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This paper explores the behavior of a self-deploying helical pantograph antenna for 

CubeSats.  The helical pantograph concept is described along with concepts for attachment 

to the satellite bus.  Finite element folding simulations of a pantograph consisting of eight 

helices are presented and compared to compaction force experiments done on a prototype 

antenna.  Reflection coefficient tests are also presented, demonstrating the operating 

frequency range of the prototype antenna.  The helical pantograph is shown to be a 

promising alternative to current small satellite antenna solutions. 

I. Introduction 

mall satellites, such as CubeSats, are faster and cheaper to develop than traditional satellites and have a higher 

risk tolerance.  As part of a push for greater capabilities in small satellites, solar sails, space weather monitors 

and space telescopes have been recently developed for the CubeSat platform [1-3].  However, the comparatively 

slow bit rates between these satellites and ground stations limits downlink intensive applications, such as Earth 

imaging or relaying communications [4].  A high gain, wideband deployable antenna suitable for small satellites 

could increase their downlink speed and enable capabilities found on much larger satellites. 

 The predominant antenna choice for CubeSats has been one or more monopole or dipole antennas [5].  Dipole 

antennas are omnidirectional and two or more can be arranged to mimic circular polarization, a desired quality that 

limits a satellite's required pointing control.  Furthermore, dipoles are straightforward to design and deploy, and 

designs specific to CubeSats are available commercially.  Examples of CubeSats that have flown with dipole 

antennas include Tokyo Institute of Technology’s Cute 1.7+ APD II and California Polytechnic’s CP1 [6,7]. 

 Although omnidirectional, dipoles are low gain, naturally linearly polarized, inefficient and normally 

narrowband [5].  Helical antennas are wider band antennas and are naturally circularly polarized.  A half wavelength 

dipole antenna is limited to a gain of 2.15 dBi, while helical antennas can have gains in excess of 8 dBi [8].  Helical 

antennas may also have more than one helix connected through a balun to further increase their gain. 

 The potential bit rate of an antenna depends on its gain and bandwidth, and is limited by that bandwidth and the 

availability of power on the satellite bus.  Consider an antenna transmitting in the presence of Gaussian noise; the 

channel capacity can then be estimated with the Shannon Hartley theorem, which gives 

 
            

 

 
  (1) 

where bps is the bit rate in bits/second, B is the bandwidth of the antenna and S/N is the signal to noise ratio of the 

transmission.  A typical fractional bandwidth for a thin dipole is 3% [9].  Assuming a transmitting power to noise 
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power ratio of two, a dipole with a central operating frequency of 365 MHz and a gain of 2.15 dBi would have a 

channel capacity of 15.9 Mbps.  The quadrifilar helix antenna discussed in this paper has a bandwidth of 27.5 MHz 

and a gain of 8 dBi, which gives a channel capacity of 71.8 Mbps.  If the bit rate is only limited by the power 

available, the increase is proportional to the gain increase between antennas; in this case the quadrifilar helix bit rate 

would be approximately four times the dipole bit rate. 

 Packaging a high gain UHF antenna into a CubeSat is a challenging problem because the size of an antenna is 

inversely proportional to its frequency and the dimensions of a CubeSat impose a tight constraint, with a 1U 

measuring 10 cm on each side and a 3U CubeSat measuring only 10 cm  10 cm × 30 cm.  Compare these 

dimensions to a quadrifilar helix antenna receiving 365 MHz, which typically measures 12 cm in diameter and is 

0.5 m tall. 

 In [10], four structural concepts suitable for packaging UHF antennas on small satellites with limited pointing 

control were proposed.  The present paper focuses on further study of the helical pantograph structure from [10].  

The helical pantograph is a new structural concept and hence our objective is to understand and explain its behavior.  

In addition to finite element folding simulations, we have made a physical model of a helical pantograph antenna on 

which we have conducted structural and electromagnetic tests. 

 Section II describes the helical pantograph concept, including two possibilities for attachment to the satellite bus.  

Section III presents finite element simulations of the compaction of the structure.  Section IV describes a prototype 

antenna and the compaction force experiments that were used to verify the folding simulations, as well as a 

reflection coefficient test to verify the operating frequency range.  Section V concludes the paper. 

II. Concept Description and Analytical Basis 

A. Helical Pantograph Concept and Background 

The helical pantograph concept was inspired by the linear pantograph in [11], which is a mechanism capable of 

significant changes of length.  A helical pantograph is formed by connecting together two opposite sense helices 

with the same diameter and pitch, by means of a revolute joint aligned with the radial direction, at every crossover 

point.  Increasing the helix angle lengthens the structure, while decreasing the helix angle shortens the structure.  

