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Abstract

Tape-springs are straight, thin-walled strips with a curved cross-section. Fol-
lowing recent proposals for large deployable structures exploiting the structural
simplicity and robustness of such springs as deployment actuators, this report
presents a study of the deployment of a panel by short tape-springs mounted in
parallel. It is shown that a spring deforms by forming an elastically deformed
region with zero transverse curvature and uniform longitudinal curvature. It is
also shown that the moment-rotation relationship of a tape-spring whose length is
systematically varied exhibits properties that are independent of the length. A key
feature is that the moment-rotation relationship for many tape-spring geometries
can be obtained from relatively few finite-element analyses. It is demonstrated,
by theory and experiment, that mounting tape-springs in pairs, with their centres
of curvature on opposite sides, results in an energy well which traps the kinetic
energy of the panel on lock-out. The panel does not overshoot its fully deployed
configuration and disturbance to the spacecraft is thus prevented.
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Principal Nomenclature

˙ ,¨ first and second time derivatives, respectively
a, b, c perpendicular components of cable length
aj, ap centroidal position of suspension system jib and panel,

respectively
A1, A2 areas used in equal area calculations
c′ dimensionless damping factor
Cx, Cy coordinates of centre of rotation of panel
D flexural stiffness of tape-spring
e, e∗ unit vectors
E Young’s Modulus
fn natural frequency of vibration of panel
g acceleration due to gravity
i, j, k fixed unit vectors
Ij, Ip, Iw moment of inertia about centroid of suspension jib, panel

and counterweight, respectively
k initial stiffness of composite hinge
lj length of suspension system jib
L length of tape-spring
L Lagrangian
mj, mp, mw mass of suspension jib, panel and counterweight, respec-

tively
M bending moment (> 0 if it induces opposite-sense bend-

ing)
Mmax

+ peak moment for opposite-sense bending (> 0)
Mmax

− peak moment for equal-sense bending (< 0)
M∗

+ fold propagation moment (> 0)
M∗

− fold propagation moment (< 0)
n number of pairs of composite tape-spring hinges
p1, p2 tape-spring lengths either side of fold
qi generalised coordinate
Qi generalised force
r position vector
R transverse radius of curvature (undeformed configura-

tion)
t thickness of tape-spring; time
T kinetic energy; period of vibration
U strain energy
zj height of suspension system above panel
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α angle of embrace of cross-section
β suspension system angular coordinate
κl, κt longitudinal and transverse curvature changes, respectively
ν Poisson’s ratio
θ relative rotation between opposite ends of tape-spring; fold an-

gle
θmax
+ relative rotation at maximum moment for opposite-sense bend-

ing
θmax
− relative rotation at maximum moment for equal-sense bending

θheel
+ relative rotation at snap back during unloading (opposite-sense

bending)
θramp
− relative rotation during local-buckling for equal-sense bending

θ0 initial deployment angle of composite tape-spring hinge



Chapter 1

Introduction

1.1 Deployable Structures

The study of deployable structures is a rapidly evolving technology that deals
with the development of structures that can change their geometric and struc-
tural properties to meet operational requirements. Everyday examples include
umbrellas, folding chairs, tents, etc. More complex examples exist in the field
of aerospace applications. Spacecraft structures, for example, must be efficiently
compacted into relatively small payload volumes for launch before being success-
fully deployed in orbit. Two deployment methods are used: controlled deployment,
and free deployment. Controlled deployment usually involves an expansion of the
structure by means of motors and cables. Free deployment is achieved by releasing
the elastic strain energy stored within the folded structure.

1.2 Review of Previous Work

This section highlights work carried out on the bending of tape-springs. Tape-
springs are thin, transversely curved strips similar to tape-measures and are made
from copper beryllium (CuBe) alloy. They have a unique ability to fold/unfold
elastically and to lock when fully straightened. This property is exploited in
actuating free deployment of aerospace structures.

1.2.1 Bending of Tape-springs

The geometry of a typical tape-spring is shown in Fig. 1.1. The cross-section is a
uniform, circular arc that subtends an angle α of the order of 180◦. The natural
radius of the cross-section is R, its thickness is t and the length of the tape-spring
is L. Tape-springs are made from flat strips of annealed CuBe pressed into a
cylindrical mould and then heat-treated in a furnace. This process age-hardens
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2 Chapter 1. Introduction

the CuBe and its material properties are given in Table 1.1.

R
L

t

α

Figure 1.1: Geometry of a tape-spring.

Bending of the tape-spring within its plane of symmetry produces different
responses depending on the direction of bending with respect to the direction
of curvature of the spring; a tape is said to undergo opposite-sense bending if the
longitudinal and transverse curvatures are in the opposite sense, see Fig. 1.2(a). A
bending moment M that induces opposite-sense bending is defined to be positive,
and the corresponding relative rotation θ between the ends is also defined to
be positive. Conversely, equal-sense bending of a tape, under M < 0, induces
longitudinal and transverse curvatures that are in the same sense and hence θ < 0,
see Fig. 1.2(b).

Young’s modulus, E [N/mm2] 131000
yield stress, σy [N/mm2] 1175

Poisson’s ratio, ν 0.3

Table 1.1: Properties of heat-treated CuBe.

The bending of tape-springs is highly non-linear, and is best explained with
reference to the schematic diagram shown in Fig. 1.3.

For small rotations, the applied moment M varies linearly with the relative
end rotation θ as the tape bends into a smooth curve.

For opposite-sense bending, as the rotation increases, the cross-section begins
to flatten, this effect being most pronounced in the middle, and the moment
approaches Mmax

+ . Then, suddenly, the centre part of the tape snaps through and
the deformation localises in a short, longitudinally curved region, Fig. 1.2(a.ii),
while the moment decreases very quickly. In Fig. 1.3 this corresponds to the
jump from point A, at the “nose” of the opposite-sense bending curve, to point
B. As M decreases, the rest of the tape becomes approximately straight. Then,
as the relative rotation is further increased and the ends move closer together,
the moment, M ∗

+, remains approximately constant (point B to point C); the
longitudinal curvature in the central fold is also constant and approximately equal
to R, only the arc-length of this fold increases. When the direction of turning is
reversed the same path is followed, but when point B is reached the moment does
not jump up to point A. Instead, it continues at the same constant level until
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(a.i)

(b.i)

(a.ii)

(b.ii)

(a.iii)

(b.iii)

M

MM > 0

θ > 0

M < 0

θ < 0

Figure 1.2: Perspective views of tape-springs subject to end moments. (a) Opposite-
sense bending under a positive bending moment: (i) initial, smoothly-curved deforma-
tion; (ii) post-buckled shape; (iii) schematic diagram defining positive relative rotation
θ. (b) Equal-sense bending under a negative moment.
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Figure 1.3: Schematic M(θ) diagram; the origin is at point O. Arrows show the
direction in which each part of the path can be followed. The broken line from A to D
is unstable.

point D, the “heel” of the opposite-sense bending curve, and at θheel
+ it snaps to

point E, which corresponds to a value of M much lower than that attained upon
loading. Finally, the path returns to the origin O following the same straight path
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followed upon loading.

If the tape-spring is bent in the equal-sense direction, it exhibits a softer re-
sponse, and the linear behaviour ends much sooner. There is a sudden bifurcation
at Mmax

− that results in a flexural-torsional deformation mode with asymmetric,
torsional folds near the ends. As the relative end rotation increases, these torsional
folds grow in amplitude while they move towards the middle of the tape-spring,
as the applied moment decreases. Finally, they coalesce into a central, symmetric
fold of moment M ∗

− which has the same characteristics described for opposite-
sense bending, Fig. 1.2(b.ii). When θ is decreased, the unloading path practically
coincides with the loading path.

Practical tape-springs often have their ends rigidly encased to provide a firm
connection between the springs and the surrounding structure. This can be
achieved by bonding the ends of the tape-spring to Perspex blocks with epoxy
resin; the principal axes of bending of each tape coincides with the centre lines
of the blocks. If the tape-spring is sufficiently short, then these rigid ends may
constrain flattening of the section under an applied moment. The initial bending
stiffness therefore increases as the length of the tape-spring decreases. This effect
is more marked for bending in the equal-sense direction; the degree of associated
twisting diminishes and the fold may form by snapping through.

1.2.2 Prediction of Moment-Curvature Relationship

Theoretical moment-curvature relationships for tape-springs have been derived
by three different authors. The derivation by Wüst (1954) was based on equilib-
rium considerations and linearised shell theory. Similarly, Rimrott (1966b) used
energy methods to obtain a non-linear bending expression. Both methods, how-
ever, do not describe the associated twisting of the tape-spring when bent in the
equal-sense direction. It was Mansfield (1973) that solved this aspect using large
deflexion shell theory and variational methods.

All of the above methods were set up with respect to a unit length of tape-
spring deforming uniformly. In essence, this implies that end-effects are not con-
sidered and that the resulting moment-curvature relationships apply only to long
tape-springs.

Numerical predictions where end-effects were included were obtained by Fis-
cher (1995) using finite element analysis. However, the bifurcation into a twisting
mode during equal-sense bending was not captured.

A full comparison of the above methods is given by Seffen (1997).
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1.3 Aims of the Project and Outline of Report

Matra-Marconi Space UK propose to use tape-springs to deploy a panel from a
spacecraft. The panel is essentially rigid and its inertia properties are given. The
panel is connected to the main body of the spacecraft by a series of parallel tape-
springs, which are relatively short compared to the overall dimension of the panel,
and hence, act like finite-length hinges. The deployment of the panel is governed
by the combined bending response of these short tape-springs.

Therefore, this study involves the following steps:

• prediction of the moment-rotation behaviour of single tape-springs, for a
large range of section geometries;

• deployment performance of a set of tape-springs mounted in parallel;

• design of a gravity-compensated testing apparatus for deploying a rigid panel
of variable inertia properties;

• deployment experiments and theoretical modelling;

• evolution of design criteria for deployment of a generic rigid panel.

Chapter 2 begins by presenting detailed data obtained from a finite-element
analysis and then quantifies the key features of the moment-rotation relationship of
relatively short tape-springs with fixed ends, for a wide range of section geometries.

Chapter 3 investigates the deployment of a mass attached to the tip of a single,
short tape-spring. Key issues that are addressed are the folding and deployment
of such a system, and the ability of a tape-spring at the end of deployment to
straighten out and lock the structure into its operational configuration. It is shown
that pairs of identical tape-springs, mounted with their centres of curvature on
opposite sides, thus forming a “composite hinge”, can deploy a mass from an
initial folded angle to its intended configuration without overshoot.

The design of a panel, whose inertia properties are similar to panels currently
used on spacecraft, is detailed in Chapter 4 along with a suspension system that
compensates for the effects of gravity during deployment.

Chapter 5 presents experimental results of the deployment of a panel by two
sets of composite tape-spring hinges. A conservative, two-degree of freedom model
is derived to take account of the dynamic interaction between the panel and the
compensation system during deployment. The predicted deployment behaviour is
validated by experiment.

Finally, Chapter 6 considers how the geometry of a composite hinge may be
determined using a series of design criteria.



Chapter 2

Moment-Rotation Relationship

The deployment behaviour of a panel connected to a rigid support by a set of
tape-springs is dictated by the moment-rotation behaviour of the tape-springs.
Available theoretical methods do not sufficiently describe the bending response
of short tape-springs with encased ends, as mentioned in Chapter 1. Therefore,
this behaviour was computed by means of a finite element analysis. Section 2.1
details a typical finite-element analysis which produces the moment-rotation rela-
tionship of a tape-spring with encased ends. Section 2.2 then investigates how the
moment-rotation relationship changes when the length and geometric properties
of a tape-spring are systematically varied. These relationships are compared and
the variations of Mmax

+ , Mmax
− , M∗

+, M∗
−, θmax

+ , θheel
+ and θramp

− —which is de-
fined in Section 2.2— with tape-spring geometrical and material parameters are
characterised in Section 2.3.

2.1 Finite-Element Analysis

A comparison of the measured moment-rotation relationship of a tape-spring with
a finite-element analysis carried out using the finite-element package ABAQUS
(Hibbit et al. 1994) is shown in Fig. 2.1. This plot was taken from Fischer (1995).

The tape-spring is modelled by a mesh of S4R5 shell elements: each element
is a quadrilateral with four corner nodes, each with five degrees of freedom (three
displacement components and two in-plane rotation components). The displace-
ment field within the element is bilinear, and reduced integration with a single
Gauss point is used. A typical mesh consists of five elements forming half of the
cross-section of the tape (the other half does not need to be modelled because of
symmetry) and 48 elements along the length of the tape. Two additional, refer-
ence nodes are defined, one on each end section of the tape-spring and coinciding
with the centroid of the cross-section.

All nodes lying at either end of the tape are kinematically constrained to the
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Figure 2.1: M(θ) relationship for tape-spring with L = 200 mm, t = 0.1 mm, R =
13.3 mm, and α = 1.85 rad. Measurements taken upon loading and unloading denoted
by × and +, respectively. Finite-element predictions shown by a continuous line.

corresponding reference node and global kinematic constraints are applied to the
reference nodes only. Thus, one reference node is allowed only to rotate about
a horizontal axis through the centroid, while the other reference node is allowed
to translate in the longitudinal direction and to rotate about a horizontal axis
through the centroid. Nodes lying on the longitudinal plane of symmetry are
constrained to remain within that plane, but no rotational constraints are applied
to these nodes.

Equal and opposite bending couples M are applied at the two reference nodes
and the corresponding rotations are calculated.

The two standard solution procedures used in non-linear structural analy-
sis, load incrementation and displacement incrementation, are unsuitable in the
present case because neither M(θ) nor θ(M) are single-valued functions. The only
procedure that can capture the type of behaviour seen in the experiments is the
arc-length method pioneered by Riks (1972) and extensively discussed in Chap-
ter 9 of Crisfield (1991). This method can compute a series of points forming a
continuous equilibrium path in generalised load/displacement space by control-
ling the distance, or arc-length, between successive points. The arc-length option
available in ABAQUS has been used for all finite-element simulations detailed in
this report. Once an optimal set of convergence parameters had been found by a
lengthy process of trial and error, generating the complete M, θ equilibrium path
for all tape-springs of interest became a straightforward matter.
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Note also that for M < 0 the finite-element analysis does not capture the
torsional buckling of the tape-spring. Instead, it predicts the formation of a local
buckle in the wall of the tape, and hence a larger |Mmax

− |. It appears that ABAQUS
is unable to capture bifurcation points during the course of a geometrically non-
linear analysis, and hence the only way of improving these predictions is by seeding
an initial imperfection.

