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Abstract

The high efficiency of circular monocoque cylindrical shells in carrying axial

loads is impaired by their extreme sensitivity to imperfections and there is an

extensive body of literature that addresses this behavior. Instead of following

this classical path, focused on circular cross-sections, this paper presents a novel

approach that adopts optimal symmetry-breaking wavy cross-sections (wavy

shells). The avoidance of imperfection sensitivity is achieved by searching with

an evolutionary algorithm for smooth cross-sectional shapes that maximize the

minimum among the buckling loads of geometrically perfect and imperfect wavy

shells. It is found that shells designed through this approach can achieve higher

critical stresses and knockdown factors than any previously known monocoque

cylindrical shells. It is also found that these shells have superior mass efficiency

to almost all previously reported stiffened shells.

Keywords: Shell buckling, Imperfection-sensitivity, Corrugated shells,

Structural optimization, Mass efficiency, Aster shell

1. Introduction

Large discrepancies between analytically predicted and experimentally mea-

sured buckling loads for monocoque cylindrical shells were first observed in the

1930’s and it was subsequently established that thin cylindrical shells under
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axial compression may buckle at loads as low as 20% of the classical value

(Brush and Almroth, 1975). Hence, in practice empirically defined knockdown

factors are used to decrease the theoretically estimated buckling loads of such

shells and this is the currently accepted design approach. Therefore, monocoque

cylindrical shells are designed for much larger theoretical buckling loads to en-

sure that, when the knockdown factor is applied, they still meet their design

requirements (Jones, 2006).

The potential structural efficiency of monocoque cylindrical shells in car-

rying axial loads has been lost due to their extreme sensitivity to geometric

imperfections, boundary conditions, loading, etc. and hence for all applications

requiring the highest structural efficiency they have been replaced by an al-

ternative structural architecture, the closely stiffened shell, a cylindrical shell

reinforced by stringers/corrugations and rings. This alternative architecture is

currently established as the premiere efficient aerospace structure (Singer et al.,

2002) and is widely used for lightness and extreme efficiency.

We propose an alternative approach that builds on previous work by Ramm

and co-workers (Reitinger and Ramm, 1995; Reitinger et al., 1994; Ramm and Wall,

2004), and consists in designing linear-elastic monocoque cylindrical shells with

a special cross-sectional shape that maximizes the critical buckling load and at

the same time reduces imperfection-sensitivity. These novel shells have asym-

metric cross-section and their behavior is fundamentally different from shells

designed with the knockdown-factor method.

A key feature of the proposed approach is that the critical buckling loads

of both perfect and imperfect candidate designs are introduced in a structural

optimization process (Reitinger et al., 1994; Reitinger and Ramm, 1995), and

hence its outcome is a design that has a high buckling load and at the same time

is also imperfection-insensitive. Standard optimization techniques focus only on

maximizing the critical buckling load and tend to converge towards designs

that are highly imperfection-sensitive, see for example Thompson (1972). This

serious drawback is avoided in the present approach. The optimization technique

by Reitinger et al. (1994) and Reitinger and Ramm (1995) is applicable to any
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type of structure and hence can also be used to design imperfection-insensitive

cylindrical shells with maximal critical buckling loads.

The paper is organized as follows. Section 2 presents the essential back-

ground to the present study. It includes: a brief literature review of the influence

of imperfections on cylindrical shells; a review of current design approaches to

avoid buckling; the selection of appropriate imperfections in buckling analysis;

previous work on the design of imperfection-insensitive shells; and structural

efficiency metrics for shell buckling. With this background, Section 3 presents

a new methodology for the design of imperfection-insensitive cylindrical shells.

The implementation in Section 4 produces four designs of carbon-fiber compos-

ite cylindrical shells. Section 5 analyzes these results in more detail and Section

6 considers two alternative design approaches. The mass efficiency of the new

designs is then compared to existing stiffened shells in Section 7. Section 8

concludes the paper.

2. Background

There is a huge body of literature on the buckling of linear-elastic thin shells

and the interested reader is referred to the extensive reviews have been compiled

by many authors (Brush and Almroth, 1975; Elishakoff, 2012; Hutchinson and Koiter,

1970; Jones, 2006). This review is focused on the essential background to the

present study.

2.1. Effects of Imperfections on Cylindrical Shells

The first major contribution to the present understanding of the effects of

initial imperfections on the buckling of circular cylindrical shells was made by

Von Kármán and Tsien (1941) who analyzed the postbuckling equilibrium of

axially compressed cylindrical shells. Donnell and Wan (1950) analyzed ini-

tially imperfect cylindrical shells and obtained equilibrium paths as sketched

by the dash line in Fig. 1, where P and Pcl are the compressive load and the

classical bifurcation buckling load, respectively. Figure 1 shows a sharply drop-

ping second equilibrium path and thus indicates that an initially imperfect shell
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buckles at the limit point B instead of reaching the bifurcation point A. Koiter

(1963) analyzed the influence of axisymmetric imperfections coinciding with

the axisymmetric buckling mode of a perfect cylindrical shell. His results, sum-

marized in Fig. 2, show that imperfections with even a small amplitude can

dramatically reduce the buckling load.

A

B

O

Pcl

Pcr

axial shortening

P

Figure 1: Sketch of equilibrium paths for axially compressed, geometrically perfect cylindrical

shells (solid line, from Von Kármán and Tsien (1941)) and imperfect cylindrical shells (dash

line, from Donnell and Wan (1950)).

A more general analysis of the influence of initial imperfections (Koiter,

1945) was based on an analysis of the potential energy of the loaded structure

in a general buckled equilibrium configuration. This analysis is applicable to

asymmetric imperfections and shells of arbitrary shape (Brush and Almroth,

1975), and provides an approximate solution to the secondary equilibrium path

for a perfect structure, with a single buckling mode associated with the first

bifurcation point:

λ0 ≡ P

Pcl
= 1 + a1δ + a2δ

2 + ... (1)

where a1, a2, ... are constants and δ is a measure of the lateral displacement

amplitude. This solution is shown by means of solid lines in Fig. 3. In case I

a1 �= 0 and for small values of δ the secondary equilibrium path is approximated

by a straight line. For the other two cases a1 = 0, resulting in quadratic

secondary equilibrium paths: a2 < 0 for case II and a2 > 0 for case III.
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Figure 2: Sketch of influence of imperfection amplitude (ratio of imperfection amplitude to

shell thickness) on buckling load Pcr of imperfect shells, based on Koiter (1963).

