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This paper presents a simplified simulation technique for orthotropic

viscoelastic membranes. Wrinkling is detected by a combined stress-strain

criterion and an iterative scheme searches for the wrinkle angle using a

pseudo-elastic material stiffness matrix based on a non-linear viscoelas-

tic constitutive model. This simplified model has been implemented in

ABAQUS/Explicit and is able to compute the behavior of a membrane

structure by superposition of a small number of response increments. The

model has been tested against a published solution for a time-independent

isotropic membrane under simple shear and also against experimental re-

sults on StratoFilm 420 under simple shear.

Nomenclature

aT , aσ temperature, stress shift factors

Ĉij 2D in-plane material stiffness matrix, Pa

Cij stiffness matrix rotated by angle α, Pa

D creep compliance, 1/Pa

D0 instantaneous compliance, 1/Pa

Dp,i(t) pseudo-elastic compliance between time i∆t and designated time t,

1/Pa

ei unit vector

E relaxation modulus, Pa
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E0 Young’s modulus of membrane, N/mm2

Êp,i in-plane pseudo-elastic stiffness matrix in directions of orthotropy,

Pa

Ep,i
w effective elasticity matrix for wrinkled element, Pa

Ep,i
s effective elasticity matrix for slack element, Pa

f friction, N

F total shear force applied on membrane, N

g0, g1, g2 nonlinear parameters for Schapery’s viscoelastic model

H height of membrane, mm

L length of membrane, mm

P total film tension, N

S applied shear force, N

Sij 2D compliance coefficient matrix

t time, s; thickness of membrane, mm

T temperature, K

T0 reference temperature, K

Tij transformation matrix

α wrinkling angle, i.e. angle between direction of uniaxial stress and

x-axis, deg

δx shear displacement of membrane, mm

γ shear strain of membrane

∆D total transient compliance, 1/Pa

∆Di i-th transient compliance at infinite time, 1/Pa

∆Dij 2D in-plane compliance matrix, 1/Pa

ε Green strain tensor for fictitious wrinkled state

εu Green strain tensor state of natural uniaxial tension

τi i-th relaxation time, s

ψ reduced time, s

ρ density of membrane, kg/mm3

ν Poisson’s ratio of membrane

σeff effective stress, Pa
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I. Introduction

Wrinkling of thin membranes has attracted much interest and yet little is known about

wrinkles in anisotropic viscoelastic membranes. Our interest in this topic is motivated by

current research in superpressure balloons, and particularly their behavior during inflation

when the balloon envelope is heavily wrinkled. In recent papers1,2 we have presented numer-

ical simulations of some particular balloons that remain clefted when they are fully inflated

and pressurized. These results were in agreement with experimental tests that had been

conducted by the NASA Balloon Program, but the shape of the clefts in our simulations did

not agree with the experimental observations. It was conjectured that these discrepancies

may have resulted from the elastic and isotropic model for the balloon film that had been

used. Hence it was decided to implement a more detailed material model that would allow

for both anisotropy and visco-elasticity. However, when wrinkling had been combined with

these effects we were unable to find any published test cases that could be used to confirm

the validity of our simulations and so we decided to carry out our own set of experiments

as well. We intend to study how these effects affect the shape of clefts in superpressure

balloons, these results will be presented in future publications.

Here we present the outcome of our studies on wrinkling in moderately anisotropic,

viscoelastic thin films. The paper begins with a literature review focused on a particular

nonlinear viscoelastic material model for balloon film and an approach to the numerical simu-

lation of wrinkling in anisotropic films. With this key background, in Section III we present

a computational scheme that models the visco-elasticity of the film with an incremental,

pseudo-elastic representation that is modified to allow for the formation of wrinkles, when a

combined stress-strain wrinkling criterion is satisfied. This scheme is then implemented, in

Section IV, as a VUMAT subroutine in the finite element software Abaqus/Explicit. Section

V considers the special case of isotropic and elastic membranes, for which there is an ex-

tensive literature, and compares the results from our simulations to some published results.

Section VI presents a set of experiments that have been carried out on balloon film in a

simple shear apparatus; the experimental setup and procedure are described and the results

of shear tests are presented. In Section VII these experimental results are compared with

the simulations. Section VIII concludes the paper.

II. Background

This section provides a compact review of viscoelasticity and wrinkling theories for or-

thotropic thin polymeric films.
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A. Review of Viscoelasticity Theory

In the classical theory of linear viscoelasticity3,4 the creep compliance D and relaxation

modulus E can be obtained from spring and dashpot models. A spring in series with a

dashpot is known as the Maxwell model; a spring in parallel with a dashpot is known as

the Kelvin-Voigt model. Both models have serious shortcomings. A more realistic model is

the Standard Linear Solid model which is either represented by a Maxwell element with an

additional spring in parallel or a Kelvin-Voigt element with an additional spring in series.