2.2 Behaviour of Finite-Length Springs

This section provides insight on the effects of shortening the length of a tape-spring
with encased ends on its moment-rotation relationship. More detailed information
is obtained from Fig. 2.2, which shows moment-rotation plots for opposite-sense
bending of tape-springs with identical cross-sections, of parameters R = 10 mm,
t = 0.1 mm and α = 1.92 rad (110◦), but different lengths. Each curve was
obtained using the finite-element package ABAQUS. The largest peak moment,
Mmax

+ , occurs in the shortest tape-spring with a length of 100 mm. Increasing
L in steps of 50 mm gradually decreases these peak moments. As expected, the
longer the tape-spring becomes, the smaller the influence of the constraint applied
by the rigid ends to the flattening of the section in the middle of the tape. Thus,
the tape-spring becomes softer and initiation of the fold takes place at a lower
bending moment.

The post-buckled behaviour is essentially the same for all lengths, as all plots
converge onto a single line. The same constant moment, M ∗

+, is therefore asso-
ciated with all folds. The rotations corresponding to the heel of each curve vary
marginally compared to the peak moment rotations, and appear to tend to a
particular value as the length of the tape-spring decreases.

Figure 2.3 shows the moment-rotation relationships for equal-sense bending of
a tape-spring with the same cross-sectional geometry as in Fig. 2.2. These curves
were also obtained using ABAQUS. The length of the stiffest spring is 100 mm,
other lengths that have been analysed are 200 mm and 300 mm. The initial slope
of each curve is equal to the pre-buckled stiffness for opposite-sense bending of the
same tape-spring. It was noted in the previous section that ABAQUS is unable
to capture the bifurcation leading to torsional buckling. Instead, it predicts the
formation of a local buckle in the middle of the tape-spring due to compressive
bending stresses along the free edge. The initiation of this buckle occurs at the
same peak bending moment, Mmax

− , regardless of the length L of the tape-spring.
In all cases, the complete formation of the fold is indicated by the plots converging
onto a single, constant moment line at a relative rotation θ of about 1 rad.

In practice, end effects cause the asymmetric, torsional folds of Section 1.2.1 to
form closer towards the middle of the tape-spring, as L is decreased. Sufficiently
short tape-springs will buckle locally in the middle, in preference to forming tor-
sional folds. For the lengths analysed in this section, local buckling occurs in
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Figure 2.2: Opposite-sense bending of tape-springs with finite length L, R = 10 mm,
t = 0.1 mm and α = 110◦.

preference to torsional buckling, and hence the finite-element results that are pre-
sented are accurate for equal-sense bending.

A final point concerns the portion of the moment-rotation curves between
Mmax

− and where the gradient first becomes zero, see Figure 2.3. The rotation
associated with this point is denoted by θramp

− , as the moment-rotation relation-
ship ramps down to this value after local buckling has begun. The difference
in rotations between points on different curves but corresponding to the same
moment varies linearly from zero at θramp

− to a maximum value at Mmax
− . This

would indicate that the point of zero slope and the behaviour thereafter are also
independent of the length of the tape-spring.

Thus, for a decreasing length of tape-spring, the following may be stated:

• Mmax
+ increases;

• θheel
+ is approximately the same for relatively short tape-springs;

• M∗
+ and M∗

− do not vary with L;

• Mmax
− remains the same and the initial bending behaviour is linear, with the

same stiffness as for the initial opposite-sense bending, up until this value;
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Figure 2.3: Equal-sense bending of tape-springs with finite length L. Geometry of
cross-section is the same as in Fig. 2.2.

• for equal-sense bending, the rotation at which the gradient first becomes
zero after local buckling, θramp

− , and the response thereafter, including the
rotation at which the fold forms completely, are independent of L;

• the initial slope, before buckling, increases for bending in both senses.

Hence, for opposite-sense bending, the moment-rotation relationship from the
heel onwards of a relatively short tape-spring can be obtained from the known
relationship of a single length of tape-spring. The same is true for equal-sense
bending, from the first point of zero gradient after the peak until complete fold
formation. Also, Mmax

− is the same. Separate analyses, however, are necessary to
determine the behaviour of different lengths of tape-spring before snap-through
in the opposite-sense direction. From this, the value of the initial slope can be
used to calculate θmax

− , assuming linear behaviour. The portion of the curve that
ramps up from the zero gradient point to Mmax

− can be generated from the known
relationship by noting that the corresponding rotations vary linearly with L. The
region between the nose and the heel of each curve is not required, since this
portion of the curve is unstable and, hence, it is of no practical interest.

Therefore, knowledge of a single complete moment-rotation relationship and
of the pre-buckled opposite-sense behaviour of the specific tape-spring of interest
are all that is required to construct the bending response for a short tape-spring
of any length. Thus, computation times can be greatly reduced as only one fully
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non-linear finite-element solution is required. This approach is applied to many
tape-spring geometries in the following section.

2.2.1 Detailed Results

To avoid yielding the material in the fold region the following limits have to be
satisfied by the ratio R/t, see Eq. 6.25

R

t
≥ E

σy(1 + ν)
(2.1)

All tape-springs tested in the course of the present study were made from CuBe
sheet of thickness 0.1 mm. However, it was thought that future applications might
require greater values of t. Therefore, it was decided to investigate numerically
tape-springs with three different thicknesses, i.e. t = 0.1 mm, 0.2 mm, and
0.3 mm. Using Eq. 2.1 and the values of E, ν and σy from Table 1.1, the minimum
value of R was determined for each of these thicknesses. These values are given in
Table 2.1 together with the particular radii that were then chosen to be analysed.

t minimum R from values of R
[mm] Eq. 2.1 [mm] [mm]
0.1 8.6 10, 20, 30
0.2 17.2 20, 30
0.3 25.8 30

Table 2.1: Range of section thicknesses and radii analysed using ABAQUS.

Fischer (1995) showed that sensible correlations between experimental results
and results from a finite-element analysis can only be made for tape-springs with
α = 1.55 rad (89◦) and upwards. A separate investigation has also indicated
that it is impossible to form a fold by the application of end couples alone for
opposite-sense bending of tape-springs with α > 180◦. Therefore, the range of α
was chosen to be from 90◦ to 170◦; in steps of 20◦ for a thickness of section of
0.1 mm, and in steps of 40◦ for t = 0.2 mm and t = 0.3 mm — for each value of
R.

For each set of cross-sectional properties, a master finite-element analysis was
performed using ABAQUS to obtain the complete moment-rotation relationship.
This analysis provided the response parameters that are unaffected by a variation
in the length of the tape-spring.

For each master simulation, the length of tape-spring was chosen to be 8Rα or
a longer multiple of Rα, if a complete solution could not be obtained for a length
of 8Rα. These lengths are indicated in Tables 2.2 and 2.3 for opposite-sense
bending and equal-sense bending, respectively. The number of elements in each
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mesh refers to the number in the longitudinal direction followed by the number
in the transversal direction.

R α t L no. and type mesh bias residual
[mm] [◦] [mm] [×Rα] of elements tolerances
10 170 0.1 16 48 ×5, S4R5 1.03 10−7, 10−1

10 150 0.1 10 48 ×5, S4R5 1.03 10−7, 10−1

10 130 0.1 8 48 ×5, S4R5 1.01 10−7, 10−1

10 110 0.1 8 48 ×5, S4R5 1.03 10−7, 10−1

10 90 0.1 8 48 ×5, S4R5 1.03 10−7, 10−1

20 170 0.1 22 64 ×5, S4R5 1.02 10−7, 10−1

20 170 0.2 14 48 ×5, S4R5 1.02 10−7, 10−1

20 150 0.1 14 64 ×5, S4R5 1.02 10−7, 10−1

20 130 0.1 12 64 ×5, S4R5 1.02 10−7, 10−1

20 130 0.2 8 48 ×5, S4R5 1.02 10−7, 10−1

20 110 0.1 8 48 ×5, S4R5 1.01 10−7, 10−1

20 90 0.1 8 48 ×5, S4R5 1.02 10−7, 10−1

20 90 0.2 8 48 ×5, S4R5 1.03 10−7, 10−1

30 170 0.2 18 48 ×5, S4R5 1.05 10−7, 10−1

30 170 0.3 14 64 ×5, S4R5 1.01 10−7, 10−1

30 150 0.1 18 48 ×5, S4R5 1.05 10−7, 10−1

30 130 0.1 14 48 ×5, S4R5 1.05 10−7, 10−1

30 130 0.2 14 64 ×5, S4R5 1.01 10−7, 10−1

30 130 0.3 14 64 ×5, S4R5 1.01 10−7, 10−1

30 110 0.1 12 48 ×5, S4R5 1.01 10−7, 10−1

30 90 0.1 8 48 ×5, S4R5 1.01 10−7, 10−1

30 90 0.2 8 48 ×5, S4R5 1.01 10−7, 10−1

30 90 0.3 8 48 ×5, S4R5 1.03 10−7, 10−1

Table 2.2: Tape-spring geometries for which a master analysis has been carried out,
for opposite-sense bending.

Also detailed are the dimensions of each finite-element mesh — namely the type
of elements used to construct each mesh, and the “mesh-bias”. This is the ratio,
for successive elements in the longitudinal direction from one end to the middle
of the tape-spring, between the square of the length and the square of the width.
Thus, for a mesh-bias of “1”, the mesh comprises elements of the same longitudinal
length. A mesh-bias greater than unity indicates a higher concentration of nodes
towards the centre of the tape-spring, to provide a denser mesh where the largest
changes in curvature occur. The most important measure of convergence —the
tolerances for the force and moment residuals during the course of the solution—
had to be redefined from their default values in ABAQUS. Their values were
obtained by trial and error and are indicated in the tables.
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R α t L no. and type mesh bias residual
[mm] [◦] [mm] [×Rα] of elements tolerances
10 170 0.1 5 48 ×5, S4R5 1.05 10−6, 10−1

10 150 0.1 5 48 ×5, S4R5 1.03 10−7, 10−1

10 130 0.1 5 48 ×5, S4R5 1.05 10−7, 10−1

10 110 0.1 8 48 ×5, S4R5 1.03 10−7, 10−1

10 90 0.1 8 48 ×5, S4R5 1.03 10−7, 10−1

20 170 0.1 6 96 ×10, S8R5 1.00 10−6, 10−1

20 170 0.2 4 48 ×5, S4R5 1.02 10−6, 10−1

20 150 0.1 6 96 ×10, S8R5 1.00 10−6, 10−1

20 130 0.1 6 96 ×10, S8R5 1.05 10−6, 10−1

20 130 0.2 4 48 ×5, S4R5 1.05 10−6, 10−1

20 110 0.1 6 96 ×10, S8R5 1.05 10−7, 10−1

20 90 0.1 4 48 ×5, S4R5 1.05 10−6, 10−1

20 90 0.2 8 48 ×5, S4R5 1.05 10−6, 10−1

30 170 0.2 6 48 ×5, S4R5 1.05 10−6, 10−1

30 170 0.3 5 48 ×5, S4R5 1.05 10−6, 10−1

30 150 0.1 6 96 ×10, S8R5 1.00 10−6, 10−1

30 130 0.1 6 96 ×10, S8R5 1.00 10−6, 10−1

30 130 0.2 4 48 ×5, S4R5 1.05 10−6, 10−1

30 130 0.3 4 48 ×5, S4R5 1.05 10−6, 10−1

30 110 0.1 6 96 ×10, S8R5 1.00 10−6, 10−1

30 90 0.1 6 96 ×10, S8R5 1.05 10−6, 10−1

30 90 0.2 8 48 ×5, S4R5 1.05 10−6, 10−1

30 90 0.3 8 48 ×5, S4R5 1.05 10−6, 10−1

Table 2.3: Tape-spring geometries for which a master analysis has been carried out,
for equal-sense bending.

For equal-sense bending, it was sometimes difficult to initiate a buckle in the
middle of the tape-spring using S4R5 elements, irrespective of the mesh density
and the number of elements. This problem was overcome by either using S8R5
elements, which are 8-noded versions of the S4R5 thin-shell element; or by ex-
tending the boundary conditions applied to the reference nodes at either end of
the mesh to some nodes along the axis of the tape-spring, thus constraining those
parts to rotate like a rigid body and cause the fold to form in the middle of the
tape-spring. The same technique had been used by Fischer (1995). The former
method resulted in computation times approximately increasing fourfold for a
complete solution, compared to simulations using S4R5 elements.

Figures 2.4 - 2.6 summarise the length independent parameters determined
from these master simulations.

The values of θheel
+ are plotted in Fig. 2.4, and the magnitudes of Mmax

− in
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Figure 2.4: Variation of relative end rotation at the “heel”, for opposite-sense bending.

Fig. 2.5, against α. Figure 2.6 indicates the values of θ at which the gradient first
becomes zero, θramp

+ , and the associated bending moment, for equal-sense bending.

Secondary finite-element analyses were then performed for spring lengths of
4Rα, 6Rα and 8Rα, for each of the tape-spring geometries in Table 2.2, to obtain
the information on opposite-sense that cannot be obtained from the master analy-
sis. In each of these, 48×5 S4R5 elements were used, along with force and moment
residual tolerances of 10−7 and 10−1, respectively. Following the assumptions of
Section 2.2, the results of these analyses make it possible to construct complete
moment-rotation relationships for the full range of tape-springs. Additional sec-
ondary analyses were carried out for lengths of 16Rα and the values of Mmax

+ and
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Figure 2.5: Variation of peak moment value |Mmax
− |, for equal-sense bending.

θmax
+ thus obtained will be used in Section 2.3.

Figure 2.7 shows a representative plot in dimensionless form, for opposite-sense
bending. Complete plots for all geometries that have been analysed are shown in
Appendix A. The dimensionless bending moment is calculated by dividing the
actual bending moment by αD, where D = Et3/12(1 − ν2). The dimensionless
curvature is Rθ/L, since longitudinal curvature is approximately the same every-
where along the tape-spring and equal to θ/L. Thus, for given values of R and
α, the initial behaviour of tape-springs of different lengths is given by a single
straight line, whose slope is a measure of the bending stiffness of the tape-spring.
As flattening of the tape-spring begins, the plots diverge accordingly.
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Figure 2.6: Relative end rotation and associated bending moment at the first point of
zero gradient, for equal-sense bending.

