⎡
⎢⎣ 0

tT0 E0

⎤
⎥⎦ (61)

we arrive at

G = (tT0 E0)2(H+/H)−1 (62)

Since G is negative at the corner limit point, the Schur complement must also be negative.

Using the inertia formula (Cottle 1974)

In(H+) = In(H) + In(H+/H) , (63)

where the inertia In of a real symmetric matrix is the triple

[no. eigenvalues > 0, no. eigenvalues < 0, no. eigenvalues = 0] ,

we can conclude that the number of negative eigenvalues of H+ increases by one at the corner

limit point. Thus, if the equilibrium path is stable for s = sP − ε it is unstable for s = sP + ε,

where ε is a small positive number. This result agrees completely with the behaviour at a

common limit point.
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6 Example of corner limit point

A simple system exhibiting a corner limit point is shown in Figure 5. This system consists of

a rigid bar AB of length L, connected by a frictionless hinge A to a rigid foundation, and an

extensional spring of stiffness k, whose undeformed length is zero. The spring is attached to the

bar at B and to a vertical slider at D. A unilateral constraint on point B requires it to lie above

a horizontal line through C.

The position coordinate is the angle ϕ between the bar and the horizontal, and the control

parameter p is the displacement of the end of the spring, measured from the line AC and positive

upwards.

In the initial configuration, shown in the figure, ϕ = 0 and p = −L. The bar is in contact

with C and the unilateral constraint g(ϕ) = sinϕ ≥ 0 is strongly active.

The equilibrium path is shown in Figure 6 for initially increasing p. The initial configuration

corresponds to (0, −L). As p increases from −L to 0 there is no change in ϕ. At (0, 0) the

constraint becomes weakly active, and the path derivatives of the gap, ġ0, and of the reaction,

λ̇0, are found by solving the corresponding LCP

ġ0 = −(kL2)−1λ̇0 − ṗL−1 (64)

ġ0 ≥ 0, λ̇0 ≥ 0, λ̇0ġ0 = 0 (65)

Because the complementarity condition requires at least one of λ̇0, ġ0 to be zero, this LCP

can be solved by trial and error. Thus, first we set ġ0 = 0 and find λ̇0 = −kLṗ ≥ 0, which

requires ṗ ≤ 0. Second, we set λ̇0 = 0 and obtain ġ0 = −ṗL−1 ≥ 0, which also requires ṗ ≤ 0.

So, there are two non-trivial solutions for ṗ < 0 and no solution for ṗ > 0, as shown in Figure 6.1

So, from the corner point the system can move in two different directions on the equilibrium

path. If the system goes back towards the initial configuration, bar AB remains horizontal and

in contact with the constraint at B; this part of the path is stable. Alternately, AB can rotate

by an amount such that AB and BD are always parallel; this part of the path is unstable.

In practice, from O the system will jump to a stable configuration with ϕ = 180◦, from which

ϕ can be increased to follow a stable path that is not shown in the figure.
1Note that ṗ is the right-hand side derivative, which is equal to the infinitesimal change of p when moving

away from the corner point.
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7 Singular H+

We introduce a transformation analogous to Equation 19, where W contains the eigenvectors of

H+ at the singularity s = s0, and diagonalise Equation 43

W T H+Wy + W T T T
+ (∇ϕU ′)ṗ − W T T T

+E0λ̇0 = 0 (66)

If the set of weakly active constraints is empty, the last term disappears and the problem

becomes identical to one involving only bilateral constraints, see Section 2.1.

If the set of weakly active constraints is not empty, the situation becomes more complex.

Assuming that only one eigenvalue of H+ is zero, the solution of the diagonalised equations is

c1ṗ − cT
2 λ̇0 = 0 , (67)

yi =
1
dii

wT
i T T

+

(
E0λ̇0 − ṗ∇ϕU ′) , i = 2, . . . , m+ (68)

where

c1 = wT
1 T T

+∇ϕU ′|s=s0 (69)

c2 = ET
0 T+w1|s=s0 (70)

and m+ is the number of constraints that are strongly active in the configuration s = s0.