A more realistic representation of actual viscoelastic behavior is obtained by considering

n Kelvin-Voigt elements with one spring in series, which leads to a compliance function

expressed as a sum of exponential terms called Prony series

D(t) = D0 +
n∑

i=1

∆Di(1− e−t/τi) (1)

Viscoelastic materials are temperature as well as time dependent but both effects can

be combined through the time-temperature superposition principle by considering only the

reference temperature T0 and the reduced time

ψ(t) ≡
∫ t

0

dτ

aT (T )
(2)

where aT (T ) is the temperature shift factor, defined to be 1 at the reference temperature

(aT (T0) = 1).

The compliance master curve, which defines the time-dependent compliance at the refer-

ence temperature, can be obtained from a series of uniaxial creep tests. It can be expressed

as a combination of an instantaneous part D0 and a transient part ∆D(ψ):

D(ψ) = D0 + ∆D(ψ) (3)

Here D0 represents the instantaneous compliance at the reduced time ψ = 0 and the transient

part ∆D(ψ) can be represented by the Prony series:

∆D(ψ) =
n∑

i=1

∆Di(1− e−ψ/τi) (4)

The linear viscoelastic strain at time t, ε(t), is calculated by the convolution integral (also

called Boltzman Superposition integral)

ε(t) = D0σ(t) +
∫ t

0+
∆D(ψt − ψτ )

dσ(τ)

dτ
dτ ≡ D(ψ)σ(t) (5)
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Experimental studies have shown that this linear model is acceptable at small strains; at

larger strains a nonlinear viscoelastic model has to be adopted, where the creep compliance

is a function of stress, as well as of time and temperature. Following Schapery5,6 this

behavior can be captured by introducing an experimentally derived stress-related shift aσ

in the reduced time expression, which kicks in at stresses higher than a limiting value σ0.

Hence Equation 2 for the reduced time is rewritten as

ψ(t) ≡
∫ t

0

dτ

aT (T )aσ(σ, T )
(6)

Schapery5 has adopted a single-integral representation for the strain at time t based on

three nonlinear parameters g0, g1 and g2:

ε(t) = g0D0σ(t) + g1

∫ t

0+
∆D(ψt − ψτ )

dg2σ(τ)

dτ
dτ ≡ D(ψ) ∗ σ(t) (7)

where the nonlinear parameters are all equal to 1 in the linear viscoelasticity range.

The above uniaxial model has been extended5 to plane stress loading of a polymeric film

by making the assumption that the transient compliance in any direction can be expressed

in terms of a constant matrix Sij multiplied by the compliance in a direction of orthotropy

of the material, assumed to be known

∆Dij = Sij∆D11 (8)

where S11 = 1 by definition. The uniaxial stress σ used to calculate all stress-dependent

non-linearities in the previous model is then replaced with an effective stress. This is defined

as

σeff =
√

σ̂11
2 + 2A12σ̂11σ̂22 + A22σ̂22

2 + A66τ̂12
2 (9)

where σ̂11 is the normal stress in the one of the directions of material orthotropy, and it is

assumed that the uniaxial model has been developed in this particular direction, σ̂22 is the

normal stress in the other direction of orthotropy, and τ̂12 is the shear stress. The notation

̂ denotes components in the directions of orthotropy.

B. Wrinkling of Orthotropic Films

There is an extensive literature on wrinkling of thin elastic films. Key contributions were

made by Stein and Hedgepeth,7 Miller and Hedgepeth8 and Mansfield;9 a comprehensive

review can be found in Wong and Pellegrino.10–12 Here we shall focus specifically on wrinkling

in orthotropic viscoelastic films, for which the literature is rather scarce.

Relevant previous work includes an analysis of wrinkling of viscoelastic membranes by
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Jenkins and Leonard13 using a relaxed energy and dissipation function in a finite element

analysis scheme. On the analytical front, a generalized tension field theory for anisotropic

membranes with restricted types of non-linear stress-strain relationships was proposed by

Mansfield.14 There is also a large amount of literature, starting from Reissner,15 in which

artificial orthotropy was introduced as a numerical trick to derive compression-free solutions

for isotropic membranes.