2.2.2 An Example

The complete moment-rotation relationship of a tape-spring with R = 20 mm,
t = 0.1 mm, α = 1.57 rad (90◦) and L = 200 mm is shown in Fig. 2.8.

A solid curve indicates the complete bending response obtained from ABAQUS.
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Figure 2.7: Non-dimensionalised moment-curvature behaviour for opposite-sense bend-
ing, before buckling. The numbers inside the circles refer to the length of each tape-
spring ×Rα.

The bending response from the heel onwards for a tape-spring of the same cross-
section, but length 8Rα (≈ 251 mm) is denoted by “o”. It is clearly obvious, that
there is practically no difference with the curve for L = 200 mm.

For equal-sense bending, the response of a tape-spring of length 4Rα (≈
126 mm) is shown by “∗” after the point of zero gradient. Note that there is
no difference between these points and the solid curve. The curve represented by
“+” was also constructed from the moment-rotation relationship of a tape-spring
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Figure 2.8: Comparison of moment-rotation relationships for tape-spring with R =
20 mm, t = 0.1 mm, L = 200 mm and α = 90◦, and other lengths of tape-springs.

of length 4Rα. Again, this curve is practically identical to the underlying solid
curve of the longer tape-spring.

2.3 Key Parameters

The key parameters that characterise the bending of finite-length tape-springs
will be expressed in terms of their geometry and material properties. This will



2.3. Key Parameters 19

provide the basis for the derivation of an idealised moment-rotation relationship,
c.f. Fig. 1.3, without the need for a finite-element analysis. Moreover, useful
insight will be gained for the design of composite hinges detailed in Chapter 6.

From Section 2.2, the seven key parameters to be examined are: Mmax
+ , θmax

+ ,
the “heel” rotation for opposite-sense bending i.e. θheel

+ , Mmax
− , the rotation at

which the gradient first becomes zero after local buckling for equal-sense bending
i.e. θramp

− , and finally M ∗
+ and M∗

−.

2.3.1 Expression for Mmax
+

Figure 2.9 shows several plots of log(Mmax
+ ) vs log(α) obtained from finite-element

analyses for opposite-sense bending. Within each sub-figure, the values of R
and t are fixed, and points marked with the same symbol are for springs with
a particular value of L/(Rα). Clearly, these points lie on straight lines for each
value of L/(Rα), which indicates that the corresponding relationship is a power
law relationship of the type

Mmax
+ = Aαm (2.2)

where A is a function of D, R, t and L/(Rα), but not explicitly of α, and m is
the slope of each line. From dimensional analysis, m can only be a function of R,
t and L/(Rα), and A must be a linear function of D. Rewriting Eq. 2.2 gives

Mmax
+

D
= A′αm (2.3)

and A′ is a function only of R, t and L/(Rα), and is dimensionless. The values
of A′ and m are given in Table 2.4. Note that for R/t = 100, the corresponding
values of A′ for equal values of L/(Rα) but different values of R, are practically
identical. The same is also true for m. This suggests that the table can be
condensed down by considering the variation of A′ and m with the dimensionless
group R/t for each value of L/(Rα), see Table 2.5.

Calladine (1983) has shown that the moment-rotation relationship of a finite-
length cylindrical tube with rigidly encased ends can be expressed by two separate
power laws in R/t, relating to bending and membrane action, respectively. This
suggests that a similar relationship may be valid for tape-springs but, because
Calladine’s analysis is not directly applicable to the present problem, it might be
expected that the number of terms might be greater than two. Therefore, it can
be written

A′ = a1

(
R

t

)b1

+ a2

(
R

t

)b2

+ · · · + as

(
R

t

)bs

(2.4)

where s is the total number of terms, and b1 to bs are constants. The terms a1 to
as are functions of l only, where

l =
L

Rα
(2.5)
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Figure 2.9: Log-log plots of Mmax
+ against α for all tape-spring geometries analysed

using ABAQUS. ABAQUS results are plotted as follows: “×”, L = 4Rα; “◦”, L = 6Rα;
“+”, L = 8Rα; “∗”, L = 16Rα. Straight line fits through ABAQUS data shown by
solid lines.

The determination of a1, b1, . . . , as, bs, as well as the optimal value of s is
analogous to a problem in dynamic identification discussed by Tan and Pellegrino
(1996). For each value of l, the four values of R/t, i.e. 100, 150, 200, and 300,
are substituted separately into Eq. 2.4, along with the corresponding value of
A′, to give four linear equations in the unknowns a1 to as. For this system to
admit a unique solution, s must be less than or equal to four. For s less than
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R [mm] t [mm] L/(Rα) A′ m R/t
10 0.1 4 3.0697 3.8731 100

6 2.9595 3.5312
8 3.0777 3.2947
16 3.3013 3.0312

20 0.1 4 8.199 3.9059 200
6 5.6743 3.8858
8 5.6456 3.6069
16 6.3130 3.1337

30 0.1 4 16.3281 3.7941 300
6 9.6318 3.9641
8 8.2667 3.8239
16 9.1744 3.2274

20 0.2 4 3.0693 3.8737 100
6 2.9562 3.5273
8 3.0870 3.2945
16 3.3027 3.0310

30 0.2 4 5.2705 3.9247 150
6 4.2950 3.7389
8 4.4367 3.4558
16 4.8300 3.0883

30 0.3 4 3.0706 3.8734 100
6 2.9570 3.5271
8 3.0863 3.2949
16 3.3027 3.0310

Table 2.4: Values of A′ and m in Eq. 2.3 from best fit lines in Fig. 2.9.

four, the above system of linear equations becomes largely over-determined and,
following Tan and Pellegrino (1996), the singular value decomposition (SVD) of
the coefficient matrix is used to obtain a solution. The accuracy of the solution
is checked by means of a normalised error between the actual values of A′ and
the values obtained by substituting the estimated parameters a1 to as back into
Eq. 2.4. Thus, an accurate set of parameters is obtained when the error falls below
a predetermined level as the number of terms is increased.

By a process of trial and error, the following expression produced the smallest
error overall, as indicated in Table 2.6

A′2 = a1

(
R

t

)2

+ a2

(
R

t

)4

+ · · · + as

(
R

t

)2s

(2.6)

Note that A′ is raised to the power of two.

Also note that, for s = 4, the error is almost zero since the system of equations
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R/t L/Rα A′ m
100 4 3.0699 3.8734

6 2.9576 3.5285
8 3.0837 3.2947
16 3.3022 3.0311

150 4 5.2705 3.9247
6 4.2950 3.7389
8 4.4367 3.4558
16 4.8300 3.0883

200 4 8.1990 3.9059
6 5.6743 3.8858
8 5.6456 3.6069
16 6.3130 3.1337

300 4 16.3281 3.7941
6 9.6318 3.9641
8 8.2667 3.8239
16 9.1744 3.2274

Table 2.5: Condensed version of Table 2.4.

s % error % error % error % error
for l = 4 for l = 6 for l = 8 for l = 16

1 21.75 9.14 4.18 3.43
2 8.78 · 10−2 2.23 1.91 6.16 · 10−1

3 2.38 · 10−2 4.70 · 10−2 2.20 · 10−2 1.56 · 10−1

4 4.11 · 10−5 3.59 · 10−5 4.68 · 10−5 4.05 · 10−5

Table 2.6: Percentage error between calculated and actual values of A′.

is perfectly conditioned. For, s = 2, the maximum error is just over two percent,
which shows that the bending-membrane split identified by Calladine is a perfectly
acceptable approximation. Thus, Eq. 2.6 becomes

A′ =
R

t

[
a1 + a2

(
R

t

)2
] 1

2

(2.7)

The values of a1 and a2, for each value of l, are indicated in Table 2.7.

Next, a1 and a2 will be expressed as functions of l only. Assuming that in
general a polynomial expression will apply

a1 = c1l
d1 + c2l

d2 + · · · + csl
ds (2.8)

where c1 to cs are constants, and so are d1 to ds. A similar expression can be
written for a2. Therefore, for the four values of a1 given in Table 2.7, a system of
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l = 4 l = 6 l = 8 l = 16
a1 6.546 · 10−4 6.875 · 10−4 8.692 · 10−4 1.060 · 10−3

a2 2.564 · 10−8 3.791 · 10−9 −1.243 · 10−9 −1.394 · 10−9

Table 2.7: Values of a1 and a2 in Eq. 2.7.

four linear equations is obtained in the unknowns c1 to cs. For a unique solution,
the total number of terms in each equation must be less than or equal to four and,
again, the SVD method used before is employed to find c1 to cs.

Again, by a process of trial and error, the following expressions for a1 and a2

were obtained

a1 = 1.152 · 10−3 − 2.210 · 10−3

l
(2.9)

a2 = −2.061 · 10−9 +
7.096 · 10−6

l4
(2.10)

The inverse powers of l ensure that a1 and a2 have finite values when the length
of the tape-spring becomes large. Equations 2.9 and 2.10 give values of a1 and a2

which differ from those in Table 2.7 by a maximum of 7.2% and 4.4%, respectively.
The final expression for A′ is given by substituting Eqs. 2.9 and 2.10 into Eq. 2.7,
i.e.

A′ =
R

t

[
1.152 · 10−3 − 2.210 · 10−3

l

+

(
−2.061 · 10−9 +

7.096 · 10−6

l4

)(
R

t

)2
] 1

2

(2.11)

Using a similar procedure, an expression for m is set up as a polynomial where
each R/t term is multiplied by a function of l. It is desirable that, for given values
of R/t and α, the expression for m tends to a finite value, as l tends to infinity.
This ensures that the value of Mmax

+ in Eq. 2.3 becomes constant as end-effects
become negligible. The resulting expression is

m = 2.840 +
18.170

l2

+

[
−2.281 · 10−3 +

6.809 · 10−2

l
− 0.245

l2

]
R

t
(2.12)

Equations 2.11 and 2.12 are now substituted into Eq. 2.3 to give a complete
expression for Mmax

+ , in Nmm. Values from this expression have been plotted
in Fig. 2.10 against α for R = 10 mm, t = 0.1 mm, and each of the indicated
spring lengths. As can be clearly seen, the error between the actual values of
Mmax

+ and the computed values is very small indeed, and is typical for all of the
springs analysed.
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+ from ABAQUS: “×”, l = 4; “◦”, l = 6; “+”, l = 8;

“∗”, l = 16, and analytical predictions from Eq. 2.3 after back substitution of Eqs. 2.11
and 2.12. Section parameters are R = 10 mm and t = 0.1 mm.

2.3.2 Expression for θmax
+

The same procedure outlined in the previous section will now be used to obtain
an expression for θmax

+ .

Consider Fig. 2.11, where each sub-figure contains plots of log(Rθmax
+ /L) against

log(α), for a given R and t, and indicated spring length. Because the ABAQUS
results lie on virtually straight lines, it may be written

Rθmax
+ /L = Bαn (2.13)

where B and n are dimensionless functions of R/t (Calladine 1983) and l. Table 2.8
indicates the variation in B and n with l for each value of R/t. Note again that
for R/t = 100, the corresponding values of B and n, respectively, for equal values
of l, but for different values of R were the same in Fig. 2.11.

In analogy with the previous section

B = e1

(
R

t

)f1

+ e2

(
R

t

)f2

+ · · · + es

(
R

t

)fs

(2.14)

where e1 to es are functions of l only, f1 to fs are constant values and s is, again,
the total number of terms in the polynomial. The SVD technique was then applied
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in a two-stage process. First, for an arbitrary choice of f1 to fs, values of e1 to es

were computed for each value of l. Equation 2.14 was reduced to a simpler form
which gives accurate values of B. Second, e1 to es were found as functions of l.
The final expression for B is

B =

[
1.520 · 10−4 − 4.365 · 10−3

l
+

1.993 · 10−2

l2

+

(
13.45 − 564.5

l4
+

9.929 · 105

l8

]
)

(
t

R

)2
] 1

2

(2.15)

By the same process, the expression for n is given by

n = −2.860 +
26.69

l
− 81.49

l2

+

[
−1.071 · 104

l2
+

4.134 · 105

l4
− 3.740 · 106

l6

]
t

R
(2.16)

Substituting Eqs. 2.15 and 2.16 back into Eq. 2.13 yields an expression for θmax
+ ,

in radians. Values of θmax
+ from this expression are plotted in Fig. 2.12, along

with values from the ABAQUS analyses. The comparison between computed and
actual values is reasonably good.

R/t l B n
100 4 3.0863·10−2 -0.9786

6 3.0928·10−2 -1.3064
8 3.4083·10−2 -1.5827
16 3.5701·10−2 -1.7754

150 4 2.4518·10−2 -0.9977
6 1.9716·10−2 -1.0901
8 2.0936·10−2 -1.3976
16 2.4249·10−2 -1.7888

200 4 2.2758·10−2 -1.1255
6 1.3927·10−2 -0.9199
8 1.3559·10−2 -1.1254
16 1.5250·10−2 -1.5936

300 4 1.8325·10−2 -1.1854
6 1.1276·10−2 -0.9668
8 9.8182·10−3 -1.0390
16 1.1266·10−2 -1.6236

Table 2.8: Values of B and n in Eq. 2.13 from best fit lines in Fig. 2.11.
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Figure 2.11: Log-log plots of Rθmax
+ /L against α for all tape-spring geometries analysed

using ABAQUS. ABAQUS results plotted as follows: “×”, L = 4Rα; “◦”, L = 6Rα;
“+”, L = 8Rα; “∗”, L = 16Rα. Straight line fits through ABAQUS data shown by
solid lines.



2.3. Key Parameters 27

1.5 2 2.5 3
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

α [rad]

θm
a
x

+
[r

a
d
]

l = 4

l = 6

l = 8

l = 16

Figure 2.12: Comparison of θmax
+ from ABAQUS:“×”, l = 4; “◦”, l = 6; “+”, l = 8;

“∗”, l = 16, and values computed from Eq. 2.13 after back substitution of Eqs. 2.15
and 2.16.