The corresponding equilibrium paths for imperfect structures are shown by

dash lines in the figure. λ± are ratios between the buckling loads of imperfect

structures with positive/negative imperfections and the perfect structure. Cases

I and II represent structures that are sensitive to imperfections, because the

buckling loads of the imperfect structures (λ− for case I and λ± for case II) are

lower than 1. In case I different signs of imperfections lead to different types of

imperfection-sensitivity.

1 11 λ0

λ+λ−

δ δ δ

Figure 3: Three types of post-buckling equilibrium paths for perfect and imperfect structures,

from Brush and Almroth (1975) and Koiter (1945).
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2.2. Design of Cylindrical Shells Against Buckling

The current approach for the design of axially compressed monocoque cylin-

drical shells against buckling accounts for buckling load reductions due to im-

perfections through the knockdown-factor method. The actual buckling load of

a cylindrical shell is estimated from:

Pcr = γPcl (2)

where γ is the knockdown factor and Pcl is given by (Brush and Almroth, 1975):

Pcl =
2πEt2√
3(1 − ν2)

(3)

where E, ν and t are the Young’s modulus, Poisson’s ratio and shell thickness,

respectively.

A widely used expression for γ is the empirical curve provided in NASA SP-

8007 (Peterson et al., 1965) and shown in Fig. 4. Given the radius to thickness

ratio R/t, this curve provides a lower bound to a large dataset of experimentally

derived knockdown factors and hence can be used to predict the buckling load

using Eq. 2.

Designs obtained from the knockdown factor method are required to achieve

a theoretical buckling load Pcl high enough that the reduced buckling load

Pcr obtained from Eq. 2 satisfies the design requirements. Fundamentally, the

knockdown-factor design method accepts highly imperfection-sensitive shell de-

signs, but limits the maximum load that can be applied to them, to keep them

safe.

An alternative structural form to the imperfection-sensitive monocoque cylin-

der is the stiffened cylindrical shell. Although it is difficult to make a gen-

eral comparison, as there are many different potential configurations for the

stiffeners, as an example it can be noted that experiments on 12 longitudi-

nally stiffened cylindrical shells with internal or external, integral or Z-stiffeners

provided knockdown factors in the range 0.7 to 0.95, indicating a much lower

imperfection-sensitivity than monocoque cylindrical shells (Card and Jones, 1966).
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Figure 4: Experimentally measured values of knockdown factor and empirically defined lower

bound curve, as a function of the radius to thickness ratio (Jones, 2006).

2.3. Manufacturing Imperfection Signature Approach

The empirically derived lower bound on the knockdown factor in Fig. 4 was

derived from many tests conducted over a long period of time and recently

it has been argued that the manufacturing, loading and boundary conditions

for this large set of shells are not sufficiently well-known to provide a rational

basis for modern design. Also, most data points correspond to metallic shells,

whereas fiber-reinforced composite shells are not well represented (Jones, 2006;

Nemeth and Starnes, 1998). Hence, it has been argued by several authors that

the knockdown-factor approach tends to provide overly conservative designs

because it allows for the worst possible imperfections which is not a reasonable

assumption for modern, precision-made shells.

An emerging alternative design approach is based on the “signature” of

the manufacturing imperfection, which is a statistical representation of geo-

metric imperfections based on measurements (Rotter et al., 1992; Teng, 1996;

Hilburger and Starnes, 2001; Hilburger et al., 2006; Jones, 2006). This imper-

fection signature is then applied in the analysis to accurately predict the ac-

tual buckling load. Hilburger et al. (2006) obtained the buckling loads of six

graphite-epoxy cylindrical shells subject to combined axial compression and
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torsion by using five imperfection shapes, including the actual measured imper-

fections of test specimens, mean imperfection shape, mean imperfection shape

plus or minus one standard deviation, and the critical-buckling-mode imperfec-

tion shape. The predicted and measured buckling loads of a composite shell with

an axially-stiff laminate [±45/02]s are summarized in Fig. 5, where it should be

noted that the measured amplitude of imperfection was in the range +1.27t to

−1.54t.
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Figure 5: Predicted buckling loads for axially stiff shells under combined axial compression

and torsion (Hilburger et al., 2006). Pcr and Tcr are the axial and torsional buckling loads of

imperfect shells; Pcl and Tcl are the corresponding bifurcation buckling loads of perfect shells;

σ is the standard deviation of the imperfection.

Figure 5 shows that the buckling loads predicted using an imperfection based

on the critical eigenmode, or using the SP-8007 data(Peterson et al., 1965) are

both much lower than the measured buckling load, indicating that using these

two approaches can lead to rather conservative designs. Note that the buckling

load predicted with the imperfection-signature approach closely matches the

measurements.
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2.4. Imperfection-Insensitive Shells

Jullien and Araar proposed an intuitive design for imperfection-insensitive

cylindrical shells(Jullien and Araar, 1991; Araar, 1990; Araar et al., 1998). Hav-

ing noted that in a cylindrical shell under axial compression the inward im-

perfections become amplified whereas the outward imperfections maintain a

constant amplitude, these authors considered a cross-sectional shape that is ev-

erywhere convex apart from symmetrically distributed, localized kinks. This

cross-sectional shape, shown in Fig. 6, is obtained from the critical eigenmode

of the shell, by taking the mirror image of all concave arcs. The resulting fluted

shell, called the “Aster” shell, is a precursor of the solution proposed in the

present paper. A knockdown factor of 0.77 was experimentally demonstrated

for an Aster shell with R = 75 mm, t = 153 μm and a deviation of +2.3 mm

from the circle.

Figure 6: Cross-sections of dominant eigenmode of circular shell (solid and dashed arcs) and

Aster shell (solid line) with R/t = 490.

A general shape optimization method for thin shell structures was proposed

by Reitinger et al. (1994) and Reitinger and Ramm (1995). Instead of consid-

ering only the buckling loads of perfect candidate structures, as in conventional

structural optimization, these authors considered both perfect and imperfect

structures in the evaluation of the objective function. This fundamental differ-

ence avoids convergence towards highly imperfection-sensitive designs.

The method consists of four steps linked in an optimization loop. First, the

buckling load of the perfect structure, P0, and the corresponding eigenmode, Φ,
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are computed. Second, the eigenmode is scaled by a prescribed amplitude and

is adopted as imperfection shape; it is then superposed to the perfect geometry

to define an imperfect shape. Third, the critical buckling load, Pcr, for the

imperfect structure is calculated. Finally, the minimum among P0 and Pcr is

chosen as the value of the objective function.

Applications of this method to the design of concrete shell roofs, stiffened

panels and free-form shells were presented by Reitinger and Ramm (1995); Ramm and Wall

(2004).