Unlike the linear pantograph, this structure relies on elastic deformation in addition to relative rotation of the joints 

and so is not a mechanism.  Hence, the structure has the potential to deploy by releasing its stored strain energy, 

rather than relying on deployment systems that provide external energy, such as cables or motors.  A detailed 

description of this concept and its development are presented in [10]. 

Axial compaction of a helical pantograph increases its radius, but transverse compaction is also possible by 

pulling the structure towards its central axis, into a shape resembling a four-leaf clover.  Figure 1 illustrates this two-

stage compaction process for a helical pantograph consisting of a right-handed helix (blue) and a left-handed helix 

(gold) connected by pivots at seven crossover points. 

 A helical pantograph consisting of 

only two helical rods is rather compliant, 

but a stiffer structure can be formed by 

increasing the number of helices and 

adding further connections at all 

additional crossover points.  

Commercially available helical antennas 

have one, two or four same-sense 

conducting helices.  A helical antenna 

with four conducting helices is referred to 

as a quadrifilar helix antenna; example is 

shown in Figure 2.  Due to the structural 

and electromagnetic benefits of 

quadrifilar helix antennas, this paper will 

focus on helical pantographs consisting of 

four conductors supported by four 

opposite sense helices, for a total of eight 

helices.  However, this work is also 

applicable to structures with a different 

number of helices.  

 
Figure 1.  Helical pantograph shown (a) fully deployed, (b) 

compacting axially and (c) transversely compacted. 
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Figure 2.  Commercially available 

quadrifilar helix antenna [12]. 

 The eight helices have the same pitch c and radius r.  The parametric 

equation of the right-handed helical curves is 

              

             

   θ 

(2) 

where the offset θi is 0, π/2, π and 3π/2 radians.  The parametric equation 

of the left-handed helices is 

              

              

   θ 

(3) 

where θ- takes the same values as for the right handed helices.  Assuming 

that all helices have cross section of height a and width b, the radius RSI 

of the structure at the end of Stage I folding can be estimated by equating 

the arc-length of the original helix to a helix with a pitch equal to the 

cross-section height 

 

            
 

  
 
 

 (4) 

 The minimum stowed height H of this structure can be estimated from 

 
      

 

 
     (5) 

where N is the number of turns of each helix, n is the number of helices (e.g. 2, 4, 8).  In addition to the geometric 

analysis presented here, for any chosen set of cross section dimensions and material properties, a detailed analysis 

needs to be carried out to confirm that folding the structure does not cause damage or permanent deformation of the 

helices. 

B. Analytical Solutions for Helices Made From Straight Rods 

 A helical pantograph may either be formed from initially straight or initially helical rods. All solutions presented 

in this section are also applicable to strips with an appropriate torsion constant J. If initially straight rods are used, 

some combination of boundary conditions (e.g. twisting moment, force, rotation) must be used to enforce a helical 

shape, while initially helical rods or strips are naturally in equilibrium in the helical configuration.   

 There is a standard analytical solution for the bending and twisting of straight rods into a helical shape, a version 

of this solution is presented in [12].  Even if initially helical rods are used, this solution provides useful insight into 

how a helical pantograph structure might behave, and the boundary conditions required to maintain a helical shape. 

 For the helical curve defined in Equation 2 with θ0 = 0, the tangent vector t is given by 

           

         

     

(6) 

while the binormal vector b is given by 

           

           

      

(7) 

and both are shown in Figure 3.  The torsion of the helix is 

 
  

 

     
 (8) 
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The bending and twisting moments in the initially straight rod are then 

 
     

       

 
       (9) 

while the internal force, assuming no stretch in the helix, is 

 

  
       

 
     

  

 
           (10) 

and both are uniform along the entire rod.  In the above equations, α is the helix angle, E is the elastic modulus, G is 

the shear modulus, I is the vertical cross section second moment of area and J is the torsion constant. 

 Consider how this solution applies to a helical 

pantograph formed by two helices made from identical rods, 

that have the same radius and pitch, but turn in an opposite 

sense.  The end reactions, at A and B, are defined in a 

common Cartesian coordinate system, shown in Figure 3.  

The binormal and tangent moments at A and B can be 

decomposed into Z and Y-components.  The Z-components 

for the twisting and bending moments in the right- and left-

handed helices are equal and opposite, hence their resultants 

are zero, while the moments about Y will add. 