28 Chapter 2. Moment-Rotation Relationship

2.3.3 Expression for θheel
+

An expression θheel
+ will now be derived. From Section 2.2, θheel

+ is assumed to be
independent of L and, as already for θmax

+ , R/t is the only relevant dimensionless
group. Hence

θheel
+ = g1

(
R

t

)h1

+ g2

(
R

t

)h2

+ · · · + gs

(
R

t

)hs

(2.17)

Here, g1 to gs are functions of α, s is the total number of terms and h1 to hs

are constants. For each value of α in Fig. 2.4, a system of linear equations in the
unknowns g1 to gs is obtained by substitution of the appropriate values of θheel

+

and R/t. This system is solved using SVD, and the values of h1 to hs are varied
to minimise the error for the smallest possible s. Thus, Eq. 2.17 was reduced to

θheel
+ = g1 + g2

(
R

t

)−1

(2.18)

The values of g1 and g2 are given in Table 2.9. Typically

g1 = j1α
k1 + j2α

k2 + · · · + jsα
ks (2.19)

Again, each of the subscripted terms on the right-hand side is a constant, and the
powers k1 to ks are chosen arbitrarily. The SVD technique is applied to solve for
the unknowns j1 to js, for each value of g1. The expression which gives the best
error performance is

g1 = 3.673 · 10−2α − 4.932 · 10−2α2 + 1.080 · 10−2α3 (2.20)

Similarly, for g2, the following, rather neat expression was found

g2 = eπα−0.80 (2.21)

α = 90◦ α = 110◦ α = 130◦ α = 150◦ α = 170◦

g1 -2.275 -3.282 -4.673 -4.669 -4.324
×10−2 ×10−2 ×10−2 ×10−2 ×10−2

g2 16.14 13.73 13.38 10.63 9.68

Table 2.9: Values of g1 and g2 in Eq. 2.18.

The complete expression for θheel
+ , in rad, is obtained by substituting Eqs. 2.20

and 2.21 into Eq. 2.18

θheel
+ =

3.673

102
α − 4.932

102
α2 +

1.080

102
α3 +

t

R
eπα−0.80 (2.22)
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Figure 2.13: Comparison of θheel
+ from ABAQUS (symbols) and values computed from

Eq. 2.22 (continuous lines). Solid line and “×”, R = 10 mm; dashed lines and “◦”,
R = 20 mm; dot-dashed lines and “+”, R = 30 mm.

Predictions from Eq. 2.22 are compared with the values of θheel
+ from ABAQUS in

Fig. 2.13.

Note that the above result is similar to that for determining expressions for
Mmax

+ and θmax
+ , despite there being one less dimensionless group.
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2.3.4 Expression for Mmax
−

Figure 2.14 contains plots of log(|Mmax
− |/D) against log(α) for all finite-element

analyses. Points shown by the same symbol correspond to a fixed value of R/t
and lie on a straight line, as shown. Therefore

|Mmax
− |
D

= Cαp (2.23)

100 101

101

102

|M
m

a
x

−
|/D

α

Figure 2.14: Log-log plots of |Mmax
− |/D vs α for all ABAQUS results: “+”, R/t = 100;

“×”, R/t = 150; “◦”, R/t = 200; “∗”, R/t = 300. Solid lines are straight line fits of
ABAQUS results.

Mmax
− does not depend on the length of the tape-spring and, therefore, C and

p are functions of R/t only. Using the SVD technique described previously

C = 2.600 · 10−2 R

t
− 2.143 · 10−5

(
R

t

)2

(2.24)

p = 2.224 + 1.338 · 10−3 R

t
(2.25)

Substituting Eqs. 2.24 and 2.25 into Eq. 2.23 and rearranging gives |Mmax
− | in

Nmm

|Mmax
− | = D

[
2.600

102

R

t
− 2.143

105

(
R

t

)2
]

α[2.224+ 1.338
103

R
t ] (2.26)
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Figure 2.15: Comparison of |Mmax
+ | from ABAQUS (symbols) and values computed

from Eq. 2.22 (continuous lines). Solid line and “×”, R = 10 mm; dashed lines and
“◦”, R = 20 mm; dot-dashed lines and “+”, R = 30 mm.

Figure 2.15 compares predictions from Eq. 2.26 with all finite-element predic-
tions — the difference between corresponding curves is very small.

2.3.5 Expression for θramp
−

An expression for the relative end rotation at which the gradient first becomes
zero after Mmax

− will now be derived.

Consider the plots in Fig. 2.6. The variation of |θramp
− | with α, for each value of
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R/t, is a little irregular as the resolution of the finite-element results is insufficient
to define accurately these local stationary points. Nonetheless, each curve is well
represented by a straight line, whose equation is

|θramp
− | = Fα + G (2.27)

where F is the average slope for all curves and is equal to 0.1293 ≈ 1/8. The
intercepts are found to be approximately related to t/R in a linear fashion. The
constant of linearity is 17.992 ≈ 18. Thus, Eq. 2.27 becomes

|θramp
− | =

α

8
+ 18

t

R
(2.28)

2.3.6 Expressions for M ∗
+ and M ∗

−

In Section 1.2.1 it was noticed that the longitudinal radius of curvature in the
fold region is approximately equal to the transverse radius of curvature R of the
undeformed tape-spring. Also, the transverse radius of curvature in the fold is
approximately zero, i.e. the fold region is approximately cylindrical. Since both
surfaces are cylindrical, there is no change in Gaussian curvature, and hence the
stretching energy in the shell is zero. Hence, by minimising the bending strain
energy in the fold it can be shown that both the original, undeformed surface and
the deformed surface have the same radius of curvature R (Wüst 1954, Rimrott
1970, Calladine 1988).

If the changes of curvature associated with the fold in the longitudinal and
transverse directions are κl and κt, respectively, then, from Calladine (1983), the
corresponding bending moment is given by

M∗ = DRα(κl + νκt) (2.29)

For opposite-sense bending κt = 1/R and κl = 1/R. Substituting these values
into Eq. 2.29 yields

M∗
+ = (1 + ν)Dα (2.30)

For equal-sense bending κt is also 1/R, but κl = −1/R. Thus, the expression
analogous to Eq. 2.38 is

M∗
− = −(1 − ν)Dα (2.31)

Expressions equivalent to Eqs. 2.30 and 2.31 can be obtained also by integration
of the “stowage stress” for a STEM tube, obtained by Rimrott (1966a).
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2.3.7 Summary of Key Features

Expressions have now been determined for all key parameters listed at the start
of this section and are listed below:

Mmax
+ = D

R

t

[
1.152

103
− 2.210

103l
+

(−2.061

109

+
7.096

106l4

)(
R

t

)2
] 1

2

α[2.840+ 18.17
l2

+(−2.281
103

+ 6.809
102l

− 0.245
l2

)R
t ] (2.32)

θmax
+ =

L

R

[
1.520

104
− 4.365

103l
+

1.993

102l2
+

(
13.45 − 564.5

l4

+
9.929

105l8

)(
t

R

)2
] 1

2

α[−2.860+ 26.69
l

− 81.49
l2

+( −1.071
10−4l2

+ 4.134
10−5l4

− 3.740
10−6l6

) t
R ](2.33)

θheel
+ =

3.673

102
α − 4.932

102
α2 +

1.080

102
α3 +

t

R
eπα−0.80 (2.34)

|Mmax
− | = D

[
2.600

102

R

t
− 2.143

105

(
R

t

)2
]

α[2.224+ 1.338
103

R
t ] (2.35)

|θramp
− | =

α

8
+ 18

t

R
(2.36)

M∗
+ = (1 + ν)Dα (2.37)

M∗
− = −(1 − ν)Dα (2.38)



Chapter 3

Deployment Implications

This chapter illustrates the potential of tape-springs, acting as short hinges, to
deploy and then hold in position an attached rigid element. In practice, this
would be a way of replacing a complete deployment system, without the need
for additional latching mechanisms, to provide a relatively stiff interface between
the deployed element and the base of the tape-springs, which could be attached
directly to the spacecraft. Section 3.1 introduces the key problems associated with
the deployment of a rigid element by a singly-folded tape-spring. In Section 3.2 a
composite hinge, comprising identical tape-springs mounted alongside, with their
convex sides alternately up and down, is shown to behave symmetrically under
positive and negative bending moments.

3.1 Introduction

The free deployment of a rigid element connected to one end of a rigidly mounted
tape-spring is governed by the energy stored in the tape-spring and the direction
in which the tape-spring has been initially folded. Figure 3.1(a) shows the rela-
tionship between the moment applied to the rigid element and the rotation θ of the
this element relative to the base of the tape. The shape of this relationship is simi-
lar to that of Fig. 1.3, but for the purposes of the following discussion, equal-sense
bending moment and rotation have been plotted as positive and opposite-sense
bending moment and rotation have been plotted as negative.

The spring has been initially folded in the direction of equal-sense bending
to θ0, and the amount of strain energy available for free deployment is given by
the shaded area under the graph. The rigid element deploys by a release of this
stored energy, whilst the relative end rotation decreases. It is assumed that, first,
the mass of the tape-spring can be neglected in comparison with the mass of the
rigid element; second, that end-effects prevent any appreciable motion of the fold
along the tape-spring; and third that the gravitational potential energy of the
rigid element does not change during deployment.

34
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Figure 3.1: Moment applied by tape-spring to a rigid element connected to its free
end. (a) The initial fold angle is θ0 and the maximum opposite-sense rotation is θf .
(b) Behaviour during reverse motion.

When the tape-spring becomes straight, the strain energy stored in the system
is zero and, assuming that no energy has been dissipated, the kinetic energy of
the system will be equal to the initial area under the graph. The rigid element
then begins to slow down as kinetic energy converts back to strain energy under
opposite-sense bending. If the area under the peak portion of the opposite-sense
bending curve is smaller than the strain energy initially stored in the spring, the
tape-spring will snap-through. Then the moment applied to the rigid element
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jumps from the value at the nose, point A, to the steady-state value at the same
relative end rotation, at A′. This behaviour will be referred to as overshoot. The
rigid element continues to slow down until all the kinetic energy has been converted
into strain energy for opposite-sense bending in the fold at a rotation of θf ; the
end then begins to rotate in the opposite direction. The moment applied by the
tape-spring to the rigid element now follows the steady-state curve until the heel
at point B. Thereafter, the fold snaps-back to the pre-buckled state and a higher
bending moment. This bending moment, however, is lower than the peak moment
at A and thus, the strain energy stored in the system is now smaller than the initial
value, as shown in Fig. 3.1(b). Therefore, an angle smaller than θ0 is attained when
the rigid element stops again during equal-sense bending. This cycle continues
until the system has dissipated enough energy to avoid overshooting and, from
this point onwards, the motion of the system is a small-amplitude, lightly damped
oscillation about the equilibrium state.

To avoid overshoot the kinetic energy of the rigid element as it passes through
the origin must be smaller than the area under the steep part of the graph, OA,
of the moment-rotation plot.

The features of the moment-rotation plot that are central to the deployment
behaviour described above are: the initial bending stiffness; the behaviour in the
region of the peak moments; the steady state, i.e. constant bending moment
values; and the heel on the opposite-sense bending curve.

3.2 Moment-Rotation Relationship for a Com-

posite Hinge

Two identical tape-springs that are mounted in parallel and with their centres of
curvature on opposite sides are shown in Fig. 3.2. This arrangement is known as a
composite hinge. Note that the principal axes of bending at each end coincide with
the centre lines of the blocks. Unlike tape-springs mounted with their curvatures
in the same direction, this arrangement of tape-springs will produce a hinge with
equal positive and negative locking moments, as will now be discussed.

The moment applied by a composite hinge to a rigid element can be obtained
from the moment-rotation relationship of its components, and is constructed by
adding together the values of bending moment of each tape-spring for each value
of θ, as shown in Fig. 3.3. In this figure, each tape-spring has R = 10 mm,
L = 100 mm, t = 0.1 mm and α = 110◦; the moment-rotation relationship of a
single tape-spring with this geometry is shown in Fig. 3.4.

Consider the behaviour of a composite hinge that is initially folded to an angle
θ0 > 0. During deployment, Fig. 3.3(a), both tape-springs unload, i.e. the amount
of stored strain energy decreases as the rigid element acquires kinetic energy.
Again, it is assumed that the gravitational potential energy of the panel does not
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principal axes
of bending

Figure 3.2: Composite tape-spring hinge in the straight configuration.

change during deployment. As the rotation angle becomes approximately zero,
tape-spring 2, initially folded in the opposite sense, snaps-back whilst tape-spring
1 gradually straightens out as the moment increases and then decreases. The
kinetic energy of the rigid element reaches a maximum when both tape-springs
are completely straight, and is equal to the area from θ0 under the solid line to
the origin O, Fig. 3.3(b). At this point, both tape-springs bend in the opposite
direction, i.e. θ < 0, and store strain energy thus absorbing the kinetic energy
of the rigid element. The rigid element stops when all the kinetic energy has
been converted into potential energy, i.e. at an angle such that the area above
the curve in Fig. 3.3(b) is equal to the energy initially stored in the composite
hinge. Tape-spring 1 will snap through if the amount of energy to be absorbed to
completely arrest the rigid element is greater than the area above the curve from
O to point B. Therefore, the condition for avoiding overshoot is that the initial
energy stored in the folded tape-springs is less than or equal to the energy that
can be absorbed without one tape-spring snapping in the opposite-sense direction.
In other words, the difference between these two energies needs to be considered
in order to decide if the system will overshoot.

The difference between the energy released and absorbed during deployment
from an initial angle θ0 is indicated by the shaded areas, respectively area 1 and
area 2, in Fig. 3.3(c). The maximum initial angle of folding that avoids overshoot,
θmax
0 , has area 1 equal to area 2. It can be shown that this result is independent

of the inertia properties of the rigid element and of the number of pairs of tape-
springs.

After the rigid element has locked out without overshooting, the tape-springs
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Figure 3.3: Moment-rotation relationship of a composite hinge: (a) separate relation-
ships for the two tape-springs; (b) relationship for the composite hinge; (c) difference
between positive and negative moment areas. Each tape-spring is of R = 10 mm,
L = 100 mm, t = 0.1 mm and α = 110◦.

unload in the opposite direction. Since the bending behaviour is now restricted
to the pre-buckled states of both springs, the moment response in the opposite
direction, after the rigid element has passed through the zero angle position, is
the same, see Fig. 3.3(b). Therefore, the rigid element oscillates back and forth.
The frequency of oscillation depends on the inertia properties of the rigid element



3.2. Moment-Rotation Relationship for a Composite Hinge 39

−1.5 −1 −0.5 0 0.5 1 1.5
−200

−100

0

100

200

300

400

M
[N

m
m

]

θ [rad]

Figure 3.4: Moment-rotation relationship of single tape-spring in the composite hinge
described by Fig. 3.3.

and on the pre-buckled bending stiffness of the composite tape-springs.