Wu16–18 represented the true deformed surface of a wrinkled membrane by a smooth

pseudo-deformed surface and hence introduced the wrinkle strain in this surface as a kine-

matic variable that measures the wrinkliness of the actual wrinkled surface. Based on the

same basic ideas, Kang and Im19 proposed an iterative scheme convenient for the finite ele-

ment analysis of wrinkling in orthotropic membrane structures, which was later adopted by

Gerngross and Pellegrino.20–22 Alternative approaches have been proposed by Epstein and

Forcinito23 and Raible et al.24

The general idea in Kang and Im’s paper is that a wrinkled region in a thin film is in a

state of uniaxial tension and the orientation and magnitude of this tension can be obtained

from an invariant relation between strain components. The actual wrinkled shape of the film

is not of interest, instead a fictitious non-wrinkled surface is used to describe the average

deformation of the film.

Consider an undeformed material element ABCD, Figure 1(a). Let (x̂, ŷ) denote a Carte-

sian coordinate system in the undeformed configuration, where x̂, ŷ are aligned with the

directions of orthotropy of the material. Let (x, y) denote a rotated Cartesian coordinate

system for the same material point but such that x is the direction of the uniaxial stress in

the wrinkled material. The rigid body rotation angle, α, from x̂ŷ to xy is called the wrinkling

angle. It is noteworthy that for isotropic materials the wrinkling angle is the same as the

principal stress or strain angle but this is generally not the case for anisotropic materials.

After this rigid body rotation, the material element, which is now considered in a rotated

Cartesian coordinate system, is transformed from the undeformed configuration ABCD to

the final, wrinkled configuration A
′′
B
′′
C
′′
D
′′

in two steps, Figure 1(b). The first step is a

pure deformation from the undeformed configuration ABCD to the deformed configuration

A
′
B
′
C
′
D
′
, due to the application of the correct uniaxial stress σx. No wrinkling occurs

during this deformation, because there are no constraints on the deformation kinematics.

This deformation consists of a normal strain εu
x, a transverse contraction εu

y (due to the

Poisson’s ratio of the membrane), and an additional shear strain γu
xy (only in the case of

anisotropic materials). This strain state is called the state of natural uniaxial tension and

the superscript u has been used to denote the corresponding strains. The second step involves

pure wrinkling from A
′
B
′
C
′
D
′

to A
′′
B
′′
C
′′
D
′′
. During this step, the stress in the material

does not change and hence its strain state also does not change, but the material element
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“shrinks” due to the formation of a series of wrinkles. At this point, though, the actual

material element (which is no longer planar) is replaced by a fictitious wrinkled surface with

the same outer profile.

Let e1 and e2 be unit vectors denoting respectively the x and y direction. The material

point X = X1e1 + X2e2 in the reference configuration ABCD corresponds to point x =

x1e1 + x2e2 in the state of natural uniaxial tension (i.e., in configuration A
′
B
′
C
′
D
′
) and to

point xu = xu
1e1 + xu

2e2 in the final deformed configuration A
′′
B
′′
C
′′
D
′′
. The mapping from

ABCD to A
′
B
′
C
′
D
′
is written as xu

1 = auX1 + cuX2 and xu
2 = buX2, and the mapping from

ABCD to A
′′
B
′′
C
′′
D
′′

is written as x1 = aX1 + cX2 and x2 = bX2.

During the wrinkling process, the points A
′
, B

′
, C

′
, D

′
move vertically to A

′′
, B

′′
, C

′′
, D

′′
,

therefore there is no deformation of e2, but there is still contraction of e1, i.e.

a = au, c = cu and b ≤ bu (10)

The Green strain tensors for the fictitious wrinkled state and the state of natural uniaxial

tension are

ε =
1

2
(a2 − 1)e1 ⊗ e1 +

1

2
ac(e1 ⊗ e2 + e2 ⊗ e1) +

1

2
(b2 + c2 − 1)e2 ⊗ e2

= εxe1 ⊗ e1 + εxye1 ⊗ e2 + εyxe2 ⊗ e1 + εye2 ⊗ e2 (11)

εu =
1

2
[(au)2 − 1]e1 ⊗ e1 +

1

2
(au)(cu)(e1 ⊗ e2 + e2 ⊗ e1) +

1

2
[(bu)2 + (cu)2 − 1]e2 ⊗ e2

= εu
xe1 ⊗ e1 + εu

xye1 ⊗ e2 + εu
yxe2 ⊗ e1 + εu

ye2 ⊗ e2 (12)

Comparing the above three equations, we conclude that in the wrinkled state the strain

components εx and γxy remain unchanged, i.e. εx = εu
x and γxy = γu

xy, but the transverse

strain εy is different due to the over-contraction of the material in the direction perpendicular

to the stress direction, i.e. εu
y ≥ εy.