2.5. Efficiency Chart

Quantitative comparisons of different structural designs require the use of

suitable metrics. In the present case, the buckling performance of monocoque,

stiffened, or any other kinds of cylindrical shells can be compared by consid-

ering the weight and load indices (Peterson, 1967; Agarwal and Sobel, 1977;

Nemeth and Mikulas, 2009), which are defined as follows:

Weight index :
W

AR

Load index :
Nx

R

(4)

Here W , A, R are the total weight of the shell, the surface area and radius of

the cylinder, respectively, and

Nx =
Pcr

2πR
(5)

denotes the (axial) critical buckling stress resultant. The surface area of the shell

is A = 2πRL, where L is the length of the cylinder. Note that the weight and

load indices are dimensional, this is the form commonly used by shell designers.

For circular monocoque cylindrical shells, the relation between weight and

load indices can be found as follows. Begin by substituting W = ρAt into the

weight index expression, which gives

W

AR
=

ρt

R
(6)
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Then, solve Eq. 3 for t to obtain:

t =

√
Pcl

√
3(1 − ν2)
2πE

(7)

Then, substitute Eq. 7 into Eq. 6 and replace Pcr/γ for Pcl, from Eq. 2, to

obtain:
W

AR
=

ρ

R

√
Pcr

√
3(1 − ν2)

2γπE
(8)

Further substitution of 2πRNx for Pcr , from Eq. 5, and simplification gives:

W

AR
= ρ

√√
3(1 − ν2)

γE

Nx

R
(9)

Figure 7 shows a plot of W/AR vs. Nx/R. The inclined straight line in

the figure represents perfect (γ = 1) monocoque aluminum shells; the horizon-

tal line corresponds to lightly-loaded shells which are subject to a minimum

thickness constraint. The data points included in the plot represent; (a) shells

with integral-orthogonal stiffeners under axial compression (Katz, 1965); (b)

z- and integrally-longitudinally stiffened shells under axial compression (Card,

1964a); (c) a corrugated graphite-epoxy ring-stiffened cylinder under bending

(Davis, 1982); (d) ring-stiffened corrugated cylinders under axial compression

(Peterson, 1967); and (e) z-stiffened shells subject to bending (Card, 1964b).

Note that for structures subjected to bending the critical axial stress resultant

used in the calculation of the load index was the peak axial stress resultant due

to the critical bending moment, obtained from simple bending theory.

Shells closer to the right-bottom corner of the chart are the most efficient, as

they can carry larger loads using less material. The chart shows that most stiff-

ened cylindrical shells have higher efficiency than even perfect monocoque circu-

lar cylindrical shells. However, it should be noted that the reduced imperfection-

sensitivity of stiffened cylindrical shells is countered by their complex manufac-

turing process. Machining from thicker stock and special forgings are the main

manufacturing methods for metallic shells (Singer et al., 2002). In 1986 the cost

of a 320 mm diameter steel shell stiffened in one direction was on the order of
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$3,500, and of $15,000 for a similar, orthogonally stiffened shell (Scott et al.,

1987; Singer et al., 2002).
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Figure 7: Performance chart for stiffened cylindrical shells described in Section 2.5 (data

provided by Dr. M.M. Mikulas) and including plot of Eq. 9 for perfect (γ = 1) monocoque

cylinders.

3. Methodology

We have adopted the method of Ramm and co-workers (Reitinger et al.,

1994) to search for the cross-sectional shape of imperfection-insensitive mono-

coque linear-elastic cylindrical shells with maximal buckling load. This section

presents the methodology to parameterize the shape of the cross-section and to

formulate the design problem; the implementation of the design process is also

presented.

3.1. Parametrization of Cross-Section

The improved buckling load and decreased sensitivity to imperfections of the

Aster shell motivated us to explore corrugated shells with general cross-sectional

shapes and to introduce the concept of the wavy shell, shown in Fig. 8.
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The cross-section of the wavy shell is defined by a set of control points, with a

NURBS (Non-Uniform Rational B-Spline) interpolation creating a smooth curve

through the control points. The NURBS is given by (Hughes et al., 2009):

C(ξ) =
n∑

i=1

Ni,p(ξ)Bi, (10)

where Ni,p is a piecewise base function and Bi is a vector of control points. ξ,

p and n denote a parametric coordinate, the order of NURBS and the number

of base functions, respectively. The base functions are recursively defined as

(Hughes et al., 2009):

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ). (11)

For p = 0:

Ni,0(ξ) =

⎧⎨
⎩

1 if ξi ≤ ξ ≤ ξi+1,

0 otherwise
(12)

where ξi is the ith knot in the knot vector Ξ = (ξ1, ξ2, ..., ξn+p+1). In the

present study, 3rd degree NURBS with uniform knots, i.e. Ξ = (1, 2, ..., n+4),

were chosen. These base functions are periodic, which guarantees that the

closed cross-section generated by this NURBS has smooth slope and curvature

everywhere.

The wavy shell is defined to be axially uniform, so that the longitudinal stress

resultant is the dominant one. A varying cross-section would induce shear and

possibly even bending when the shell is loaded under axial compression, resulting

in a decrease in the axial stiffness of the shell and its buckling load.

Two main geometric constraints were introduced to narrow down the design

space. First, the control points were defined to be circumferentially equally

spaced and radially within a distance Δr from a reference circle of radius R, see

Fig. 8. This radial limit avoids excessive curvature of the wavy cross-section.

The circumferential position of the ith control point in the first quadrant, θ1,i,

is given by:

θ1,i =
π(i − 1)
2(N − 1)

, (13)
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Figure 8: Definition of wavy shell geometry showing also several control points.

where N is the total number of control points in the first quadrant, including

any control points lying on the x- and y-semi-axes.
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r3,i

r4,i
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Figure 9: Cross sections with (a) mirror-symmetry and (b) 4-fold symmetry. rq,i denotes the

radial position of the ith control point in the qth quadrant.

Second, to further narrow down the design space, the wavy section was

assumed to be either mirror-symmetric with respect to the x- and y-axes, as

shown in Fig. 9 (a), or 4-fold rotationally symmetric as shown in Fig. 9 (b).

In the first case there are only N control points in the first quadrant (of which

two lie on the x and y-axes) that divide it into N − 1 sectors subtending equal

angles. In the second case only N − 1 control points are needed (of which one
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lies on the axis) and all other points are obtained by rotation operations. Note

that the two symmetry schemes with N and N − 1 control points result in the

same spatial resolution for the wavy cross-section.