Note that knowledge of the unstable portion of the moment-rotation relation-
ship of an individual tape-spring, between the nose and the heel for bending in
the opposite sense, see Chapter 2, is not required to construct any of these plots.

Figure 3.5 summarises the deployment behaviour for sets of composite tape-
springs with radius R = 10 mm. The individual tape-spring bending responses
were obtained using the finite-element procedure of Chapter 2. Appendix B gives
further details on the deployment behaviour of many different tape-spring geome-
tries.

There a several points to note regarding the relationship between the maximum
deployment angle and the composite hinge geometry.

In Chapter 2, it was noted that tape-springs with the same cross-sectional
properties and subject to equal-sense bending have the same peak moment, ap-
proximately the same behaviour as the fold begins to form, and the same steady
state moment values regardless of the length of spring. However, the initial stiff-
ness against bending, both in the equal and opposite sense of bending, increases
for a decreasing length of spring. For opposite-sense bending the rotation at
which the heel forms is also approximately the same, regardless of length. This
tape-spring, therefore, snaps back to a higher bending moment. The available
energy for deployment of the rigid element, and hence its maximum kinetic en-
ergy, slightly increases as the the length of the composite spring decreases. From
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Figure 3.5: Maximum deployment angle that avoids overshoot for composite tape-
springs with R = 10 mm and t = 0.1 mm.

Fig. 2.7 and the plots of Appendix A, the kinetic energy that can be absorbed
without snap-through also increases as the tape-spring becomes shorter. Thus, by
the equal areas argument, the relationship between the length of the composite
hinge and maximum deployment angle is non-linear, for a given α.



Chapter 4

Experiment Design

This chapter describes the design of an experiment that enables deployment of a
rigid element, i.e. a panel, by a set of composite tape-spring hinges. Section 4.1
presents the design of a variable inertia, hinge deployed panel. The location of
the centre of rotation of the panel is discussed in Section 4.2. The suspension
rig, that compensates for the effects of gravity during deployment, is designed in
Section 4.3.

4.1 Design of Panel

A panel that is deployed by a set of tape-springs was made according to the
following design criteria:

• the panel should be effectively rigid compared to the stiffness of the deploy-
ing tape-springs;

• the section dimensions and inertia properties are representative of actual
panels, namely, a surface area of 1 m2, a mass of about 10 kg, and a moment
of inertia about the edge connected to the tape-springs between 5 kgm2 and
10 kgm2;

• the panel provides a universal mount for tape-springs of different cross-
sections;

• the moment of inertia of the panel can be varied.

The panel was constructed and is shown schematically in Fig. 4.1. The depth
and length are 1.0 m and 1.3 m, respectively. The vertical base element of the
panel is made from solid Al-alloy bar into which sets of threaded holes 60 mm
apart have been tapped to provide fixtures for the tape-springs. Three lengths

41
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of right-angled Dexion bar are connected to the base by means of machined Al-
alloy adaptor blocks. The Dexion bars are connected together at the end of the
panel. This triangulated arrangement imparts in-plane stiffness to the panel.
A steel block of mass 3.20 kg is attached to the end of the horizontal element
to increase the moment of inertia of the panel about its base. The moment of
inertia of the panel can then be varied by connecting two additional, identical
mass blocks at equal distances on either side of the vertical centroidal axis on the
horizontal Dexion element. Thus, the designated position of the centre of mass of
the panel remains unchanged when its inertia is varied and, hence, the position
of the gravity-compensation suspension point need not be changed.

centre of mass

Al alloy
base bar

adjustable
inertia masses

Dexion angle

end mass

1.3 m

1.0 m

(a)

(b)

θ0

Figure 4.1: Schematic layout of panel: (a) side-view with composite hinge detail; (b)
partial plan view and initial folded angle.
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The panel was weighed to obtain its mass. The vertical centroidal axis was
located by positioning the panel on a knife-edge until it balanced. The moment
of inertia of the panel about it centre of mass was found by mounting the panel
vertically in a fixed bearing bracket and measuring the period of oscillation for free
vibrations. These properties are listed in Table 4.1 and have been confirmed by
calculation using the individual masses and moments of inertia of each component
as constructed in the panel.

mass, mp [kg] 8.622
moment of inertia about centroid, Ip [kgm2] 2.129

distance of vertical centroidal axis from base edge, ap [m] 0.737

Table 4.1: Panel properties without additional masses.

The moment of inertia of the panel about its base, I0, is thus

I0 = Ip + mpap
2 = 6.9 kgm2 (4.1)

4.2 Position of Centre of Rotation

The tape-springs have a finite length. Therefore, the centre of rotation of the panel
is not located at the fixed support of the tape-springs. During initial deployment,
the inertia loading applied by the panel to the tape-springs causes the folds to
move slowly towards the fixed support end. The constraint applied by the rigidly
encased ends stops any further advance of the folds. It is assumed that all tape-
springs deform identically. Therefore, the distance of the start of each fold from
the base is p1, see detail in Fig. 4.2.

As the panel deploys, the arc-length of the folds decreases. All points from the
base to the end of the fold have zero velocity. Thus, at any instant, the centre of
rotation of the panel is located at the end of the fold as shown in detail in Fig. 4.2.
By considering the position of the end of the folds for the folded and deployed
configurations, an average position for the centre of rotation can be obtained.
This is given by point C, with coordinates

Cx = p1 +
Rπ

2
Cy = R (4.2)

for θ0 = π rad. The locus of the centre of mass of the panel during deployment
is shown in the main part of Fig. 4.2. A semi-circular arc, originating from point
C and passing through the start and end positions of the panel, is fitted to the
locus. This provides a fixed radius for the point of suspension of the gravity
compensation system. Its axis of rotation is therefore coincident with the average
centre of rotation of the panel.
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Figure 4.2: Position of the centre of mass of the panel during deployment. Inset:
positions of actual centre of rotation of the panel centre of mass for a deployment
angle θ and average centre C for deployment angle range of 180◦.

4.3 Design of Experimental Rig

An experimental rig was designed and constructed that enabled the panel and
tape-springs to be connected to a fixed foundation, as well as providing a means
of compensating for the effects of gravity during deployment.

The influence of gravity is overcome by having the axis of rotation of the panel
in the vertical direction so that each tape-spring rotates in a horizontal plane. The
weight of the panel is offloaded from the ends of the tape-springs by means of a
suspension system that rotates with the panel during deployment. The suspension
system consists of a light Al-alloy jib with its vertical axis mounted in virtually
frictionless, self-aligning bearings. The panel is connected from its centroid to a
steel cable passing over pulleys to a counterweight that is located on the axis of
rotation of the jib, see Fig. 4.3.

The counterweight consists of a steel box filled with lead shot. Its total mass
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counterweight

bracket

scaffold frame
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steel
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Figure 4.3: Schematic layout of suspension system.

is equal to the mass of the panel and it is free to move in the vertical direction to
accommodate any lag in motion between the panel and the jib. The counterweight,
however, cannot rotate relative to the vertical axis of the jib. The suspension
system is connected by steel brackets to a purpose-built scaffold frame and is
located well above the panel so that any changes in the vertical cable angle during
deployment give rise to small components of horizontal force applied to the panel.
The fixed ends of the tape-springs are connected to a vertical bar, which is in
turn connected by adjustable clamps to the scaffold frame. The position of the
bar in the horizontal plane can be adjusted to align the axes of rotation of the jib
and of the panel. The length of the jib is fixed and hence, to test tape-springs
of different lengths, balance masses are attached to the panel to ensure that its
centre of mass is directly below the end of the jib.

mass, mj [kg] 1.550
length of jib, lj [m] 0.855

distance of centroid from vertical shaft, aj [m] 0.340
moment of inertia about centroid, Ij [kgm2] 0.153

Table 4.2: Suspension system properties for the jib components.

A video camera is mounted above the suspension system to provide a vertical
view and record of the deployment sequence. The properties of the suspension
system, excluding the counterweight, are given in Table 4.2. The counterweight
has a moment of inertia about its centroid of approximately 0.0166 kgm2 when
not filled with shot.



Chapter 5

Experiments and Theoretical
Analysis

This chapter begins by presenting deployment experiments of the panel. Then,
Section 5.2 details the derivation of two-degree of freedom model that simulates
the coupled deployment of the panel and compensation system. A comparison
of theoretical and predicted results is carried out in Section 5.3. The chapter
concludes with a brief discussion in Section 5.4.

5.1 Experimental Procedure and Results

The panel was deployed by two sets of tape-springs whose section properties are
given in Table 5.1. Each set consisted of two identical pairs of composite hinges.
The values of p1, Fig. 4.2, were obtained by direct measurement when the panel
was folded. No inertia masses were attached to the panel and, hence, its properties
are those of Table 4.1. A steel balance block of mass 0.881 kg was fixed to the
panel, but offset normal to the plane of the panel to ensure alignment of the
base of the panel with the vertical. This increased the mass of the panel, mp,
to 9.503 kg without appreciable change in Ip; the position of the centre of mass
of the panel also changed to ap = 741 mm for the first set of tape-springs, and
ap = 725 mm for the second set.

A tape-spring from the first set was tested in a bending jig (Fischer 1995)
to measure its moment-rotation relationship. The geometry of the second set
was chosen with reference to Section 3.2 to enable the panel to deploy without
overshooting from a large initial folded angle.

The rotation of the panel during deployment was recorded with a video camera,
and the angular position of the panel in each frame was digitised and plotted. An
accelerometer was attached to the tip of the panel to provide data on the post lock-
out vibration. A dial indicator was fixed to the vertical shaft of the suspension

46
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system and pressed against the base of the counterweight. This indicated any
vertical motion of the counterweight.

tape-set R [mm] α [◦] L [mm] (×Rα) t [mm] p1 [×R]
1 28.1 103.4 210 (4.14) 0.1 2.5
2 20.6 144.8 230 (4.42) 0.1 3.7

Table 5.1: Tape-spring section properties of composite hinges.

The rotation of the panel, deployed by the first set of tape-springs, up until
the initial lock-out phase is shown in Fig. 5.1(a).
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Figure 5.1: Experimental deployment by first set of tape-springs: (a) plot of deploy-
ment; (b) post lock-out vibration (filtered to remove signal noise in the original data).

A maximum initial deployment angle of approximately 45◦ was attainable
without the panel overshooting. The tape-springs initially straighten out 12.0
seconds after the start of deployment. The direction of rotation of the panel
reverses and the tape-springs subsequently prevent overshoot in the opposite di-
rection. The panel then continues to oscillate about the zero angle position as the
amplitude of the tip decreases. The lateral acceleration of the tip of the panel
during the post lock-out vibration stage is shown in Fig. 5.1(b). The period of
oscillation is approximately 1.9 seconds. Deployment of the panel with overshoot
was carried out several times and the tape-springs showed no obvious damage on
account on snapping through.



48 Chapter 5. Experiments and Theoretical Analysis

Figure 5.2 details the experimental moment-rotation relationship of one of the
tape-springs. A prediction of the bending response by a finite-element analysis is
also shown. The elastic compliance of the testing apparatus results in a smaller
initial bending stiffness for the tape-spring when compared to the finite-element
data.
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Figure 5.2: Moment-rotation relationship of a single tape-spring from the first set (see
Table 5.1). Note that loading and unloading for equal-sense bending is the same, and
hence the unloading curve for this direction is not shown.

Two experiments for the deployment of the panel by the second set of tape-
springs are shown in Fig. 5.3. Deployment from an initial folded angle of 138◦

did not cause overshooting, but when this angle was increased to 152◦ the panel
overshot lock-out; this is verified in Fig. 5.4 where values of θmax

0 are plotted
against α for R = 20.6 mm, t = 0.1 mm and L = 4.42Rα. This plot was
obtained using the deployment predictions from Appendix B. From Fig. B.1,
linear interpolation between the lines L = 4Rα and L = 6Rα for L = 4.42Rα
gives values of θmax

0 for R = 20 mm. Similarly, from Fig. B.2 (R = 30 mm), values
of θmax

0 are also computed for spring lengths of L = 4.42Rα. Finally, by further
linear interpolation between these two sets of values of maximum deployment angle
for a radius of 20.6 mm gives the resulting curve in Fig. 5.4. The experiments are
also shown in this figure and, as it can be seen, the first experiment lies below the
line of maximum deployment angle, whereas the second experiment lies above,
indicating that the panel overshoots. Table 5.2 summarises the experimental and
theoretical behaviour. The tape-springs incurred plastic damage in the second
experiment as they snapped through and further rotation beyond this point, in
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the same direction, was impaired. In both experiments the panel locks out in
the reverse direction and then continues to oscillate with a decaying amplitude.
Post lock-out vibration details are given in Table 5.3. Note that the large initial
stiffness of the tape-springs made it impossible to measure their moment-rotation
relationship on the testing apparatus.
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Figure 5.3: Deployment angle of panel, tape-set 2.

In all of the experiments, the fully deployed state of the panel corresponded
exactly to the initial, extended position of the panel, i.e. the tip of the panel
did not move vertically during deployment. The counterweight moved by only
a few millimetres just before the first lock-out of the tape-springs took place.
During post lock-out vibration the amount of relative displacement between the
counterweight and the vertical shaft of the suspension system was less than 1 mm.

θ0 [◦] experiment theory
138 does not overshoot does not overshoot
152 overshoots overshoots

Table 5.2: Comparison between experimental behaviour and theoretical predictions
from Fig. 5.4.
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Figure 5.4: Maximum deployment angle that avoids overshoot for a composite hinge
with R = 20.6 mm, t = 0.1 mm and L = 4.42Rα, and corresponding to the second set
of tape-springs. First and second experiments denoted by “×” and “◦”, respectively.

Experiment Number of oscillations to time of decay frequency of
zero amplitude vibration [s] vibration [Hz]

no overshoot 72 116.5 0.62
overshoot 78 122.4 0.64

Table 5.3: Post lock-out vibration behaviour of the panel when deployed by second set
of tape-springs.