Assuming that the Green strain ε in the membrane is small, it is approximately equal

to the standard Cauchy strain and so the stress-strain relationship has the standard linear

form 



σ̂x

σ̂y

τ̂xy





=




Ĉ11 Ĉ12 0

Ĉ21 Ĉ22 0

0 0 Ĉ66



·





ε̂x

ε̂y

γ̂xy





(13)

which can be written in the compact form {σ̂} = [Ĉ]{ε̂}. Note that the shear-extension

coupling terms in this material stiffness matrix [Ĉ] are zero because the relationship has
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α

A B

CD

A B

CD

A’ B’

C’D’

A’’ B’’

C’’D’’

x (e1)

y (e2)

x

Undeformed membrane

Fictitious surface

Natural uniaxial tension membrane

(a) Rigid body rotaion of Cartesian coordinate system (b) Wrinkling process of deformed configurations

Wrinkling orientation

Figure 1. States of a wrinkled element.

been set up in the directions of orthotropy of the material. This stress-strain relationship

can be transformed to the x, y coordinate system by rotating through the angle α





σx

σy

τxy





=




C11 C12 C16

C21 C22 C26

C61 C62 C66



·





εx

εy

γxy





(14)

or {σ} = [C]{ε}. Here {ε} can be obtained from {ε̂} by the transformation

[C] = [T ][Ĉ][R][T ]−1[R]−1 (15)

where [R] = diag{1, 1, 2} and

[T ] =




cos2(α) sin2(α) 2 sin(α) cos(α)

sin2(α) cos2(α) −2 sin(α) cos(α)

− sin(α) cos(α) sin(α) cos(α) cos2(α)− sin2(α)



· (16)

The wrinkling angle α has to be such that the normal stress in the direction perpendicular

to the wrinkles is zero and the shear stress is also zero, that is σu
y = τu

xy = 0. If this condition

is satisfied, then the transverse strain εu
y and the shear strain γu

xy can be obtained from

εu
y = εu

x

C21C66 − C26C61

C26C62 − C22C66

(17)
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γu
xy = εu

x

C22C61 − C21C62

C26C62 − C22C66

(18)

Kang and Im19 proposed an iterative approach to search for the wrinkling angle; their

procedure to find α is as follows. First, one determines a value of α that satisfies the

relationship γu
xy = γxy, with εu

x = εx. Here, εu
y and γu

xy are calculated from Equations 17 and

18. Finding α is equivalent to solving the equation

f(α) = γu
xy(α)− γxy(α) = 0 (19)

which may have multiple solutions between 0 and 180 degrees. To find all of the solutions,

we first divide the domain into ten uniform intervals and look for a change of sign between

two boundary points in any interval. If a change of sign is found, then there is at least

one solution inside this particular interval. Then we iteratively calculate the intersection

between a straight line connecting two boundary points and the x-axis until the error is less

than a prescribed tolerance. Once we have found a value of α that satisfies this equation, we

check that εu
y ≥ εy and if this inequality is satisfied, then α defines the wrinkling orientation.

If no change of sign is found, the domain is divided into 50 intervals and the calculation is

repeated.

III. Effective Material Stiffness Matrix

A particular balloon film, StratoFilm 420, will be considered in this study. This film

has been extensively characterized by Rand.25,26 In the first part of this section we review

the nonlinear viscoelastic properties of Stratofilm 420 and then develop an approximate

pseudo-elastic constitutive model for a chosen temperature, time interval and stress level;

this approach was inspired by Stubstad and Simitses.27 In the second part of the section we

modify the pseudo-elastic coefficients to consider the effects of wrinkling.

A. Pseudo-elastic model for StratoFilm 420

StratoFilm 420 is a 38 micron thick film made of Linear Low Density Polyethylene.28

Rand25,26 has developed a nonlinear viscoelastic constitutive model for this film.

The transient compliance ∆D(T0, ψ) in the machine direction of the film was given

at a reference temperature T0 =293.16 K and the instantaneous compliance D0 = 3.0 ×
10−10 (Pa−1) was chosen to ensure that the transient compliance Di would all be positive.

The coefficients of a 15 term Prony series are listed in Table 2.