Thus, the cross-section is defined by:

C =

⎧⎨
⎩

C(r1,1, r1,2, ..., r1,N ) mirror-symmetry,

C(r1,1, r1,2, ..., r1,N−1) 4-fold symmetry
(14)

3.2. Formulation of Optimization Problem

For every candidate cross section, C, the objective function is defined as the

minimum among the following three buckling loads:

• the bifurcation buckling load, P0, of the geometrically perfect structure;

• the buckling load, P+, of a geometrically imperfect structure obtained by

superposing an imperfection of positive sign onto the perfect structure;

and

• the buckling load, P−, of a structure with an imperfection of negative sign.

The imperfection shape was chosen as the first (critical) buckling mode, for

the following reasons. First, finding the actual imperfection shape that leads

to the lowest buckling load is, after many years of research, still an open issue;

a widely used approach is to use the critical buckling mode, see for example

Ramm and Wall (2004), Hilburger et al. (2006) and Jones (2006). Second, tests

and analyses carried out by Hilburger et al. (2006) and reviewed in Section 2.3

have shown that the critical-mode imperfection leads to lower buckling load

predictions than the actual values, indicating that it is a conservative choice that

provides a lower bound on the buckling loads that can be expected in practice.

Third, we have carried out a detailed optimization study of wavy cylinders in

which the first four critical modes were used to define the imperfection shape.

Compared with the designs obtained using only the first critical mode, the

reduction in the buckling loads with the additional imperfections was only 3%.

In conclusion, the critical buckling mode is adequate for the present study.
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Figure 10 shows the geometrically perfect structure and one of the two imperfect

structures that were analyzed at one step of the optimization process.

+ =

(a) (b) (c)

Figure 10: (a) Wavy shell with perfect geometry, C0(r1,1, r1,2, ...); (b) imperfection shape

based on critical buckling mode, μΦ, with μ = 10t for clarity; (c) imperfect wavy shell,

C+ = C0(r1,1, r1,2, ...) + μΦ.

The imperfection amplitude was set equal to the shell thickness. According

to Fig. 2 this amplitude will cause a five-fold decrease in the buckling load and

hence provides a significant challenge for the present search for imperfection-

insensitive designs. Of course, the actual amplitude of the imperfections depends

on the manufacturing processes that are adopted; the effects of imperfection

amplitudes larger than t is analyzed in Section 5.3.

Regarding the sign of the imperfections, both positive and negative imper-

fection signs need to be considered in order to capture the different types of

imperfection-sensitivity discussed in Section 2.1.

In summary, the optimization problem was formulated as follows:

Maximize : min (P0, P+, P−)

among all wavy shells with either mirror-symmetric or 4-fold symmetric

cross-sections, defined by the control variables:

r1,i, i = 1, 2, 3, ...

that are subject to :

|r1,i − R| ≤ Δr, i = 1, 2, 3, ....

(15)

where:
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• P0, P+, and P− are respectively the buckling loads of wavy shells with

perfect geometry, imperfect geometry with positive imperfection, and im-

perfect geometry with negative imperfection;

• the positive imperfection is +tΦ and the negative imperfection is −tΦ.

3.3. Numerical Implementation

Our implementation of the design optimization problem was based on ex-

isting software, including commercial computer-aided design (CAD) and finite-

element analysis (FEA) software, and an open-source optimizer, all run by a

Matlab script. This section describes the three softwares that were used and

how they were interfaced.

The NURBS-based CAD software Rhino 3D (version 5.0) was used to create

CAD models of the cross-sections of the perfect wavy shells. The NURBS

interpolation solver embedded in Rhino 3D was used to read a text file containing

the positions of the control points and to create the cross-section geometry,

which was then exported as an Initial Graphics Exchange Specification (.IGS)

file. This process was automated by means of a Python script.

The optimization process requires FEA software that can be automated

through a scripting interface to set up analysis models and run non-linear buck-

ling analyses. There exists some very efficient finite element formulations for

axisymmetric shells, such as shell elements based on Fourier analysis for the

buckling analysis of cooling towers (Combescure and Pernette, 1989). This for-

mulation can also be used to analyze the influence of Fourier mode imperfections

on the non-linear buckling behavior of an axisymmetric shell, however it is not

applicable to the present situation.

The general purpose package Abaqus 6.11 was chosen. Abaqus/CAE was

used to read the .IGS file, set up three structural models (the first model with

the perfect geometry and the two others with imperfect geometries based on ei-

ther positive or negative imperfections), and compute the buckling load for each

model. For each candidate design, a Python script set up an Abaqus/Standard
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model including about 20,000 fully-integrated quadrilateral thin-shell elements

(element S4) of the shell with perfect geometry. A linear eigenvalue buckling

analysis was carried out on this initial model to compute the critical eigen-

mode, Φ. Next, the displacements of the nodes according to the first eigenmode

were extracted from the Abaqus/Standard output file and were scaled with the

maximum transverse displacement equal to the shell thickness.

Two FEA models of imperfect shells were obtained by superposing the scaled

displacements on the mesh of the perfect shell. For the perfect geometry and also

for each of the imperfect geometries, the critical buckling load was computed by

carrying out a load-displacement arc-length incrementation non-linear analysis,

using the Riks solver in Abaqus/Standard.

Figure 11 shows plots of the relationship between axial load vs. axial dis-

placement, obtained from non-linear analyses of the perfect shell and both im-

perfect shells. In each load-displacement curve, the first limit load has been

taken as the buckling load. The Abaqus/Standard Riks solver may turn back

at the first limit load and fail to compute the post-buckling behavior. This was

not an issue in the present case, since only the buckling load value is of interest.

The increments in the arc-length were automatically determined by the solver,

and the first limit loads were usually reached after 10 to 30 increments. The

maximum number of increments was set to 50, which was sufficient to reach the

first limit load in all examples presented in this paper.

The results of our simulations were checked by changing the maximum al-

lowed increments from a large value (typically, 1 kN) down to a small value

(100 N); the differences between these two cases were found to be within 1%.

It should be noted that Abaqus automatically reduce the increment as the non-

linearity of the response increases. It was found that a typical increment was

less than 5 N when the applied loads are close to the bifurcation points.

Lastly, the Evolution Strategy with Covariance Matrix Adaption (CMA-

ES)(Hansen et al., 2003) and Hansen (2011) open source algorithm (Hansen,

2012) was used as the optimizer. The background to this choice is that the

optimization problem in Eq. 15 does not have an explicit mathematical expres-
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Figure 11: Schematic of equilibrium diagrams for geometrically perfect and imperfect shells,

showing definition of limit loads. In the example shown the load-displacement curves for the

perfect shell and the imperfect shell with negative imperfection turn back at the first limit

load.

sion and, due to the highly non-linear relationship between shape and buckling

loads, the objective function is expected to be non-convex. Therefore, evolu-

tionary optimizers were evaluated and CMA-ES was selected for its efficiency,

see Bäck (1996) for a review of basic concepts.