 For helices formed from straight rods there are several 

boundary condition combinations that can produce a 

solution in static equilibrium.  One solution is to apply a 

force parallel to Z and a twisting moment about the tangent 

vector at A and B [13]. 

 If initially helical rods are used, there will no reactions in 

the initial shape.  If the helix is then deformed by 

compacting it, while allowing radial expansion, boundary 

conditions can be imposed such that in every configuration 

the rods will still be helical.  The solution above suggests that the application of a twisting and bending moment 

along with a compressive force at A and B would achieve this. 

C. Attachment to Satellite Bus 

 The interface between the CubeSat and the structure must allow significant displacement of the attachment 

points, as the antenna expands in the transverse direction during Stage I folding and then contracts during Stage II 

folding (see Figure 1).  The exact shape the helices take during transverse compaction depends on the packing 

constraints, helix dimensions and material.  Two concepts have been identified, both suitable for the application 

discussed in this paper. 

 The first concept involves the three-dimensional expansion of a structure consisting of four identical links, and is 

shown in Figure 4. 

 

 The four links shown are attached to a square plate, representing a face of a CubeSat, via revolute joints. These 

joints allow each link to rotate about an axis parallel to a side of the square.  At the tip of each of the link there is 

another revolute joint through which the link is connected to the helical pantograph.  

Deployed                                                                                                                             Folded 

 
Figure 4.  Interface to CubeSat based on three dimensional link concept. 

 
Figure 3. Definition of coordinate system for 

right-handed (1) and left-handed (2) helices. 
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Figure 5. Interface to CubeSat based on dilator 

cell from [14]. 

 The maximum distance between the link tips in the deployed and folded configurations is achieved when the 

links rotate through 180°.  Allowing for a clearance of 2 mm, the largest antenna diameter that can be supported by 

this concept has a radius after axial compaction of 7.4 cm.  The links could be made longer to provide a larger 

extended diameter, but then they would not be able to fold 

completely flat, resulting in a taller package. 

 The second concept was derived from the dilator cell 

[14] shown in Figure 5. The dilator cell is a planar 

mechanism consisting of four identical right triangles of 

height h and base length s, hinged at a base corner to a 

square of side length l. The triangles are connected by 

links, also of length l, parallel to the sides of the square.   

Denoting by λ the side length of the square formed by the 

tips of the triangles, λ decreases when θ varies from 135° to 

0°.  The minimum and maximum values of λ are [14] 

 
                 (11) 

 
           (12) 

where l is the side length of the internal square and h  the 

height of the triangular link.  The base length s of the 

triangular link does not affect the minimum and maximum 

size, but s must be smaller than  l. 

 Among these two concepts, the dilator cell is simpler and works entirely in a plane.  It provides as much 

compaction as the prior concept and has a single degree of freedom.  

III. Numerical Simulations of Folding 

A. Axial Folding 

 A finite element simulation of Stage I folding of the helical pantograph was done in ABAQUS/Standard, with 

the helices modeled with shell elements.  Nodes and elements were generated via a script which discretizes the 

helical curves and for each cross-section arranges a set of node points on the helix binormal.  The number of nodes 

and elements was selected such that on each helix there would be a node at every cross over point, and the helices 

were pinned together at both ends, by imposing translational constraints and only allowing a relative rotation about 

the radial axis.   

Initially, a simple pantograph consisting of 

two single-turn helices was considered to 

examine the interaction between the helices.  

Each helix had a cross section of 6 mm × 

0.240 mm and was assumed to be made of 

beryllium copper, which has an elastic 

modulus of 130 GPa and Poisson's ratio of 

0.3.  The initial helix radius was 6.06 cm and 

the pitch 37.1 cm.  

The results of these analyses are presented 

in terms of the coordinate system shown in 

Figure 3.  The radial direction corresponds to 

the X' axis, while the transverse axis 

corresponds to the Y' axis.  The pantograph 

height is the distance between the X and X' 

axes, and a downward displacement boundary 

condition at the top of each helix was used to 

compact the structure.   

Figure 6 shows plots of the Z-components of the reaction forces at the top of each helix as the pantograph is 

compressed.  As suggested by the analytical solution, the forces on the two helices are equal and in the same sense; 

 
Figure 6.  Z-reaction forces for two-helix pantograph. 
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they increase monotonically and are noticeably nonlinear as the (tangent) stiffness of the pantograph decreases at 

greater degrees of compaction. Both the X'- and Y'- reaction components are smaller than the resolution of the  

analysis and may be considered to be zero. 