The temperature shift factor aT was evaluated over the range 163 K to 323 K and then
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Table 2. Prony series for StratoFilm SF420

i Di (MPa−1) τi (s)

1 1.8764×10−4 1.6548×10−16

2 2.9249×10−5 4.8697×10−15

3 5.8224×10−5 1.4330×10−13

4 8.7542×10−5 4.2170×10−12

5 1.1561×10−4 1.2409×10−10

6 1.4159×10−4 3.6517×10−9

7 1.6989×10−4 1.0746×10−7

8 2.0924×10−4 3.1623×10−6

9 2.7274×10−4 9.3057×10−5

10 3.7796×10−4 2.7384×10−3

11 5.4670×10−4 8.0582×10−2

12 8.0581×10−4 2.3714

13 1.1844×10−3 69.783

14 1.7204×10−3 2053.5

15 2.6285×10−3 60430

fitted at the reference temperature T0 = 293.16K in the logarithmic form

log aT =





(T − 293.16)[7.33× 10−4(T − 273.16)− 0.179133] T > 233.16

3.1068− 0.2350275(T − 273.16) T < 233.16
(20)

The stress shift was represented by aσ

log aσ = −0.126(σeff − σ0) (21)

where σ0 is threshold at which linear behavior ends and nonlinear behavior begins

σ0 = 69.527− 0.430944T + 6.7962× 10−4T 2 (22)

Two of the non-linear coefficients, g0 and g1 were set equal to 1. The parameter g2 was

described by

g2 = 1 + 0.1875(σeff − σ0) (23)

The coefficients for the biaxial model were, in addition to S11 = 1,

S22 = 1.122 + 6.5895× 10−4T − 6.609× 10−6T 2 (24)

10 of 34



and S12 = S21 = −0.58, S66 = 4.45.

The coefficients for the effective stress, Aij, were expressed as

A22 = 1.44, A12 = −0.4 and A66 = 0.8 (25)

A finite-element implementation of the above constitutive model for the analysis of a

single balloon lobe has been developed by the Gerngross and Pellegrino20–22 model. Here we

present an alternative approach that, although less accurate, is more suitable for large scale

simulations of balloon structures.

For a given time t, the integral representation for the strain ε(t) in Equation 7 can be

approximated by replacing the convolution integral with a series of m equal substeps ∆t = t
m

where each term is evaluated at the discrete time ti = i∆t

ε(t) ≈ g0D0σ(t) + g1

m∑

i=1

∆D(ψt − ψti−1)∆[g2(σ
ti)σ(ti)]

= g0D0σ(t) + g1

m∑

i=1

∆D(ψt − ψti−1)[g2(σ
ti)σ(ti)− g2(σ

ti−1)σ(ti−1)] (26)

Substituting g0 = g1 = 1 and assuming that g2 changes slowly over ∆t, i.e. g2(σ
ti) ≈

g2(σ
ti−1), then the above equation becomes

ε(t) ≈ D0

m∑

i=1

∆σ(ti) +
m∑

i=1

g2(σ
ti)∆D(ψt − ψti−1)∆σ(ti)

=
m∑

i=1

[D0 + g2(σ
ti)∆D(ψt − ψti−1)]∆σ(ti) (27)

Hence, we can define a pseudo-elastic compliance, Dp,i (the superscript p corresponds to

”pseudo-elastic”) between i∆t and t, and considering the corresponding reduced times

Dp,i = D0 + g2∆D(ψt − ψti−1) (28)

The corresponding strain can then be expressed as

ε(t) =
m∑

i=1

Dp,i∆σ(ti) =
m∑

i=1

∆ε(ti) (29)

This uniaxial expression can be generalized to plane stress by defining the pseudo-elastic

compliance in the machine direction, D̂p,i
11 , from Equation 28

D̂p,i
11 = D0 + g2∆D(ψt − ψti−1) (30)
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and the remaining coefficients of the pseudo-elastic compliance matrix are then

D̂p,i
22 = S22D̂

p,i
11 , D̂p,i

12 = D̂p,i
21 = S12D̂

p,i
11 , D̂p,i

66 = S66D̂
p,i
11 (31)

It follows from Equation 29 that the strain at time t can be obtained as a sum of strain

increments, which are calculated from the stress increments multiplied by the correspond-

ing total pseudo-elastic compliances. For each increment, the pseudo-elastic compliance is

constant.

For example, if we consider the conditions of constant temperature T = 293 K, constant

stress σ̂x = 4.5 MPa, σ̂y = 5.0 MPa and τ̂xy = 0 MPa, the shift of the compliance master

curve in the machine direction is shown in Figure 2. At time t = 1000 s, the pseudo-elastic

moduli can be obtained from the compliance at the point marked with a dot in Figure 2.

They are respectively Êp
11 = 90.98 MPa and Êp

22 = 121.68 MPa.
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Figure 2. Master curves of compliance in machine direction.