5.2 Analysis of Deployment

Experimental observation suggests that the centroid of the panel moves in a hor-
izontal plane during deployment. Thus, the counterweight moves up and down
to accommodate any changes in distance between the tip of the suspension sys-
tem and the panel. Figure 5.5 shows the two degree-of-freedom model that takes
account of these features.

The panel is modelled as a rigid element GH of mass mp and of moment of
inertia Ip about its centroid. The distance from the edge of the panel to its centroid
is ap. The panel is connected to a rigid foundation O by n pairs of composite tape-
spring hinges which are flexible in the horizontal plane only. Each tape-spring
is idealised as three interconnected bodies; OE, EF and FG. In analogy with
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Section 4.2, body OE is rigid and of a fixed length p1. Body EF, representing the
fold region, subtends an arc-length Rθ, where θ is the angle between the current
configuration of the panel and its fully deployed configuration. Body FG is rigid,
but of variable length p2. If the total length of the tape-spring is L, then p2 can
be related to θ by

p2 = L − p1 − Rθ (5.1)

The unit vectors i, j and k form a fixed, orthogonal, right-handed set, and eθ,
e∗

θ are the auxiliary unit vectors, respectively parallel and normal to the panel.

g

θ

θ

β

eθe∗θ

eβ
e∗β

Cx

Cy R

p1

C

C

D

D

E

F

G

G

H

H

O

O

lj

aj

ap

zj
z

i

j

k

axis of rotation of
suspension system

counterweight

cable

datum of zero
gravitational
potential energy

(a)

(b)

1

2

n

Figure 5.5: Theoretical model of panel and suspension system: (a) plan view; (b) side
view.
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The suspension, comprising all moving components of the suspension system
except for the counterweight, see Fig. 4.3, is also modelled as a rigid element CD
that rotates about a vertical axis. Let zj be the vertical distance between the
horizontal plane of the centroid of the panel and the horizontal plane of the tip
of jib. The associated angle of rotation is β. The axis of rotation of the jib is
offset from O by the distances Cx and Cy in the i and j directions, respectively,
see Section 4.2. The distance from the vertical axis of rotation to the centroid is
aj and the overall length of the jib is lj. The centroid has mass mj and moment
of inertia Ij about its centroid. The auxiliary unit vectors eβ and e∗

β are parallel
and normal to the suspension system, respectively.

The counterweight is located on the axis of rotation of the suspension at a
vertical height z above the panel. Its mass is mw and the moment of inertia about
its centroid is Iw.

The datum for zero gravitational potential energy is defined as the horizontal
plane passing through the centroid of the panel.

The three coordinates for this system are θ, β and z. However, an equation of
constraint relates z to θ and β since the cable connecting the counterweight to the
panel is of a fixed length. Therefore, θ and β are the two degrees of freedom of the
combined system and the equations of motion are formulated using a Lagrangian
approach, i.e. in terms of kinetic and potential energies.

The height of the counterweight above the horizontal plane of motion of the
panel can be expressed in terms of the total cable length lc and associated terms
as follows

z = z′ +
√

a2 + b2 + c2 (5.2)

where

z′ = zj − lc + lj

a = [Cx − p1 + lj cos β − R sin θ − (p2 + ap) cos θ]

b = [Cy − R + lj sin β + R cos θ − (p2 + ap) sin θ]

c = zj (5.3)

5.2.1 Formulation of Lagrangian

The centroid of the panel is identified by the vector

rp = p1i + R(j − e∗
θ) + (p2 + ap)eθ (5.4)

Substituting Eq. 5.1 into Eq. 5.4 and differentiating with respect to time yields

ṙp = (L − p1 − Rθ + ap)θ̇e
∗
θ (5.5)
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The kinetic energy of the panel can expressed as

Tp =
1

2
mpṙ

2
p +

1

2
Ipθ̇

2 (5.6)

Inserting Eq. 5.5 into Eq. 5.6 gives

Tp =
1

2
mp(L − p1 − Rθ + ap)

2θ̇2 +
1

2
Ipθ̇

2 (5.7)

Similarly, the centroid of the jib is given by the position vector

rs = Cxi + Cyj + zjk + ajeβ (5.8)

Hence, its velocity is
ṙs = ajβ̇e∗

β (5.9)

and its kinetic energy is therefore

Tj =
1

2
mja

2
j β̇

2 +
1

2
Ijβ̇

2 (5.10)

The counterweight has a centroidal velocity żk and an angular velocity of β̇k.
Its kinetic energy is, by analogy with the above,

Tw =
1

2
mwż2 +

1

2
Iwβ̇2 (5.11)

Since the motions of the panel and of the suspension jib take place in the
horizontal planes containing their respective centroids, their gravitational poten-
tial energy does not change during deployment. However, the counterweight can
displace in the vertical direction and therefore its gravitational potential energy
term contributes to the equations of motion and is given by

Vw = mwgz (5.12)

where g is the acceleration due to gravity. The tape-springs have a combined
elastic potential energy of

V = V (θ) (5.13)

V (θ) is equal to the area under the appropriate composite moment-rotation re-
lationship curve. The Lagrangian for the system, L, defined as the difference
between the total kinetic and potential energies, is

L = Tp + Tj + Tw − Vw − V (5.14)

Therefore, by substitution of the appropriate terms

L =
1

2
mp(L − p1 − Rθ + ap)

2θ̇2 +
1

2
Ipθ̇

2 +
1

2
mja

2
j β̇

2

+
1

2
Ijβ̇

2 +
1

2
mwż2 +

1

2
Iwβ̇2 − mwgz − V (θ) (5.15)



54 Chapter 5. Experiments and Theoretical Analysis

5.2.2 Equations of Motion

In analogy with Rimrott (1980), the equations of motion for this system are de-
rived by an application of Lagrange’s equations (Synge and Griffith 1970)

d

dt

(
∂L
∂q̇i

)
− ∂L

∂qi

= Qi (5.16)

In this equation qi represent the generalised coordinates of the system, i.e. θ and
β; Qi are the generalised forces corresponding to non-conservative forces acting on
the system and are: aerodynamic drag acting on the panel, friction in the support
bearings and material damping in the tape-springs.

The first equation of motion is obtained by differentiating Eq. 5.15 with respect
to θ, and also to θ̇ and then t, and then substituting into Eq. 5.16 to give

mp

[
(L − p1 − Rθ + ap)θ̈ − Rθ̇2

]
(L − p1 − Rθ + ap) + Ipθ̈

+
1

2
mw

[
d

dt

∂(ż2)

∂θ̇
− ∂(ż2)

∂θ
+ 2g

∂z

∂θ

]
+

∂V

∂θ
= Qθ (5.17)

The first term inside the bracket on the second line of Eq. 5.17 can be expressed
as

∂(ż2)

∂θ̇
=

∂(ż)2

∂ż

∂ż

∂θ̇
= 2ż

∂ż

∂θ̇
(5.18)

However
∂ż

∂θ̇
=

∂z

∂θ
(5.19)

and by virtue of Eq. 5.2

∂z

∂θ
= (a2 + b2 + c2)−

1
2

[
a
∂a

∂θ
+ b

∂b

∂θ

]
(5.20)

ż = (a2 + b2 + c2)−
1
2 (aȧ + bḃ) (5.21)

Substituting Eq. 5.20 into Eq. 5.19, and then substituting the resulting expression
along with Eq. 5.21 into Eq. 5.18 yields

∂(ż2)

∂θ̇
= 2(a2 + b2 + c2)−1(aȧ + bḃ)

[
a
∂a

∂θ
+ b

∂b

∂θ

]
(5.22)

The second term inside the bracket of Eq. 5.17 can be written as

∂(ż2)

∂θ
= 2ż

∂ż

∂θ
(5.23)
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where

∂ż

∂θ
= −1

2
(a2 + b2 + c2)−

3
2

[
2a

∂a

∂θ
+ 2b

∂b

∂θ

]
(aȧ + bḃ)

+(a2 + b2 + c2)−
1
2

[
a
∂ȧ

∂θ
+ ȧ

∂a

∂θ
+ b

∂ḃ

∂θ
+ ḃ

∂b

∂θ

]
(5.24)

from Eq. 5.21. Therefore, substituting Eq. 5.21 and Eq. 5.24 into Eq. 5.23 gives

∂(ż2)

∂θ
= 2(aȧ + bḃ)

[
a
∂ȧ

∂θ
+ ȧ

∂a

∂θ
+ b

∂ḃ

∂θ
+ ḃ

∂b

∂θ

]
(a2 + b2 + c2)−1

−(aȧ + bḃ)2

[
2a

∂a

∂θ
+ 2b

∂b

∂θ

]
(a2 + b2 + c2)−2 (5.25)

Differentiation of Eq. 5.22 with respect to time and substitution of the resulting
expression along with Eq. 5.20 and Eq. 5.25 into Eq. 5.17 and tidying up of terms
results in the equation of motion in θ as

mp

[
(L − p1 − Rθ + ap)θ̈ − Rθ̇2

]
(L − p1 − Rθ + ap) + Ipθ̈

+
mw

a2 + b2 + c2

[
a
∂a

∂θ
+ b

∂b

∂θ

][
ȧ2 + ḃ2 + aä + bb̈ − (aȧ + bḃ)2

a2 + b2 + c2

]

+
mwg√

a2 + b2 + c2

[
a
∂a

∂θ
+ b

∂b

∂θ

]
+

∂V

∂θ
= Qθ (5.26)

where

ȧ = (L − p1 − Rθ + ap)θ̇ sin θ − ljβ̇ sin β (5.27)

ä = (L − p1 − Rθ + ap)(θ̈ sin θ + θ̇2 cos θ)

−lj(β̈ sin β + β̇2 cos β) − Rθ̇2 sin θ (5.28)

ḃ = −(L − p1 − Rθ + ap)θ̇ cos θ + ljβ̇ cos β (5.29)

b̈ = (L − p1 − Rθ + ap)(θ̇
2 sin θ − θ̈ cos θ)

+lj(β̈ cos β − β̇2 sin β) + Rθ̇2 cos θ (5.30)

∂a

∂θ
= (L − p1 − Rθ + ap) sin θ (5.31)

∂b

∂θ
= −(L − p1 − Rθ + ap) cos θ (5.32)
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from the relationships in Eqs. 5.3. ∂V/∂θ is simply the moment-rotation response
of all of the composite hinges.

A second, independent equation of motion is obtained by differentiating L
with respect to β, and also to β̇ and t and substituting into Eq. 5.16, and by
performing similar calculus operations as in Eqs. 5.18 to 5.25 to yield

mw

a2 + b2 + c2

[
a
∂a

∂β
+ b

∂b

∂β

][
ȧ2 + ḃ2 + aä + bb̈ − (aȧ + bḃ)2

a2 + b2 + c2

]

+mja
2
j β̈ + Ijβ̈ + Iwβ̈ +

mwg√
a2 + b2 + c2

[
a
∂a

∂β
+ b

∂b

∂β

]
= Qβ (5.33)

where
∂a

∂β
= −lj sin β (5.34)

∂b

∂β
= lj cos β (5.35)

Equations 5.26 and 5.33 form a system of two non-linear, coupled differen-
tial equations which are solved numerically using the fourth-order Runge-Kutta
routine available within the software package MATLAB (Mathworks 1995).

For an initial folded angle of the panel, θ0, the suspension is at an angle β0 such
that the connecting cable applies zero force perpendicular to the vertical plane of
the suspension system, i.e.

tan−1 a

b
= β0 (5.36)

Equation 5.36 is solved iteratively to obtain the appropriate value of β0 for a given
θ0.

5.3 Comparison of Simulation and Experiment

The measured relationship between bending moment and deployment angle of
the first set of tape-springs is shown in Fig. 5.6. Similarly, Fig. 5.7 indicates the
response simulated by a finite-element analysis of a single tape-spring, and assem-
bling the results as shown in Fig. 5.2. Both plots are only valid for deployment
without overshoot, c.f. Fig. 3.3(b). In general, there is good agreement between
the plots, however, the finite-element analysis predicts a slightly higher unstable
peak moment. There is also no jump in moment just before the zero angle position
during initial unloading. For a general angle of rotation of the panel, the value
of ∂V/∂θ in Eq. 5.26 is obtained by reading the corresponding value of moment
from either curve.

The equal areas condition for deployment without overshoot, Section 3.2, yields
an initial deployment angle θmax

0 = 0.895 rad (51.3◦) if the measured response
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curve is used, whereas the curve predicted by the finite-element analysis results
in θmax

0 = 0.883 rad (50.6◦).

It is assumed that the effects of air drag, friction in the support bearings, and
material damping in the tape-springs are small. Therefore, Qθ and Qβ are set
to zero in Eqs. 5.26 and 5.33, respectively. The appropriate panel, suspension
system and tape-spring properties are substituted into the equations of motion
along with the values of the parameters in Table 5.4.

Cx [mm] Cy [mm] ap [m] zj [m] lc [m] θ0 [◦] β0 [◦]
100.3 18 0.741 1.7 2.75 45.0 45.13

Table 5.4: Geometric parameters used in deployment simulation with first set of tape-
springs.
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Figure 5.6: Measured behaviour of composite tape-spring hinges.

Figure 5.8 shows two different deployment simulations, corresponding to the
two different moment-rotation relationships. The deployment response using the
finite-element relationship predicts that the panel first stops moving after 12.2 s,
and the corresponding deployment angle is −0.053 rad (−3.08◦). Thereafter, a
post lock-out vibration occurs, with a period of approximately 2.5 s. If, instead
of using the finite-element based relationship, the experimental relationship is
used, the predicted times to the first cessation of motion and period of oscilla-
tion are 13.2 s and 2.89 s, respectively, and the corresponding deployment angle
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Figure 5.7: Moment-rotation relationship of composite tape-spring hinges by finite-
element analysis.

is −0.074 rad (−4.23◦). In both simulations the suspension system rotation is
practically equal to the panel rotation, both before initial lock-out and after.

The finite-element data gives rise to larger steady-state moments for the com-
posite tape-spring hinges and, hence, the deploying torque is greater and the panel
deploys in a shorter time. Also, from Fig. 5.7, the largest deployment angle that
the panel can reach without overshooting is −0.056 rad. Figure 5.6 indicates a
maximum deployment angle of −0.077 rad by the measured response for successful
lock-out. From Fig. 5.8, both simulations yield smaller lock-out rotations, respec-
tively, for θ0 = 45◦; thus, the panel does not overshoot, and the values of θmax

0

obtained by the equal-areas calculation are confirmed. Since dissipative effects
have not been included, the amplitude of free vibrations is constant and equal to
the initial value of lock-out rotation.