The Y'- reaction moments are shown in Figure 7, while the Z-reaction moments are shown in Figure 8.  The X'- 

reaction moment is zero because X' is the axis of the revolute joint.  The Y'- reaction moments on the two helices are 

equal and have the same sign, while the Z-reaction moments are equal and opposite. 

  
 Next, a simulation of the eight-helix structure matching the design dimensions of the prototype described in 

Section IV.A was analyzed.  One set of helices was made of beryllium copper, with the geometry and properties 

provided above; the other set was made of unidirectional S-2 glass composite.  The S-2 glass helices were assigned a 

cross section of 15.8 mm × 0.2 mm and the material constants, determined from tensile and shear tests, were 

longitudinal modulus of 50 GPa and Poisson’s ratio of 0.2.  Four images from the simulation of axial compaction are 

shown in Figure 9. 

 

  

  

     
Figure 9.  Images from FEA simulation of compaction of eight-helix pantograph. 

 
Figure 8.  Z-reaction moments for two-helix 

pantograph. 

 
Figure 7.  Y'-reaction moments for two-helix 

pantograph. 
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The axial reaction force for this structure is shown 

in Figure 10, along with the axial reaction forces 

for a S-2 glass helix and a beryllium copper helix.  

Figures 11 and 12 show plots of the reaction 

moments at one of the end joints.  Because the 

cross sections of the two sets of helices are not 

matched, the moment cancellation seen in Section 

II.B does not occur in the present case. 

 

 

 

 

 

 

 

 

B. Transverse Folding 

 The transverse folding scheme was studied with ABAQUS/Standard using a simple finite-element model of the 

structure consisting of a single circular ring beam.  The compaction progress outlined in Section II.C was 

implemented, and the simulation was used to determine the compacted shape and resulting curvatures in the ring 

beam.  First, two pairs of diametrically opposite points were displaced radially inward until self-contact was 

achieved, Figure 13(a-c).  Second, four points at 45° to the first four were displaced inward, Figure 13(d).  Note that 

both Figure 13(c) and  (d) demonstrate Step 2 compactions that reduce the transverse dimensions of the pantograph 

enough to fit inside a CubeSat. The interior four attachment points could be held in place with burn wire or a similar 

solution.   

 
Figure 12.  Eight-helix Z- reaction force. 

 
Figure 11.  Eight-helix Y'-reaction moment. 

 
Figure 10.  Z-reaction forces for eight-helix pantograph. 
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 Also note that the configuration shown in 

Figure 13(d) could be further compacted by 

pulling in the 45° points. 

Figure 14 shows plots of the curvatures 

associated with the compacted configurations 

shown in (c) and (d), for increasing node 

number (the nodes are evenly spaced in the 

original configuration).  Note that the 

maximum curvature remains substantially 

unchanged. 

 Using these results, the dimensions of a 

dilator cell that attaches to points A, B, C, D at 

the base of the helical pantograph can be 

calculated.  After axial compaction, these points 

lie at (±6.19 cm, ±6.19 cm) using the 

coordinate system identified in Figure 3, while 

after transverse compaction they are at (±4.44 

cm, ±4.44 cm).  There are several suitable sets 

of dimensions, but the solution implemented 

here is: l = 3.46 cm, h = 6.5 cm and s = 1.34 cm.  Figure 15 shows models of the dilator mechanism in several states 

of compaction, as well as the dilator cell connected to a fully extended helical pantograph. 

 

(a)       (b)  

(c)        (d)  

Figure 13. Transverse compaction process. 

 
Figure 14.  Curvature changes for  transversally 

compacted configurations in Figure 13(c) and (d). 
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IV. Experiments 

A. Prototype Construction 

A prototype of the eight-helix helical pantograph was built to demonstrate the deployment functionality and to 

measure the compaction force to compare to the finite element model. The designed dimensions of the prototype 

conductors came from an electromagnetic simulation of the antenna, which predicted it would operate on a 

frequency range centered around 365 MHz. The selected dimensions were: helix diameter of 12.12 cm and pitch of 

37.1 cm with 1.125 turns and a conductor cross section of 6 mm × 0.240 mm.  However, the manufactured helix 

diameter was measured at 10.2 cm. 