The pseudo-elastic stiffness matrix in the directions of orthotropy of the film can be

obtained by inversion of D̂p,i

Êp,i =




Êp,i
11 Êp,i

12 0

Êp,i
21 Êp,i

22 0

0 0 Êp,i
66




(32)
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where

Êp,i
11 =

1

Dp,i
11

1

S11 − S2
12/S22

Êp,i
12 = Ep,i

21 =
1

Dp,i
11

1

S12 − S11S22/S12

Êp,i
22 =

1

Dp,i
11

1

S22 − S2
12/S11

Êp,i
66 =

1

Dp,i
11

1

S66

B. Correction for Wrinkling

Kang and Im19 compared three types of wrinkling criteria, the principal stress criterion, the

principal strain criterion and the mixed criterion. They concluded that the mixed criterion

works better for anisotropic wrinkling as it avoids numerical divergence caused by making

wrong judgements about the membrane state, which happened with the principal stress

based criterion.

The effective elasticity matrix depends on the state of a membrane element:

• Minor principal stress σ2 > 0: the membrane is taut, hence Equation 32 is valid.

• Minor principal stress σ2 ≤ 0 and major principal strain ε1 > 0: the membrane is

wrinkled.

Hence we must solve for the wrinkling angle α. First we transform the pseudo-elastic

stiffness in Equation 32 to the rotated coordinate system x, y (the transformation is

analogous to Equation 14). In this system, the normal strain εx and the shear strain γxy

are equal to the strains in the state of natural uniaxial tension whereas εy is not. The

transverse stress σy has to be zero in a coordinate system aligned with the wrinkles,

hence

σy = Ep,i
21 εx + Ep,i

22 εy + Ep,i
23 γxy = 0 (33)

From the above equation, εy can be expressed in terms of εx and γxy.

εy = −Ep,i
21

Ep,i
22

εx − Ep,i
26

Ep,i
22

γxy (34)

Hence we eliminate εy by substituting this expression into Equation 14, and obtain the
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effective elasticity matrix22 for the wrinkled element

Ep,i
w =




Ep,i
11 − Ep,i

12 Ep,i
21

Ep,i
22

0 Ep,i
13 − Ep,i

12 Ep,i
26

Ep,i
22

0 0 0

Ep,i
61 − Ep,i

62 Ep,i
21

Ep,i
22

0 Ep,i
66 − Ep,i

26 Ep,i
62

Ep,i
22




(35)

An alternative method is using directly the strains in the state of natural uniaxial

tension {εu} from Equations 17 and 18. Hence the corrected stress in the wrinkled

state {σ} has to be a uniaxial tension, rewritten as {σ} = {σu} = Ep,i{εu}. Since the

element is under uniaxial tension, only the x component σx is nonzero. Finally {σ} is

transformed back to {σ̂} in the direction of orthotropy.

• Major principal strain ε1 ≤ 0 and minor principal stress σ2 < 0: the membrane is slack

and hence Ep,i
s = [0]

In conclusion, to calculate the correct stress, the following steps are carried out:

Step 1. Check the state of the membrane element by means of the mixed criterion;

Step 2. If the element is wrinkled, find the wrinkling angle α from Kang and Im’s scheme,

described in Section 2;

Step 3. Compute the corrected Cauchy stress using the effective elasticity matrix.

The stress and strain components used for the above wrinkling tests should ideally be

the best current estimates of the values at time t. However our current approach is to run

each step i as a separate simulation in ABAQUS/Explicit and hence the only estimates that

are available in each run are only the estimates based on the current increment.

IV. Finite Element Implementation

In Section III we have presented an approach to obtain approximate estimates of the

stresses in a viscoelastic film at time t. The loading sequence is divided into m steps, where

m is determined by the required precision, and

σ(t) =
m∑

i=1

∆σ(ti) =
m∑

i=1

Êp,i∆ε(ti) (36)

For example, the strain increments due to a three step loading sequence are shown on

the left of Figure 3(a), hence

ε = ∆ε1 + ∆ε2 + ∆ε3 (37)
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The stress at the end time, t3, due to the strain increments ∆εi is computed with

ABAQUS/Explicit in three separate analyses with compliances Êp,i. The results are shown

in Figure 3(b-d) and are superposed in Figure 3(a). From the plots on the right in Figure 3,

the stress at time t3 is given by

σ(t3) = ∆σ1 + ∆σ2 + ∆σ2

= Ep,1∆ε1 + Ep,2∆ε2 + Ep,3∆ε3 (38)

Note that an approximation in this approach is to assume that the wrinkling directions

in each step will not change significantly between the various steps,. Also, the coefficient g2

is stress-dependent and so is not correctly estimated for the full stress level. In other words,

the proposed linear superposition is suitable for weakly nonlinear materials with only small

wrinkle angle changes.

A user-defined material ABAQUS/Explicit subroutine (VUMAT) has been written to

model wrinkling in an orthotropic viscoelastic film, it is schematically described in Figure 4.