The discrepancy between the predicted values of the post lock-out vibration
period and the measured value of 1.9 s, Fig. 5.1(b), can be explained as follows.

The natural frequency of vibration of the panel after lock-out can also be
estimated simply by modelling the system as a single degree-of-freedom system.
The panel and tape-springs are modelled as a rigid element of length L+ap, equal
to the distance from the base of the tape-springs to the centroid of the panel. The
moment of inertia of the panel about the base of the tape-springs Ib is thus

Ib = mp(L + ap)
2 + Ip (5.37)
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Substitution of mp, L, ap and Ip into Eq. 5.37 results in Ib = 10.72 kgm2.
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Figure 5.8: Predictions of panel deployment by first set of tape-springs: (a) experi-
mental response and; (b) finite-element response.

The rotational stiffness of this system, k, is given by the initial slope of the
relationships in Figs. 5.6 and 5.7, for θ < 0. Hence, the equation of motion for
vibration of the panel is

Ibθ̈ + kθ = 0 (5.38)
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and the natural period of the panel is therefore

T = 2π

√
Ib

k
(5.39)

It has been noted that the predicted amplitude of oscillation is equal to the
maximum rotation of the tape-springs without overshoot. For the finite-element
composite response of Fig. 5.7, the initial gradient is approximately 66.9 Nm/rad.
The period of vibration, from Eq. 5.39, is 2.52 s. However, closer inspection of
Fig. 5.7 shows a bi-linear response, with higher stiffness equal to 119.7 Nm/rad up
to a rotation of 0.01 rad. This results in a modified period of 1.88 s for a smaller
amplitude of oscillation. This would seem consistent with a decreasing amplitude
of oscillation due to dissipative effects during the deployment experiment, see
Fig. 5.1(b). The initial value of k, from Fig. 5.6, is 76.1 Nm/rad for the measured
moment response and the period of vibration of the panel is therefore 2.36 s. Thus,
a more accurate period is obtained using the finite-element response. However, as
noted in Section 5.1, the initial stiffness of the measured response may be larger
due to the compliance of the bending apparatus, and, hence the calculated value
of period would decrease.

Material damping in the tape-springs causes the amplitude of post lock-out
vibration to slowly decrease. It is due to hysteresis effects in the CuBe and also to a
lack of fixity between the CuBe, the tape-spring end-blocks and the panel/scaffold
interfaces. An estimate of the degree of damping can be obtained by inclusion of
a rotational damping term into Eq. 5.38, i.e.

Ibθ̈ + cθ̇ + kθ = 0 (5.40)

where c is of units Nms. A value of c can be found, provided the time, t′, is known
for which the initial amplitude of vibration decays by a particular percentage p′.
Let the natural frequency of vibration of the panel be wn =

√
k/Ib, and the

damping factor is c′, equal to cwn/2k. Therefore, solving Eq. 5.40 yields

c′ = − 1

wnt′
log

[
1 − p′

cos wnt′

]
(5.41)

Choosing a value of 1−p′ equal to 0.01 and substitution of the values of frequency
and time of decay from Table 5.3 into Eq. 5.41 results in values of c′ of 0.0024
and 0.0039 for the experiments without and with overshoot, respectively. Plastic
deformation of the tape-springs during overshoot causes c′ to increase.

5.4 Discussion

Consider Fig. 5.9. In this plot, the deployment of the panel by the first set of
tape-springs is shown for mj = 0, Ij = 0, mw = 0, and Iw = 0 substituted into
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Eqs. 5.26 and 5.33, with Qθ = 0 and Qβ = 0. Therefore, Eq. 5.33 has zero on
both sides and gravitational terms in Eq. 5.26 become zero. Thus, this prediction
corresponds to simulated deployment of the panel in space.
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Figure 5.9: Comparison between measured deployment of panel (“+”), predicted de-
ployment behaviour with suspension system (dashed line) and predicted deployment
behaviour without suspension system and gravity (continuous line).

Also, shown are the predicted deployment from Fig. 5.8(b) and the measured
response before first lock-out from Fig. 5.1(a). There are two points to note.
First, the initial deployment is practically the same for all curves, the zero-gravity
deployment is slightly faster since there is no suspension system inertia. Second,
the period and amplitude of post lock-out vibration from both predictions are
also practically identical. Thus, the experimental set-up and the corresponding
analytical model accurately simulate and predict gravity-free deployment, respec-
tively.



Chapter 6

Design of Rigid Panel
Deployment System

In this chapter, a series of of formulae are derived which may be used to estimate
the type and number of composite hinges required for a desired “deployment
performance” of a panel of known dimensions, mass and inertia properties. The
bending behaviour of the tape-springs that make up a composite hinge will be
described by in terms of the key features of the moment-rotation relationship
obtained in Section 2.3. In this way, R, t, L, α, and the material properties of
tape-springs enter directly into the analysis as variable design parameters.

Deployment performance can be described by three parameters. The first
parameter is the time t′ that it takes for the panel to reach first lock-out from
rest; this deployment time is related to the deploying torque required. The second
parameter is the frequency of vibration fn of the panel after lock-out has been
achieved. If this frequency is close to the spacecraft natural frequency there may
be coupling between the overall spacecraft dynamics and the vibration of the
panel, which may be difficult to correct in the absence of damping. The third
parameter is the maximum angle of folding, θmax

0 , that can be attained by the
composite hinges without snap-through occurring during rebound. Overshoots
are undesirable because they may cause damage at the edge of the panel, which
may result in the clearance tolerances being exceeded in the fully deployed state.
The value of θmax

0 dictates the stowed configuration of the panel before launch.

At all stages during deployment the tape-springs must remain elastic. Plastic-
ity in the tape-springs may lead to incorrect deployment and might also reduce
the fatigue life of the hinges.

In Section 6.1, an approximate expression for the maximum deployment angle
of a composite hinge is derived. Section 6.2 deals with the time for deployment
and the natural frequency of vibration of the panel. Tape-spring plasticity is
examined in Section 6.3. The design formulae are then tested by worked examples
in Section 6.4. Finally, Section 6.5 discusses the procedure by which the composite

62



6.1. Idealisation of Composite Hinge Behaviour 63

hinge geometry may be determined in practice.

6.1 Idealisation of Composite Hinge Behaviour

The behaviour of a composite hinge can be simplified as follows. Figure 6.1 shows
the moment-rotation relationships of the two tape-springs comprising a composite
hinge. The initial folded angle, θ0, is positive, Section 3.2, and each curve is an
idealisation based on Fig. 1.3. The notation for key moment and rotation features
has been defined in Chapters 1 and 2.

Unloading of the tape-spring initially folded in the equal-sense direction is
shown in Fig. 6.1(a). Initial behaviour is characterised by the line M = |M ∗

−|;
it is assumed, Section 2.2, that the bending moment remains constant until the
rotation becomes equal to |θramp

− |. Then, as θ decreases further, the moment
ramps up to |Mmax

− | following a straight line. The corresponding rotation is |θmax
− |.

Thereafter, the behaviour is linear as the tape-spring passes through the zero angle
position. For initial opposite-sense bending of the spring the M, θ relationship
follows a straight line of the same slope until peak values of moment and rotation,
−Mmax

+ and −θmax
+ , respectively. Beyond −θmax

+ the tape-spring snaps through,
and this part of the response is indicated by a long-dashed line.

The moment-rotation response for an identical tape-spring initially folded in
the opposite sense is shown in Fig. 6.1(b). The tape unloads from θ0 along the line
M = M∗

+, and at θheel
+ snaps back to a bending moment Mheel

+ on the linear portion
of the pre-buckled curve. During rebound, the equal-sense bending behaviour is
the same as that in Fig. 6.1(a), but with moment and rotation of opposite signs.

The composite hinge does not overshoot if, Section 3.2, the combined area
below both curves, from θ0 to θ = 0, which corresponds to the energy available for
deployment, is less than or equal to the magnitude of the area above the curves
from θ = 0 to θ = −θmax

+ , i.e. the maximum amount of energy that can be
absorbed elastically without snap-through.

The respective areas are calculated as follows. The area under the two curves
for positive θ, A1, is obtained by a summation of the elementary areas bounded
by the construction lines, i.e.

A1 = |M ∗
−| (θ0 − |θramp

− |) +
1

2
Mmax

− θmax
−

+Au + M∗
+

(
θ0 − θheel

+

)
+

1

2
Mheel

+ θheel
+ (6.1)

where Au is the area underneath the ramp line from |θmax
− | to |θramp

− |. If θheel
+ < 0,

then the tape-spring snaps back onto the linear curve at M ∗
+ and, thus, the last

term in the above equation will become approximately zero. The combined area
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−M∗
+

M∗
−
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Figure 6.1: Idealisation of composite hinge behaviour using moment-rotation relation-
ships of component tape-springs: (a) equal-sense bending; (b) opposite-sense bending.
Construction lines, for the calculation of areas, are shown as dotted lines. Long dashed
lines indicate the route followed during overshoot.

with respect to rebound, A2, is given by

A2 =
1

2
Mmax

+ θmax
+ +

1

2
Mmax

− θmax
− + Al (6.2)

Al is the size of the area above the ramp line between θ = −|θmax
− | and θ = −θmax

+ .
Note that for θmax

+ ≥ |θramp
− |, Al = Au. Equating A1 to A2 for θ0 = θmax

0 and
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rearranging terms results in

(
M∗

+ + |M ∗
−|

)
θmax
0 = Al − Au +

1

2
Mmax

+ θmax
+ + M∗

−θramp
−

+

[
−1

2
Mheel

+ + M∗
+

]
θheel
+ (6.3)

Al − Au will now be calculated. The equation of the ramp line in Fig. 6.1(a)
is given by

M = |M ∗
−| + K (θ − |θramp

− |) (6.4)

where

K =
|Mmax

− | − |M ∗
−|

|θmax− | − |θramp
− | (6.5)

Therefore

Au =

∫ θ=|θramp
− |

θ=|θmax
− |

Mdθ (6.6)

By symmetry, the equivalent expression for Al is given by

Al =

∫ θ=θmax
+

θ=|θmax
− |

Mdθ (6.7)

Thus

Al − Au =

∫ θmax
+

|θramp
− |

[|M∗
−| + K (θ − |θramp

− )
]
dθ (6.8)

Substitution of Eq. 6.5 into Eq. 6.8 and performing the integration yields

Al − Au =
1

2

|Mmax
− | − |M ∗

−|
|θmax− | − |θramp

− |
(
θmax
+ − |θramp

− |)2
+ |M ∗

−|
(
θmax
+ − |θramp

− |) (6.9)

Replacing Al − Au in Eq. 6.3 with Eq. 6.9, the symbolic expression for the maxi-
mum deployment angle becomes

(
M∗

+ + |M ∗
−|

)
θmax
0 =

[
1

2
Mmax

+ + |M ∗
−|

]
θmax
+ +

[
−1

2
Mheel

+ + M∗
+

]
θheel
+

+
1

2

|Mmax
− | − |M ∗

−|
|θmax− | − |θramp

− |
(
θmax
+ − |θramp

− |)2
(6.10)

for θmax
+ < |θramp

− | and θheel
+ ≥ 0. Expressions for |θmax

− | and Mheel
+ can be obtained

by noting that the initial slope of the moment-rotation curve is assumed to be the
same for either bending sense. Thus

|θmax
− | =

|Mmax
− |

Mmax
+

θmax
+ (6.11)
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Mheel
+ =

Mmax
+

θmax
+

θheel
+ (6.12)

The corresponding expressions for Mmax
+ , θmax

+ , θheel
+ , |Mmax

− |, |θramp
− |, M∗

+ and
|M∗

−| are given by Eqs. 2.32, 2.33, 2.34, 2.35, 2.36, 2.37 and 2.38, respectively.

A final point concerns the approximations of the functions in Fig. 6.1 when
describing real tape-spring behaviour. When the behaviour of tape-springs under
opposite-sense bending shows a large non-linearity before snap-through, especially
in long and shallow tape-springs, Figs. A.1 - A.4, the 1/2Mmax

+ θmax
+ term in Eq. 6.2

becomes an under-estimation of the actual area underneath the curve up until the
end of the nose. This term predominates above all others in Eq. 6.2 in respect of
the capacity of the composite hinge to absorb kinetic energy. Therefore, θmax

0 will
be under-estimated, assuming the other functions to be accurate.

6.2 Deployment Time and Natural Frequency

An estimate of the time it takes for the panel to deploy until first lock-out is
obtained as follows.

The kinetic energy of the panel is given by Eq. 5.7. To simplify the equations
of motion, the arc-length of the fold is neglected in comparison with the overall
dimensions of the panel. Thus, omitting the term Rθ from Eq. 5.7 gives

T =
1

2
mp[L − p1 + ap]

2θ̇2 +
1

2
Ipθ̇

2 (6.13)

The strain energy stored in the system during deployment, is approximately
given by the strain-energy stored in the folds of post-buckled tape-springs, Eqs. 2.37
and 2.38 respectively multiplied by θ. For n pairs of composite hinges

V = n[D(1 + ν)αθ + D(1 − ν)αθ] = 2nDαθ (6.14)

The Lagrangian is therefore given by

L =
1

2
mp (L − p1 + ap)

2 θ̇2 +
1

2
Ipθ̇

2 − 2nDαθ (6.15)

Differentiating Eq. 6.15 with respect to θ, and also to θ̇ and then t, and then
substituting into Eq. 5.16 results in the following governing equation of motion[

mp (L − p1 + ap)
2 + Ip

]
θ̈ + 2nDα = 0 (6.16)

Equation 6.16 can be integrated twice with respect to time, with initial conditions
θ̇ = 0 and θ = θmax

0 at time t = 0. Substituting for θ = 0 into the resulting



6.3. Yield Limits 67

expression in θ yields the time for deployment, t′,

t′ =

√
[mp(L − p1 + ap)2 + Ip] θmax

0

nDα
(6.17)

The frequency of post lock-out vibration, fn, is obtained by inverting Eq. 5.39.
The stiffness term in this equation is replaced by an equivalent term for n pairs
of composite hinges. This term is equal to the initial slope of both relationships
in Fig. 6.1 added together, i.e. 2Mmax

+ /θmax
+ . Therefore

fn =
1

2π

√
2nMmax

+

[mp(L + ap)2 + Ip]θmax
+

(6.18)

For an amplitude of oscillation greater than |θmax
− |, the rotational stiffness becomes

non-linear, and the governing equation of motion changes. Hence, Eq. 6.18 is only
valid for small oscillations.