An initial population of eight wavy shells was randomly chosen. Shells with

higher min(P0, P+, P−) were ranked higher. The top 4 designs in the popula-

tion of each generation were selected as parents and their design variables were

recombined and mutated to create 8 offspring structures for the next genera-

tion. The critical loads, P0, P+, and P−, of the best design in each generation

were recorded. After running the optimization for a set number of iterations,

typically 150, the structure with maximal min(P0, P+, P−) was taken as the

final solution.

The simulations were run on a Xeon X5680 server with 12 CPUs on a single

motherboard. Tests showed that simultaneously running 4 jobs on 3 CPUs

for each job minimized the average simulation time. A population size that
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is a multiple of 4 can best use this computational resource and, due to the

small number of design variables considered in the present study, the population

size was chosen as 8. The total simulation time to evaluate (P0, P+, P−) for a

population of 8 structures was about 1 hour.

4. Wavy Shell Designs

Four imperfection-insensitive carbon-fiber composite shells with a common

set of dimensions and material properties, loaded under axial compression and

clamped at both ends are presented.

4.1. Dimensions and Material Properties

The shells were chosen to have a square aspect ratio, which is a common

choice for studies of shell buckling, see for example Arbocz and Babcock (1968),

Davis (1982) and Hilburger et al. (2006). The dimensions presented in Table 1

were chosen, for practical considerations that will be addressed in a follow-on

paper on experimental testing,

Table 1: Dimensions of wavy shell designs

Thickness, t 180 μm

Radius, R 35 mm

Length L 70 mm

Maximum deviation from circle, Δr 1.5 mm

A symmetric six-ply laminate, [+60◦,−60◦, 0◦]s was adopted, where the 0◦

direction of the laminate is in the axial direction of the shell. It consisted of 30

μm thick unidirectional laminae of T800 carbon fibers and ThinPreg 120EPHTg-

402 epoxy, provided by the North Thin Ply Technology company, with a fiber

volume fraction of approximately 50%. The following lamina properties were

measured: E1 = 127.9 GPa, E2 = 6.49 GPa, G12 = 7.62 GPa, and ν12 = 0.354,

where E1 is the modulus along the fiber direction. The ABD matrix of the
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laminate was calculated from these properties, using classical lamination theory

(Daniel and Ishai, 2006):

ABD =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

9.919 × 106 2.670 × 106 0 0 0 0

2.670 × 106 9.919 × 106 0 0 0 0

0 0 3.625 × 106 0 0 0

0 0 0 0.0108 0.0099 0.0034

0 0 0 0.0099 0.0373 0.0081

0 0 0 0.0034 0.0081 0.0125

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(16)

where the units of the A and D matrices are N/m and Nm, respectively.

4.2. Reference Cylindrical Shell

A buckling analysis of a reference circular shell, made from the laminate

selected in Section 4.1 and with the geometric properties defined in Table 1,

was carried out. The assumed geometric imperfection was based on the critical

buckling mode, shown in Fig. 12, with amplitude μ = t. The buckling loads

were 4.153, 1.137, and 1.137 kN, respectively for the geometrically perfect shell

and the shell with positive and negative imperfections.

The knockdown factor is calculated from:

γ =
min(P+, P−)

P0
(17)

which gives 0.274. The critical stress is calculated from:

σcr =
min(P0, P+, P−)

lpt
, (18)

where lp and t are the arclength of the (wavy) center line and the thickness of

the shell. Its value is 28.724 MPa.

4.3. Mirror-Symmetric Shells

Two mirror-symmetric wavy shells with N = 11, 16 were designed. The

optimization was first run for the case N = 16 and, since this initial run had
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Figure 12: Critical buckling mode of reference (circular) cylindrical shell.

converged long before the 150th generation, all other optimizations were also run

for 150 generations. The evolution of the buckling loads (divided by the buckling

load of the perfect, reference cylindrical shell) for the perfect and imperfect

candidate designs for these two cases is shown in Fig. 13. An optimum design for

the case N = 11 occurred at the 66th generation, with buckling loads of 11.017,

10.145 and 11.420 kN, respectively for the perfect shell and the imperfect shells

with positive and negative imperfections. The optimum for the case N = 16

occurred at the 126th generation, with buckling loads of 14.981, 14.908 and

14.897 kN, respectively.

Note that in Fig. 13(a) P− is almost always larger than P0 which is in turn

larger than P+, suggesting that the majority of candidate designs considered

during this optimization behave according to Case I in Fig. 3. Also note in the

enlargement of Fig. 13(b) that after the 37th generation the candidate designs

have slightly lower buckling loads for the imperfect cases than for the perfect

shell, indicating that in this case the candidate designs behave according to Case

II.

The cross-sections obtained for the two cases are shown in Fig. 14, and the

optimal radial positions of the control points are presented in Table 2.

The knockdown factor is calculated from Eq. 17, which gives 0.921 and

0.994 for the cases N = 11, 16, respectively. The critical stress is calculated

from Eq. 18 which gives 224.639 and 310.494 MPa, respectively for N = 11, 16.
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Figure 13: Evolution of buckling loads for mirror-symmetric wavy shells with (a) N = 11 and

(b) N = 16. The loads are normalized by the buckling load of the perfect, reference cylindrical

shell.
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(a) (b)

Figure 14: Cross-sections of mirror-symmetric wavy shells with (a) N = 11 and (b) N = 16.

Table 2: Radial deviations, ri − R, (in mm) of control points of mirror-symmetric shells.

Point 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N=11 1.5 -1.5 1.5 -1.5 1.5 -1.5 1.5 1.5 -1.5 1.5 0

N=16 -1.5 1.5 -1.5 -1.5 1.5 0 1.5 -1.5 -1.5 1.4 -1.5 -1.2 1.5 -1.5 1.1 1.4

4.4. 4-Fold Symmetric Shells

4-fold symmetric wavy shells were also designed. These designs are also

denoted as N = 11, 16, although the actual numbers of independent control

points used in the optimization were in fact 10, 15, respectively, as explained in

Section 3.1.

The evolution of the buckling loads is plotted in Fig. 15 where it can be seen

that both cases converge to the Case II buckling. The best design for the case

N = 11 was obtained at the 49th generation, with buckling loads of 10.587,

9.325 and 9.310 kN for the perfect shell and for imperfect shells with positive

and negative imperfections, respectively. The best design for the case N = 16

was obtained at the 127th generation, with buckling loads of 13.609, 13.534 and

13.536 kN, respectively. The knockdown factors for the two cases were 0.879

and 0.994 and the corresponding critical stresses 208.224 and 281.712 MPa.