This subroutine can be downloaded from

http : //pellegrino.caltech.edu/super pressure balloons.html.

V. Verification for Isotropic Elastic membranes

We have tested our VUMAT implementation of wrinkling in ABAQUS/Explicit by means

of a comparison with the analytical solution for a linear-elastic, time-independent rectangular

membrane under simple shear. The longer edges of the membrane are attached to rigid edges

that are sheared uniformly while the shorter edges are unconstrained. This problem was

investigated by Wong and Pellegrino.12

A. Construction of FE Model

This test case involves a rectangular membrane under simple shear. 29 The properties of

the film used in the model and the geometrical dimensions of the rectangular membrane are

summarized in Table 3.

The membrane was modeled with 3-node, fully integrated triangular membrane elements

(M3D3). All translations of the bottom edge nodes were fully constrained, whereas the top

edge nodes were left free. As shown in Figure 5, the shear load was applied in terms of a

horizontal shear displacement of the top edge.

The loading process consisted of two analysis steps: during the first step, lasting 2.5 sec-

onds, the upper edge nodes were moved by 3 mm in the x-direction while all other trans-

lations were constrained. In the second step, also lasting 2.5 seconds, all the translational
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incremental strain functions and corresponding stress responses.
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Figure 4. Wrinkling algorithm for linear orthotropic viscoelastic material subroutine VUMAT
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Table 3. Summary of membrane properties

Length, L (mm) 380

Height, H (mm) 128

Thickness, t (mm) 0.025

Young’s Modulus, E (N/mm2) 3530

Poisson’s ratio, ν 0.33

Density, ρ (kg/mm3) 1.46×10−6

δx = 3 mm

H
=

 1
2

8
 m

m

L= 380 mm

Y

X

Figure 5. Finite element mesh for membrane in shear.
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degrees of freedom on the upper and lower edges were constrained, to test the stability of

the simulation.

B. Results

The stress distribution corresponding to the final value of the horizontal displacement of the

membrane is illustrated by means of contour plots and a vector plot, in Figure 6. Since the

major principal stress, σ1, is much greater than the minor principal stress, σ2, only the major

stress can be seen in the vector plot. The direction of the major principal stress, inclined at

45◦, corresponds to the direction of the wrinkles. The dense distributions of vectors at the

top-right and bottom-left corners indicate two areas of stress concentration.

The membrane finite element model using the VUMAT subroutine has succeeded in elim-

inating all negative stress, as illustrated by the minor stress distribution being approximately

non-negative everywhere.

The principal stresses across the middle of the membrane are plotted in Figure 7. σ1

increases from zero at the edge to a uniform and positive value, σ1 =41.36 MPa, whereas σ2

remains approximately zero. The major principal strain is at 45◦ and given by Wong and

Pellegrino11

ε1 =
γ

2
(39)

Since the shear strain is γ = δx/H, σ1 = Eε1 =41.37 MPa. A detailed simulation with a

thin-shell model of the membrane was carried out by Wong and Pellegrino12 and the stress

distribution obtained from that approach has been plotted for reference in Figure 7. Figure 8

explains the wrinkling pattern for an isotropic membrane; it consists of a parallelogram region

with a uniform wrinkling angle of 45◦ plus two triangular regions that are slack. Note that

there are stress concentrations at the corners B and D whereas the stress is zero at the other

two corners of the membrane, A and C.

The energy variation during the Explicit simulation has been shown in Figure 9. The

viscous dissipation is negligible (the linear viscosity coefficient was set equal to 0.005) and the

kinetic energy is also small, indicating that a quasi-static simulation has been achieved. A

constant strain energy level of 236.76 mJ during the second step indicates that the simulation

is stable.

VI. Experimental Studies of Viscoelastic Orthotropic

Membranes

A rectangular membrane with exactly the same dimensions as the one considered in

Section V.A and subject to the same loading condition has been tested. However, now the
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(a) Major principal stress (unit: MPa)

(b) Minor principal stress (unit: MPa)
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Figure 6. Plot of principal stress distribution for isotropic, time-independent membrane.
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situation is different in the following respects: (1) the membrane is StratoFilm 420, which is

an orthotropic material showing nonlinear viscoelastic effects; (2) both loading and unloading

are measured and hysteretic curves obtained from experiments will be compared with results

of pseudo-elastic simulations; (3) after a linear ramp loading, the imposed displacement is

kept constant for a certain time before unloading, to observe the viscoelastic response.