6.3 Yield Limits

Tape-springs may deform plastically if the bending stresses exceed the yield stress
of CuBe. High bending stresses occur either when a large bending moment is
applied to the tape-spring during rebound of the panel in the tape-spring of
Fig. 6.1(b), or when large changes of curvature are imposed to the folded tape-
springs. The relevant expressions for both limit states are obtained as follows.

The maximum bending moment that can be applied to the straightened out
tape-spring is Mmax

+ , the associated stress can be estimated using simple, linear
beam theory. It is assumed that the cross-section does not deform in the transverse
direction, i.e. the degree of flattening of the section is neglected. This, of course,
produces an over-estimate of the actual bending stresses in the tape-spring. The
“extreme-fibre” stresses in the tape-spring are therefore given by

σ1,2 = −Mmax
+ d1,2

I
(6.19)

where d1,2 are the distances between the neutral axis and points at a maximum
distance above and below it, respectively, see Fig. 6.2. I is the second moment of
area. By simple geometry

I =
R3t

2α

[
α2 − 4 (1 − cos α) + α sin α

]
(6.20)

and

d1 =
R

α

[
α − 2 sin

α

2

]
(6.21)

d2 = −R

α

[
2 sin

α

2
− α cos

α

2

]
(6.22)
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For any value of α, |d2| is always greater than d1 and, hence, the tensile stresses
along the tape-spring edges are greatest. Assuming all other principal stresses to
be zero, the limiting elastic moment, M cr

+ , is given by

M cr
+ = σyR

2t
[α2 − 4(1 − cos α) + α sin α]

2
(
2 sin α

2
− α cos α

2

) (6.23)

where σy is the yield stress of the material. It cannot be discounted, however, that
local buckling may occur at point 1, or indeed, anywhere within the compressive
region above the neutral bending axis well before plasticity takes effect, especially
if the tape-spring is thin. This is beyond the scope of the present study and is
discussed no further.

d1

d2

neutral axis1

2
R

α

Figure 6.2: Points of maximum stress on tape-spring cross-section at Mmax
+ .

The maximum bending stresses in the fold are now obtained. From Calla-
dine (1983), the in-plane transverse and longitudinal bending stresses, σt and σl,
respectively, are given by

σt =
E

(1 − ν2)
u(κt + νκl),

σl =
E

(1 − ν2)
u(κl + νκt) (6.24)

where u is now the out-of-plane distance with respect to the central surface of
the fold. The terms in Eq. 6.24 are also principal stresses, and their maximum
values will be reached on the either surface of the fold, i.e., when u = ±t/2; the
through-thickness stress is assumed to be zero.

From the Tresca yield criterion, the maximum difference between the principal
stresses occurs for equal-sense bending, that is when κl = −1/R and κt = 1/R,
and is equal to σy. Thus

R

t
≥ E

σy(1 + ν)
(6.25)

Substituting for the values of E, σy and ν from Table 1.1 into Eq. 6.25 requires
R/t ≥ 85.6 for elastic behaviour.
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6.4 Examples

This section verifies the accuracy of the above design criteria by applying them
to the system tested in Section 5.1.

Consider the two sets of composite hinges that deployed the panel without
overshoot in Section 5.1. Individual tape-spring geometries are given in Table 5.1.
Tables 6.1 and 6.2 list computed values of the key moment and rotation param-
eters, respectively, for a tape-spring from each set. Recall that for both sets of
tape-springs n = 2.

Mmax
+ |Mmax

− | M∗
+ |M∗

−| Mheel
+

tape-set [Nmm] [Nmm] [Nmm] [Nmm] [Nmm]
Eq. 2.32 Eq. 2.35 Eq. 2.37 Eq. 2.38 Eq. 6.12

1 1583.1 312.6 28.1 15.2 373.0
2 3253.9 539.6 39.4 21.2 155.7

Table 6.1: Key moment values for both sets of tape-springs in Section 5.1.

θmax
+ |θmax

− | θheel
+ |θramp

− |
tape-set [◦] [◦] [◦] [◦]

Eq. 2.33 Eq. 6.11 Eq. 2.34 Eq. 2.36
1 4.985 0.974 1.203 16.616
2 6.876 1.146 0.327 23.090

Table 6.2: Key rotation values for both sets of tape-springs in Section 5.1.

Note that the computed parameters in the above tables, for the first set of
tape-springs, are in good agreement with Fig. 5.2.

Table 6.3 compares the computed deployment behaviour of the panel, by sub-
stituting the values from Tables 6.1 and 6.2 into the relevant design formula, to
the actual behaviour. Included in this table are the measured deployment results
from Section 5.1 and the values of θmax

0 obtained from the equal-areas (E.A.)
condition applied to the finite-element data, Section 5.3.

tape-set θmax
0 [◦] θmax

0 [◦] θmax
0 [◦] t′ [s] t′ [s] fn [Hz] fn [Hz]

expt Eq. 6.10 (E.A.) expt Eq. 6.17 expt Eq. 6.18
1 45 58 51 12.0 13.1 0.526 0.414
2 138 135 143 15.5 19.4 0.62 0.505

Table 6.3: Comparison of measured deployment behaviour and predictions from design
formulae.



70 Chapter 6. Design of Rigid Panel Deployment System

In general, there is good agreement between the values of θmax
0 , despite the

approximation of Eq. 6.10. Equation 6.18 tends to under-estimate the natural
frequency of the panel after lock-out by about 10%. A possible reason may be
that either Mmax

+ is too small, or θmax
+ is too large. Inspection of Fig. 2.12 suggests

that, indeed, values of θmax
+ from Eq. 2.33 are larger than values from finite element

analyses, for lengths of spring less than 8Rα. The computed value of t′, for the
second set of tape-springs, is some 20% greater than the measured value. The
approximation of the deploying torque of the composite hinge is too large. This
may be due to the rigidly encased ends interacting with the steady-state folds.
The result would be to cause a smaller radius of longitudinal curvature in the fold,
resulting in a larger deploying torque from Eq. 2.29. Table 6.4 summarises the
yield performance.

tape-set M cr
+ [Nmm] Mmax

+ ≤ M cr
+ R/t elastic fold?

Eq. 6.23 Eq. 6.25
1 8781 yes 281 yes
2 12504 yes 206 yes

Table 6.4: Material performance of both sets of tape-springs at extremities of deploy-
ment.

Overall, the design formulae correlate with the measured behaviour within
approximately 15%.

6.5 Design Procedure

The analysis of the previous sections has yielded a total of 22 parameters: mp, Ip,
ap, L, R, α, t, p1, n, Mmax

+ , θmax
+ , θheel

+ , Mmax
− , θramp

− , M∗
+, M∗

−, θmax
0 , t′, fn, E, ν

and σy.

The values of the seven moment and rotation terms, are functions of —at
most— L, R, α, t, E and ν. From the previous examples, it can be assumed that
p1 = 1/3L. The values of E, ν and σy are unique to the material chosen for the
tape-springs. Therefore, the number of unknowns decreases to 11. The mass and
geometry of the panel (mp, ap and Ip) are dictated by the structural, material and
functional properties of the panel and, hence, will be known.

The values of t′, θmax
0 and fn are governed by the deployment requirements for

the panel, and will lie within particular bounds, but at any instant can assume
particular values. For example, there may be a lower bound value for the deploy-
ment time so that large accelerations are not applied to fragile elements on the
panel. Also, the natural frequency of panel vibration must be different from the
spacecraft fundamental mode, and the maximum amplitude of oscillation, θmax

+ , is
to be as small as possible to permit accurate performance of any sensing devices
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on the panel. The stowed angle of the composite hinges is dictated by the design
of the spacecraft.

The total number of unknowns now reduces to five; L, R, α, t, and the number
of pairs of composite-hinges, n. Equations 6.10, 6.17, 6.18, 6.23 and 6.25 are the
five constitutive design equations and, thus, can be solved by a numerical method
to yield unique values of the five unknown parameters, subject to n being an
integer.

Alternatively, the two equations pertaining to material performance could be
used as “running” check on selection of a given tape-spring geometry. There are
still the above five unknowns, but only three design equations. This therefore
requires the values of two of the five unknowns to be declared, for example, n
and L, which may be constrained to limiting bounds by the panel and spacecraft
dimensions. Next, the design equations are solved to find R, t and α. The
procedure can then be repeated many times by varying the declared variables
until a “sensible” geometry is found.

The following example illustrates the above procedure. A panel has mp =
15 kg, Ip = 5 kgm2, and ap = 0.9 m. The tape-springs are made of CuBe and
their material properties are given in Table 1.1. The number of composite hinges,
n, is 3, and each hinge has a length of 250 mm. θmax

0 is chosen to equal 100◦, t′ and
fn have arbitrary values of 7.5 s and 0.7 Hz, respectively. Table 6.5 summarises
the tape-spring properties that were computed by simultaneously solving the de-
sign equations with these deployment parameters. Furthermore, the tape-springs
remain elastic at all times during deployment.

R α t L R/t Mmax
+ M cr

+

[mm] [◦] [mm] [mm] [Nmm] [Nmm]
23.7 148.0 0.194 250 122.0 1.308 · 104 3.442 · 104

Table 6.5: Example tape-spring properties obtained using design equations.
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Conclusions

The generic bending behaviour of tape-springs has been presented. This behaviour
results in a fold —a localised, elastic region of uniform curvature— either by the
tape-spring snapping through, or by a gradual flattening of the central section,
depending on the direction of bending. This has been confirmed by experiments
and by a finite-element analysis.

The bending response of relatively short tape-springs with their ends encased in
solid blocks has been determined by finite-element analysis for a wide range of sec-
tion geometries. It has been shown that tape-springs with the same cross-section,
but different lengths, have many common moment-rotation properties; thereby
reducing the amount of computation needed to produce equivalent relationships.
Expressions characterising key features of the moment-rotation relationship in
terms of geometric and material parameters have been obtained.

The deployment of a rigid element attached to the free end of a rigidly mounted
tape-spring, initially folded in the equal-sense direction, has been presented. The
behaviour has been described by an interchange of kinetic energy of the element
and elastic strain energy stored in the spring. The steady-state propagation mo-
ment of the fold deploys the element to an almost straight configuration; the high
peak moment prevents overshoot.

It has been demonstrated that the combined moment response of two identical
tape-springs mounted in parallel, and with their centres of curvature on opposite
sides, results in an energy well corresponding to the fully deployed configuration
of an attached rigid element. It has been shown that if the kinetic energy accu-
mulated by the rigid element during deployment from the folded state is less than
the energy to come out of the well, the element does not overshoot its intended
deployed configuration. It then vibrates according to the stiffness of the composite
hinge locking moment.

A rigid element has been designed and built in the form of a triangular panel
whose mass and inertia properties are representative of panels used on spacecraft,
and has been deployed without overshoot by composite hinges fixed to a rig that
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compensates for the effects of gravity. A two dimensional, analytical model has
been derived that takes account of dynamic coupling between the panel and sus-
pension. This model has verified the computed maximum deployment angle of
composite hinges, and also, the effectiveness of the suspension.

The first steps towards a design philosophy for composite hinges have been
made by deriving expressions for the key parameters that determine the panel
deployment. An example has demonstrated that the determination of an appro-
priate composite hinge geometry can be automated.

In terms of further work, there are many paths to follow. First, Seffen (1997)
has shown that a fold begins to interact with a single, rigid support at a distance ≈
1.5Rα2 from the support, at which point the deformation within the fold becomes
asymmetric. It cannot be discounted that bending of short tape-springs produces
simultaneous interaction on both sides of the fold with the encased ends. Indeed,
for a fold of infinitesimal length, it may be suggested that if L ≤ 3Rα2 then such
an interaction will occur. This will, of course, produce a longitudinal radius of
curvature greater than R everywhere in the fold and, hence, the deploying torque
of the tape-spring will increase. The implications of this are that the energy
available for deployment of a panel increases and, therefore, the maximum angle
of deployment, θmax

0 , calculated from Eq. 6.10, decreases.

It is also expected that if the mass of deploying panel is small, the folds in the
composite hinges may not remain at a fixed position during deployment. Seffen
(1997) has shown that the self-deployment process of a folded tape-spring with no
attached tip mass results in rapid propagation of the fold between its equilibrium
configuration before deployment and the fixed base, as the tape becomes straight.
Thus, the dynamics of a light-weight panel system become more complex and to
simulate this, an analytical model is needed that combines the moment-rotation
properties of composite hinges with the travelling fold mechanics of singly-folded
tape-springs in Chapter 6 of Seffen (1997).

Finally, the design procedure of Section 6.5 needs to be refined numerically in
order to provide a reliable and viable design tool.
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Appendix A

Results from Finite-Element
Analysis

This appendix presents additional results from finite-element analysis. Plots of
dimensionless moment-curvature relationships are shown in Figs. A.1 - A.4. These
are for opposite-sense bending only and extend as far as the nose of the curve.
For a section thickness of 0.1 mm, plots have been obtained for five different
subtended angles of cross-section; 90◦ to 170◦ in steps of 20◦. For t = 0.2 mm
and t = 0.3 mm, the plots have been constructed for α = 90◦, 130◦ and 170◦,
respectively. The number inside the circle close to the nose of each plot refers to
the length of the tape-spring ×Rα.
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Figure A.1: Dimensionless opposite-sense bending behaviour, before buckling, for R =
20 mm and t = 0.1 mm.
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Figure A.3: Dimensionless opposite-sense bending behaviour, before buckling, for R =
30 mm and t = 0.1 mm.
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Appendix B

Maximum Deployment Angle of
Panel

This appendix contains plots of the maximum angle that a panel can be folded
to, to permit deployment without overshoot.

Figures B.1 and B.2 summarise the deployment behaviour for pairs of identical
tape-springs forming a composite hinge of the indicated cross-sectional geometry.
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Figure B.1: Maximum deployment angle that avoids overshoot for composite tape-
springs of natural radius R = 20 mm.
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Figure B.2: Maximum deployment angle that avoids overshoot for composite tape-
springs of natural radius R = 30 mm.