The conducting helices were made from Alloy 25 beryllium copper, heat treated to increase the yield stress and 

take a helical shape.  The support helices were made from a unidirectional S-2 glass fiber toughened epoxy 

composite.  The dimensions of the support helices were found by matching a combination of geometric and material 

parameters in an attempt to match torsion and axial stiffness.  Specifically, the conditions 

           (13) 

           (14) 

were imposed, where the subscript c means conductor and the subscript s means support.  The approximation for the 

torsion constant  

 
   

 

 
  

 

 
 
 

 
  

 
     

 

 
   

  

    
   (15) 

was used, where a is the cross section height as before and b is the cross section width [15].  This approximation is 

valid for rectangular cross sections with a much greater than b.  The cross-sectional dimensions of the support 

helices were obtained from Equations 13 and 14, where classical lamination theory had been used to estimate the 

composite material properties.  The final selected dimensions for the support helices were 15.8 mm × 0.2 mm 

(0.625” x 0.008”).  However, the actual measured dimensions of the manufactured helices were 15.7 mm × 0.27 mm 

to 0.52 mm. The measured width at the center of the cross section varied from 0.27 mm to 0.52 mm.  In addition, the 

mandrel used to cure the glass composite strips into a helical form left ridges on the cross section edges of parts of 

    

Figure 15. Dilator cell interface mechanism. 
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the helix; these ridges were ~0.5 mm high × 0.25 mm wide on top of the helix width and were difficult to remove 

without cracking the helices.   

 The described design process is linear; the dimensions for the conductors were determined from a simulation of 

the antenna, and then the dimensions of the support helices were determined.  This process was used for this 

prototype to simplify the approach, but is not the desired final design process as it doesn't allow for structural 

optimization. 

After manufacturing, both the conductive and support helices were essentially strain free in the deployed 

configuration.  The helices were attached with nonconductive screws and thin plastic washers were used to separate 

the helices at all connection points, to reduce friction.  The finished prototype can be seen in various phases of 

compaction in Figure 16. 

 

B. Compaction Force Measurement 

 A helical pantograph is difficult to test due to its large 

deformation during compaction and the difficulty of maintaining 

the appropriate boundary conditions during this process. As the 

structure compacts axially it also expands transversally, which 

makes the test even harder to design.  While a direct compression 

test may seem an intuitive choice, designing a low friction 

compression test set-up that provides the correct boundary 

conditions on the helices, with minimal mass and friction, is 

difficult.   

 Instead of applying direct compression on the structure, the 

structure was tested in a hanging configuration and the axial force 

required to axially compact the structure (Stage I folding) was 

applied by means of symmetrically arranged cords looped over 

miniature pulleys attached to the structure itself.  Specifically, four 

pulleys were attached to pairs of crossover points of the helical 

pantograph, two on each side, at an initial separation of 0.22 m in 

the initial, deployed configuration. Nylon cords were looped 

around the pulleys such that pulling on these cords shortens the 

loops and hence decreases the height of the prototype antenna.  

The cord loops were terminated on ultra-low friction linear slides 

(one at the top, one at the base) to allow radial expansion of the 

prototype as it is folded.  This test set-up is shown in Figure 17. 

 Results from three load-unload cycles are shown in Figure 18.  

 
Figure 16.  Folding of prototype antenna. 

 
Figure 17. Stage 1 folding test set-up. 
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The results are repeatable, but show a large 

difference between loading and unloading, due 

to friction between the pulleys and the 

prototype, which increases the load while the 

prototype is being compacted, and takes up 

part of the load while the prototype is 

extending.  A demonstration of this explanation 

is provided in Figure 19, showing plots of 

measurements taken while loading the structure 

alternately at a rate of 0.5 mm/s for periods of 

40 s and a rate of 0.001 mm/s for periods of 50 

s.  During the periods of slower loading rate 

the structure was tapped lightly (always in the 

same place) to release friction between the 

pulleys and the cords. Figure 19(a) shows the 

measured load vs. measurement time, while 

Figure 19(b) shows the same load 

measurements but plotted against total antenna 

height. 

 

 
 The compaction force results from three different finite element simulations have been overlaid on Figure 19(b).   

The first is for a simulation with an S-2 glass helix width of 0.367 mm, obtained by averaging the center widths at 

eight different points along the four helices.  The other two are results from simulations with S-2 glass widths of 

0.48 mm and 0.52 mm; 0.52 mm is the largest measured center width, while 0.48 mm was chosen to highlight the 

sensitivity of these results to helix thickness. 