Figure 16 shows the cross-sections of the two 4-fold symmetric cross-sections

obtained from this study. The optimal radial deviations of the control points

from the reference circle are presented in Table 3.
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Figure 15: Evolution of buckling loads for 4-fold symmetric wavy shells with (a) N = 11 and

(b) N = 16. For the case N = 16 P± is slightly lower than P0 after the 72nd generation. The

loads are normalized by the buckling load of the perfect, reference cylindrical shell.
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(a) (b)

Figure 16: Cross-sections of 4-fold symmetric wavy shells with (a) N = 11 and (b) N = 16.

Table 3: Radial deviations of control points, ri − R, (in mm) of 4-fold symmetric shells.

Point 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N=11 1.5 1.5 -1.5 1.5 0 1.5 -1.5 1.5 1.3 -1.5 1.5

N=16 1.5 -1.5 1.5 0 -1.5 1.4 1.5 -1.5 -1.5 1.4 -1.5 -1.5 1.5 0 -1.5 1.5

5. Comparison and Analysis of Wavy Shell Designs

Starting with a comparison of the predicted performance of the four shell

designs obtained in the previous section, a deeper insight into the proposed

approach is then obtained by considering the component wavelengths of each

design. Also, an analysis of the effects of increasing the amplitude of imperfec-

tions in wavy cylinders confirms the robustness of the present approach.

5.1. Comparison

The knockdown factor and the critical stress for each wavy shell design pre-

sented in Sections 4.3-4.4, calculated from Eqs. 17-18, are presented in Table 4.

Note that the knockdown factor and the critical stress of the mirror-symmetric

shell with N = 16 are respectively 7.9% and 38.2% higher than for the shell with

N = 11 and the same type of symmetry; for 4-fold symmetric shells, these val-

ues increase respectively by 13.1% and 35.3% when N is increased from 11

to 16. These results show that increasing the number of control points leads
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Table 4: Length of center line, knockdown factor and critical stress for 180 μm thick carbon-

fiber composite shells with reference radius of 35 mm.

Symmetry N lp [mm] γ σcr [MPa]

Mirror
11 250.897 0.921 224.639

16 266.547 0.994 310.494

4-Fold
11 248.373 0.879 208.244

16 266.900 0.994 281.712

Circular N/A 219.911 0.274 28.724

to decreased imperfection-sensitivity and improved critical stresses. Compared

with mirror-symmetric wavy shells, 4-fold symmetric wavy shells have lower

critical stresses and smaller or equal knockdown factors, suggesting that mirror

symmetry is a better choice.

Compared to the reference circular shell presented in Section 4.2, the critical

stress of the best wavy shell design (N = 16 and mirror-symmetric) is 981%

higher and the knockdown factor is 263% higher. This result indicates that

the introduction of wavy cross-sections has dramatically reduced imperfection-

sensitivity, and the critical stress has also been significantly improved.

5.2. Analysis of Shell Cross-Sections

A better understanding of the wavy shell designs generated in Sections 4.3-

4.4 can be obtained by decomposing each cross-section profile into a series of

periodic waveforms. We used the Fast Fourier Transform function in Matlab to

compute these components, to obtain the coefficients of the decomposition:

A(k) =
m−1∑
n=0

ane−i2πk n
m , k = 0, 1, 2, ..., m − 1 (19)

where k is the wave number and m is the number of sampling points, chosen

as 1000. an is the radial deviation of the nth sample point from the reference

circle:

an = rn − R. (20)

The results are plotted in Figs 17-18, for the range k = 0, 1, . . . , 49.

27



  

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Wave Number, k 

A
m

p
lit

u
d

e

 

 

    N = 11

    N = 16

Figure 17: Components of mirror-symmetric wavy shells.
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Figure 18: Components of 4-fold symmetric wavy shells.
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Comparisons between different designs can be made more easily if we de-

fine the peak wave number, equal to the wave number k corresponding to the

maximum amplitude A(k), and the bandwidth of the distribution. equal to the

maximum wave number whose amplitude is no less than 10% of the amplitude

of the peak component. It can be noted in Figs 17-18 that both the peak wave

number and the bandwidth increase as the number of control points is increased

from N = 11 to N = 16.

The peak wave number and the bandwidth of all wavy shells obtained in the

present study are presented in Table 5. These results, along with the knock-

down factors and the critical stresses in Table 4, indicate that higher peak

wave numbers and wider bandwidths tend to lead to higher critical stresses and

knockdown factors. The spatial component distributions for each particular

type of symmetry show that the shell designs with the largest knockdown factor

and critical stress tend to have several components with large amplitudes rather

than a single peak, suggesting that an optimal combination of several different

components is desirable.

Table 5: Peak wave number and bandwidth of wavy cylinder designs.

Symmetry N Peak Wave

Number

Bandwidth

Mirror
11 18 23

16 22 39

4-Fold
11 12 25

16 20 37

5.3. Effects of Imperfection Amplitude

In the previous optimization study the amplitude of the imperfections was

assumed to be equal to one shell thickness. Because there are many fac-

tors that affect this parameter (Singer et al., 2002), and even recent studies

(Hilburger et al., 2006) have reported imperfections larger than t, it is desirable

to study the effects of a range of imperfection amplitudes.
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Instead of re-running the optimization study with different imperfection am-

plitudes, we took the wavy shell geometries obtained in Section 4, superposed

the critical-buckling-mode imperfection with amplitudes of ±0.5t, ±2t on the

perfect geometry, and calculated the corresponding buckling loads, P±, using

the Riks solver in Abaqus/Standard. Equation 17 was then applied to calculate

the knockdown factors for these shells and the results are presented in Table 6.

The general data shown by the data is that the knockdown factor decreases

when μ increases. The reduction is largest for the mirror-symmetric shell with

N = 11 for which the knockdown factor decreases by 11.13% for μ increasing

from 0.5t to 2t, so this particular design is rather sensitive to the imperfection

amplitude. However, for the other three designs the reduction is quite small. In

particular, note that both designs with N = 16 show a reduction of only 2% for

μ increasing from 0.5t to 2t .

Table 6: Sensitivity of knockdown factors to imperfection amplitude.

Symmetry N μ = 0.5t μ = t μ = 2t Overall

Reduction

%

Mirror
11 0.952 0.921 0.846 11.13

16 0.999 0.994 0.979 2.00

4-Fold
11 0.908 0.879 0.854 5.95

16 0.997 0.994 0.977 2.01

6. Comparison to Alternative Shell Designs

Here we compare the symmetry-breaking cross-section designs obtained in

Section 4 with alternative designs, based either on a sinusoidally corrugated

shape or on the fluted shape of the Aster shell.
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6.1. Sinusoidally Corrugated Shells

Shells with a periodic cross-section were obtained by superposing a sinusoidal

wave on the reference circle:

r(θ) = R + Δr sin(kθ), (21)

where k is the total number of waves and Δr their amplitude. The dimensions

and material properties of the shell were unchanged from Section 4.