We have analysed the case in which the number of weakly active constraints is one, in

which case E0 is a column vector and c2, λ̇0 and ġ0 are scalar quantities, and have found that

bifurcational behaviour can occur only for

c1 = 0 (71)

This condition corresponds to Equation 22 for systems with bilateral constraints, but recall

that systems with unilateral constraints can show bifurcational behaviour also when H+ is

regular, Section 4.2.

Next, we summarise the results of a detailed study of the various cases that can occur.

If c1 �= 0 and c2 �= 0, it is likely that we are at a corner limit point. The first order equilibrium

equations have two solutions, corresponding to two directions on the equilibrium path. For one

of these directions ṗ = 0 and a more detailed classification of the different cases that are possible,

see Figure 7, requires the introduction of

c3 = W T
+T T

+

(
E0 − c2

c1
∇ϕU ′

)
(72)

c4 = ET
0 W+c3 (73)
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where

W+ =
[

w2√
d22

w3√
d33

· · · wm+√
dm+m+

]
(74)

If c1 �= 0 and c2 = 0 it is likely that we are at a common limit point, where the equilibrium

path is smooth and the weakly active constraint does not change state.

8 Discussion

The first-order equilibrium equations of a conservative multibody system with unilateral con-

straints that are functions of the coordinates, but not of the control parameter of the system,

have been derived in a straightforward manner, without recourse to advanced mathematical

concepts. If the reduced Hessian matrix of the system is regular a standard Linear Comple-

mentarity Problem (LCP) is obtained, whose dimension is equal to the number of weakly active

constraints.

During the integration of the equilibrium path equations, when the index set of weakly

active constraints is non-empty we have to determine at every step of the integration which of

the weakly active constraints become inactive and which remain active. This requires the LCP

to be solved. Strongly active unilateral constraints can be treated in a straightforward way, like

bilateral constraints.

For systems with bilateral constraints a sufficient condition for stability can be formulated

in terms of second-order derivatives. If this condition holds the path derivatives are uniquely

defined. A corresponding second-order condition exists for systems with unilateral constraints,

but it does not ensure that the path derivatives are unique.

In contrast to bilaterally constrained systems, systems subject to unilateral constraints can

be at a limit or bifurcation point even if the reduced Hessian matrix is regular. Therefore, a new

type of limit point, called a corner limit point, exists for such systems. At corner limit points

the equilibrium path is non smooth.

At an end point the LCP has a unique solution when the control parameter changes in

one direction, but no solution in the other direction. It has been shown that, if the constraint

functions are independent of the control parameter, end points can exist only if at least two

unilateral constraints are weakly active.

A simple example system exhibiting a corner limit point has been discussed. However, finding

a good example of a system with constraints independent of the control parameter and which
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has an end point is more difficult. This difficulty can be understood by recalling that, under

the assumptions made above, an end point requires at least two constraints to be weakly active

whereas a corner limit point requires only one.

Finally, note that a corner limit point may look exactly like an end point in a plot of

the control parameter vs. a particular coordinate that happens not to vary in the vicinity

of the limit point. Such plots can be misleading, and care should be taken before reaching

general conclusions. We believe that it is important that behind any simulation software for

the analysis of multibody systems of the type described in this paper there should be a solid

theoretical framework that can address the many subtle issues discussed in this paper.
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Figure 1: Solution of first order equilibrium equations (a) s = 0, (b) s = ε > 0 the solution is

non-unique, (c) s = ε > 0 but the solution is unique.
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Figure 3: Solution of LCP for one weakly active constraint and negative G.
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Figure 4: (a) End point (number of weakly active constraints > 1); (b) Corner limit point; (c)

Common limit point.
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Figure 5: Example of system with corner limit point; in the initial configuration p = −L, ϕ = 0.
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Figure 6: Equilibrium path of simple example.
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Figure 7: Different shapes of equilibrium path at a corner point, for c1 �= 0 and c2 �= 0; (a)

c3 �= 0, c4 > 0; (b) c3 �= 0, c4 < 0; (c) c3 �= 0, c4 = 0; (d) c3 = 0.
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