 Considering the preliminary nature of the prototype antenna, the agreement between experiment and simulations 

is reasonable and it can be considered as an acceptable basis for continuing the present work and build higher quality 

prototypes. 

  

(a) (b)  

Figure 19. Compaction test friction release results plotted against (a) time and (b) height. 

 
Figure 18. Initial Stage I folding test results. 
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B. Bending Failure Tests 

 Bending failure strain tests were performed 

on two S-2 glass samples to determine the limit 

on transverse compaction for the S-2 glass 

helices.  Each sample was initially flat and was 

bent and compressed in the platen test [16]. 

Samples were loaded and unloaded in cycles of 

decreasing minimum bend radius.  In between 

cycles, the samples were removed to verify that 

the initially straight configuration would be 

recovered. 

 Figure 20 shows the failure load and unload 

cycle for the two samples. Failure of a few 

fibers was visually observed at a radius of 

curvature of 3.5 to 4 mm for the first sample 

and 4 to 4.5 mm for the second sample, and 

hence there was a noticeable difference 

between the load and unload cycle. Even after 

failure of some fibers, both samples became 

straight at the end of the test. 

 The minimum elastic bend radius for heat-treated Alloy 25 beryllium copper helices was determined from the 

yield stress of this material, y = 1350 MPa, provided in [17]. For a 0.240 mm thick cross-section this corresponds 

to a radius of curvature of 10 mm.  

 Hence, the smallest allowable radius for the beryllium copper helices is larger than for the S-2 glass helices and 

so in our design the beryllium copper helices are the limiting factor for transverse compaction.  Note that the 

transverse compaction results presented in Section III.C gave a maximum curvature change of 100 m
-1

, 

corresponding to a radius of 10 mm, that is just within this limit. 

C. Reflection Coefficient Test 

 A reflection coefficient test was carried out to verify the operating frequency of the prototype antenna.  The 

results are shown below in Figure 21, and are compared to the electromagnetic simulation results. 

 

 The drop in S11 indicates that less power is reflected back onto the network analyzer, which means this is the 

frequency where the antenna operates best.  The results match well to the simulation, and verify that the operating 

 
Figure 21.  Prototype reflection coefficient test results. 

 
Figure 20. Bending failure test results. 
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frequency is approximately 365 MHz.  Though the manufactured radius and pitch of the conductive helices varied 

considerably from the design dimensions, the length and cross-sectional dimensions of the conductors, which were 

within tolerance, are the parameters most likely to affect the operating frequency.  However, the radius and pitch can 

both affect the gain of the antenna, which was not measured here. 

V. Conclusion 

 This paper has reviewed the helical pantograph concept originally presented in [10].  Insights into the helical 

pantograph structure have been obtained from analytical solutions for helical rods and from finite element 

simulations of an eight-helix structure matching the dimensions of a physical prototype that has built and tested.  

Compaction force results from the simulation have been compared to compaction force experiments on the 

prototype; the simulation agrees with the experimental results when friction in the test set-up is removed.  Concepts 

for transverse compaction and attachment of the structure to a CubeSat have been presented and studied using finite 

element simulations.  Finally, the results of a reflection coefficient test on the prototype antenna have been 

presented, verifying the results of an electromagnetic simulation of the antenna.  

 The authors consider the deployable antenna concept presented here to be promising, with predictable 

compaction behavior, good deployed stiffness and a strong potential for self-deployment.  However, further work is 

needed to completely characterize the structure and improve the antenna design.  It is planned to build further 

prototypes of different dimensions and varying composite lay-ups, and to carry out further packaging and 

deployment studies.  More antenna testing is needed to determine the gain of the antenna and how the gain is 

affected by an incorrect pitch or radius (which could occur through either manufacturing error or incomplete 

deployment).  Though the antenna will operate on the correct frequency regardless of pitch or radius, the gain could 

be adversely affected.  

 Further work is needed to understand how to design the helices cross-section dimensions to optimize the 

structure.  In this case, a linear design process was used: the cross section of the conductive helices was determined 

using electromagnetic simulations and then a combination of geometric and material stiffness relations was used to 

determine the cross section of the support helices.  However, this simple approach (cross-section matching) was not 

effective, and a more detailed analysis is needed.  Though the manufactured dimensions were considerably different 

from the design dimensions and the cross sections were not well matched, the structure still worked well. This 

suggests that there may be significant freedom in optimization of these dimensions.  

 In the future, the authors will move toward an integrated, iterative antenna sizing system, which considers both 

structural and antenna factors when selecting an optimum. 
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