The buckling loads of sinusoidally corrugated shells with three different am-

plitudes of the corrugation, Δr, and a perfect geometry are plotted in Fig. 19.

The trend is that the buckling load increases as the wave amplitude increases

beyond a transition number of waves, k, and the transition occurs at smaller

values of k for larger Δr’s.
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Wave Number, k

Figure 19: Buckling loads of geometrically perfect sinusoidally corrugated shells with corru-

gations of three different amplitudes.

Both perfect and imperfect sinusoidally corrugated shells were also analyzed

for the case Δr = 1.5 mm, which coincides with the maximum deviation from

the reference circle allowed in Section 4. As in Section 4, the geometry of the

imperfect shells was obtained by superposing the scaled critical buckling mode
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on the perfect geometry:

C±(k) = C0(k) ± μΦ, (22)

where C0(k) and C±(k) are the shapes of the perfect and imperfect shells, re-

spectively; Φ is the critical eigenmode obtained from a linear eigenvalue analysis,

and the amplitude of the imperfection μ = t. The buckling loads of the per-

fect and imperfect shells, P0 and P±, were obtained, as before, from non-linear

arc-length controlled simulations, for sinusoidal shells with k = 8, . . . , 40.

Then the knockdown factor and the critical stress for each value of k were

calculated from Eqs 17-18; their values are plotted in Fig. 20. The plot of knock-

down factors, Fig. 20(a), shows an initial region of rapid increase as k increases

from 8 to ≈ 10, followed by a dip and a region of much less rapid increase for

k > 15. The plot of critical stress, Fig. 20(b), shows a rapid increase in the

range k = (8, 15), followed by an asymptotic increase toward 220 MPa. To-

gether, these plots indicate that, for the specific case R = 35 mm that is being

considered, sinusoidally corrugated shells with around 10 corrugations are effec-

tive in decreasing the imperfection sensitivity, however there is a diminishing

return for further increasing the number of corrugations. In fact, it will be seen

in Section 7 that the mass efficiency actually begins to slightly decrease beyond

k ≈ 15.

The knockdown factor and the critical stress of the wavy shells in Section 4

are also plotted in Fig. 20, using in each case the peak wave number as the

characteristic value of k. These plots show that the wavy shell designs are sig-

nificantly more effective in increasing both values. However, it should be noted

that the sinusoidal shells require only two design variables (wave number and

amplitude), leading to simpler designs and potential simplification in manufac-

turing than the proposed wavy shells. Figure 20(b) shows a significant increase

in the critical stress as the number of control points is increased from 11 to 16.

It would be interesting to further explore this trend and establish at what value

of N a limit may be reached.

A comparison of the critical buckling modes of the different shell designs that
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Figure 20: Comparison of (a) knockdown factor and (b) critical stress of sinusoidally-

corrugated shells and wavy shell designs obtained in Sections 4.3-4.4.
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have been considered provides further insights. At k = 15 the critical mode of

sinusoidally corrugated shells switches from a helical sequence of inward and

outward dimples, Fig. 21(a), to much larger, circumferentially arranged inward

dimples with axial wavelength equal to the length of the shell, Fig. 21(b). This

switch marks the change in behavior that has been highlighted by the two

different trends seen in Fig. 20.

Figure 22 shows the critical buckling mode of the mirror-symmetric wavy

shell with N = 16. In this case the mode is localized along a narrow axial strip.
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Figure 21: Typical critical buckling modes of sinusoidally corrugated shells with (a) k ≤ 15

and (b) k > 15.

These results suggest that the optimized behavior achieved in our best de-

signs is related to the symmetry-breaking feature of the wavy cross-sections,

which delays the transition of local buckling modes into global modes.

6.2. Aster Shell

The Aster shell, described in Section 2.4, was the first imperfection-insensitive

corrugated shell design to be tested experimentally. Jullien and Araar (1991)
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Figure 22: Critical buckling mode of mirror-symmetric wavy shell with N = 16.

designed, built and tested a nickel shell with 22 corrugations and radius, length,

and thickness given by R=75 mm, L=120 mm and t=153 μm. A reference

circular cylindrical shell with thickness of 150 μm was also built and tested.

The values of the modulus and Poisson’s ratio of these nickel shells, provided in

Araar (1990), are E = 162 GPa, ν = 0.3. Both shells were clamped at the ends

and tested under axial compression; the measured buckling loads were 14.2 kN

and 11.0 kN, respectively for the Aster shell and the circular shell.

A study of the buckling loads of both structures was carried out using the

same approach used throughout this paper, namely an imperfection based on

the critical buckling mode scaled to an amplitude of one thickness was applied in

a geometrically non-linear, arc-length controlled simulation to estimate the limit

load. In this way, estimates were obtained for the buckling loads of the geomet-

rically perfect structures, and also for imperfect structures with imperfections

of both positive and negative signs. The resulting sets of values were 18.328,

16.405, and 16.418 kN for the Aster shell and 14.606, 5.295, and 5.294 kN for the

circular cylinder; these values were used to estimate the theoretical knockdown

factor from Eq. 17 and the theoretical critical stress from Eq. 18. The values

obtained in this way are presented in Table 7.

A competing wavy cylinder design with a mirror-symmetric cross-section

with N = 11 control points was obtained, considering the best set of P0, , P+ and

P−. The maximum allowed deviation from the reference circle was Δr = 3 mm.

The CMA-ES algorithm was run with 8 individuals in each generation and, the
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analysis was run for 150 generations. The knockdown factors and critical stresses

for this new design are shown in Table 7, in the column labelled “Simulation”.

This design was not tested experimentally and hence in the table there is no

corresponding value under “Test”.

Table 7: Knockdown factors and critical stresses for circular shell, Aster shell, and wavy shell,

all made of nickel.

Shells Knockdown Factor Critical Stress [MPa]

Simulation Test Simulation Test

Circular 0.362 0.753 74.895 155.618

Aster 0.895 0.774 216.174 187.118

Wavy 0.948 N/A 246.146 N/A

The critical stress values presented in Table 7 require some explanation.

First, it can be seen that the “Test” value of the knockdown factor for the

circular shell is unusually high, and in fact much higher than our estimate in

the “Simulation” column. This suggests that the cylindrical shell was built very

accurately, as confirmed by the measured imperfection amplitude of 0.1t (Araar,

1990). Second, the “Test” value of the knockdown factor for the Aster shell was

14% lower than the expected value in the “Simulation” column. This suggests

that that there were significant imperfections in the as-built Aster shell, which

is confirmed by the measured imperfection amplitude of ∼ 3t (Araar, 1990).

Third, a comparison of the “Simulation” values of the knockdown factor for the

Aster shell and our wavy shell design shows a 6% increase, even for a wavy

shell design with only N = 11. In conclusion, this comparison indicates that

Aster shells are difficult to build accurately and in any case our present design

approach has even greater potential of eliminating imperfection sensitivity.

7. Mass Efficiency

A rational comparison between different architectures for cylindrical shell

structures can be made in terms of the weight and load indices introduced in
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Section 2.5. For circular cylinders the relationship between weight index and

load index is provided by Eq. 9. For general cylindrical shells subject to axial

compression, the relationship has the form:

W

AR
=

1√
η

√
Nx

R
(23)

where η is defined as the efficiency factor of the shell. Note that a larger value

of η results in a higher load index for the same weight index.

The efficiency factor for monocoque cylindrical shells is obtained by com-

paring Eq. 23 with Eq. 9, and hence is given by:

η =
γE

ρ2
√

3(1 − ν2)
(24)

Equation 23 plots as a straight line of slope 0.5 in the log-log plot of weight

index vs. load index, first shown in Fig. 7. Shells of equal efficiency lie on the

same line, and therefore lines of slope 0.5 in this plot are called iso-efficiency

lines.

Figure 23 is a revised version of Fig. 7 that shows, in addition to the original

data, several results of the present study. The mirror-symmetric wavy shell with

N = 16, which is the most efficient wavy shell design obtained so far, is shown

in this plot together with its (dotted) iso-efficiency line. The efficiency factor for

this design is 4.05 times that of perfect aluminum monocoque shells, and it can

be seen in the plot that there are only three data points to the right of this line.

Therefore, there are only three stiffened shells that beat the design N = 16: the

fact that this design has higher efficiency than most existing stiffened shells is

remarkable.

Several sinusoidally corrugated shells have also been included in Fig. 23. It

is interesting to note that the data points corresponding to k = 8, 10, 15 go

horizontally from left to right, but points corresponding to larger values of k lie

on an iso-efficiency line and points corresponding to even larger values of N are

further away from the line. It was already observed in Section 6.1 that there is

a diminishing return in increasing k beyond 15, but it has now been shown that

beyond k = 15 the mass efficiency actually begins to decrease.
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Figure 23: Revised version of Fig. 7 showing additional data points corresponding to mirror-

symmetric wavy shell design with N = 16, sinusoidally corrugated shells, and Aster shell.

8. Conclusion

A novel structural form for monocoque cylindrical shells subject to axial

loading has been proposed and an optimization technique to obtain geometric

shapes that maximize the minimum between the buckling loads of the geomet-

rically perfect structure and geometrically imperfect structures with positive

and negative imperfections has been implemented. It has been shown that shell

designs developed with this approach can achieve very high critical stress while

also being practically insensitive to geometric imperfections.

Note that, because the critical buckling stress of an axially loaded cylin-

drical panel is inversely proportional to its radius of curvature, R, through

σcl ≈ 0.6Et/R, the large increase in the critical buckling stress that has been

achieved by changing the cross-section of the shell from circular to either wavy

or sinusoidally corrugated can be simply explained by the achieved reduction in

the local radius curvature of the new designs.

A highlight of the present results is our design for a mirror-symmetric wavy

shell with 16 independent control points, which has a knockdown factor 3.6
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times that of a circular cylindrical shell with the same material properties and

dimensions, and a critical buckling stress 10.8 times that of the circular cylin-

drical shell. Another highlight is that the present approach was able to generate

a wavy cylinder design with knockdown factor and critical stress respectively

1.06 and 1.14 times those of a theoretical Aster shell based on Jullien and Araar

(1991). Preliminary experimental validations of these results were presented in

Ning and Pellegrino (2013) and a detailed study will be published in a follow-on

paper.

It has also been shown that designs based on the present approach are com-

parable to the most efficient stiffened shell designs that have been developed

during the past decades. These results appear very promising and justify fur-

ther development of the proposed concept.

A comparison between the critical buckling modes of shell designs obtained

from the present approach with the buckling modes of periodically corrugated

shells has shown that optimized wavy cross-section designs are tuned to achieve

highly localized modes, and this feature leads to superior performance. Our

Fourier decompositions of each optimized cross-section into a series of periodic

components indicate that wavy shells with better performance have both higher

peak frequency and wider bandwidth, as well as more frequency components

with larger amplitude. These results suggest that a systematic study of shell

designs with increasing numbers of control points may be justified. It may lead

to general trends in behavior that relate the relative magnitudes of the com-

ponents with different wave numbers of the cross-section deviation from the

reference circle to optimal or semi-optimal performance. These further develop-

ment could then be exploited to develop future designs without going through a

detailed optimization. Such follow-on work may also be advantageous in devel-

oping scaling techniques for shells with larger diameters, and particularly those

with larger values of R/t.

A challenge associated with shells with larger diameters is that they will

require cross-sections with a larger number of corrugations, in order to fully

achieve their efficiency potential. It is possible, of course, to apply the present
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analysis technique to such structures, but the number of nodes in the finite

element analysis will scale linearly with the shell diameter, if the component

wavelengths incorporated in the shell cross-section designs are not increased.

In concluding, two last points should be noted.

First, due to the non-convexity and lack of a mathematical expression for

the present optimization problem, there is no guarantee that even a state of art

optimizer for non-convex problems will converge to a global minimum. We have

confirmed that our optimal design for a mirror-symmetric wavy shell with N =

16 is a local minimum by carrying out an additional gradient-based optimization

with the fmincon function in MATLAB that used the CMA-ES optimum as

an initial value. The improvement in the buckling load was less than 0.04%.

Using a larger population size for the CMA-ES could increase the probability

of obtaining global minima, but at the cost of increasing the computational

time. A potential method to avoid a prohibitive increase in computations is

to reduce the number of parameters needed to define the shape of the cross-

section. Instead of using a NURBS interpolation through N control points,

the cross-section could alternatively be described in terms of its Fourier spatial

components, which would require fewer parameters than the 11 or 16 control

points in the present study. As a result, the number of design variables in

the optimization would be reduced and the probability of finding the global

optimum would be increased, without increasing the population size.

Second, the present study has made the intuitive assumption that shells with

non-straight generators would be less efficient. It would be interesting to further

investigate this assumption.
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