A. Shear Test Rig

The scheme for the shear test was based on the concept previously adopted by Jenkins et

al.30 and then followed by Wong and Pellegrino.10 The shear rig is shown in Figure 10,

note that the moving edge block is attached to four linear bearings (LUI 5AL). A key step

in the preparation for a test is setting up the flat membrane surface without any visible

imperfections. To do this, a mist of distilled water was sprayed on a flat Perspex sheet

and a piece of StratoFilm 420 with the required dimensions was put on the sheet. Then

the film was lightly pressured with a hand roller to eliminate any air bubbles. The surface

tension of the water at the interface holds the films against the plastic sheet. The upper and

lower edges of one side of the film were glued to the fixed and moving edges of the rig, then

clamping strips were glued and bolted to the other side of the film with M4 screws.

A controlled displacement of the moving edge block was imposed by means of a fine

threaded screw, on the left-hand side of the rig and a force sensor (Futek LCM300) coaxial

with the screw was used to measure the compressive contact force, F , between the screw

and the moving edge block. A Keyence LK-G157 laser placed on the right-hand side (not

shown in the figure) was used to measure the displacement δx and the variation of force

and displacement with time were measured with a Vishay System 7000 data logger. The

scanning frequency was 128 samples per second during loading and unloading and 10 per
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minute when the displacement was held constant. The data samples were averaged using a

window of 20 data points to reduce noise. The repeatability of the force sensor is 0.1% of

full range, i.e. ±1.11 N; the resolution of the laser is 0.5 µm.

Moving edge

Stationary edge

Membrane

Holder for screw

Screw

Force sensor Linear bearing

Figure 10. Shear rig.

B. Experimental Procedure

StratoFilm 420 is orthotropic due to the non-uniform biaxial stretching during production.

The directions of orthotropy are the machine direction, i.e. the direction in which the film

is rolled, and the transverse direction. All experiments were carried out with the directions

of orthotropy of the film parallel to the direction of shearing. In experiments denoted with

an “M” the machine direction of the film was parallel to the direction of shearing, whereas

in experiments denoted with a “T” the transverse direction of the film was parallel to the

direction of shearing. For each set of experiments two displacement magnitudes were im-

posed, approximately 2 mm and 3 mm; in the second set of experiments the direction of

motion was also reversed, after holding the displacement constant for a time tC . The test

parameters are summarized in Table 4.

It should be noted that at some point during the reversed direction of motion the reaction

between the screw and the moving edge becomes tensile and at this point contact between

the screw tip and the moving edge was lost. Hence, from this point on the motion of the

moving edge was governed by the condition that the reaction force should be zero.
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Table 4. Test parameters

Test No. a b c d

Direction of film M M T T

Displacement δx (mm) 2.31 3.36 2.39 3.34

Temperature T (K) 294.55 294.65 294.65 294.65

Loading type Loading only Loading only Loading & unloading Loading & unloading

Linear ramp
5.85 10.775 10.18 16.79

duration tL (s)

Constant displacement
15145.70 13582.83 22115.49 21962.0

duration tC (s)

Linear ramp
N.A. N.A. 3.484 5.578

duration tU (s)

C. Correction for Friction

The motion of the moving edge of the shear rig is resisted by friction in the linear bearings.

It was assumed that the static and kinetic friction coefficients are equal and given by an

expression of the type

f = f0 + µP (40)

where P is the total tension in the film, i.e. the total force in the direction perpendicular to

the moving edge. The friction force f was measured on the shear rig without the film, by

applying a known value of P and measuring the corresponding force needed to continuously

move the sliding edge block.

The range of values of P that was considered was based on an ABAQUS simulation of

the value corresponding to a film subject to a shear displacement δx = 3 mm. Hence three

levels of P were applied: 0 N, 11.121 N and 22.241 N. Since the friction force f has much

smaller values than the horizontal force, a dynamic force sensor with higher precision, PCB

Piezotronics Model 208C01, was used to measure the friction force.

Two sets of test results have been plotted in Figure 11. The linear fit, in Newtons, is

given by

f = +1.2976 + 0.00421 P (41)

For simplicity the constant value f = 1.298 N was assumed, as it turned out that P is

less than 22.241 N in all tests. In conclusion, the shear force acting on the film, S, can be

obtained by correcting the total applied force F , measured by the force sensor during the

24 of 34



test, see Figure 12 for details:

S = F − f if δ̇x > 0 (42)

S = F + f if δ̇x < 0 (43)
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Figure 11. Fitting of friction force.
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Figure 12. Free bodies of sliding edge block to derive correction of shear force.

D. Results of Shear Tests

The wrinkling pattern observed on a film subject to a 3 mm shear displacement is shown in

Figure 13. The wrinkles are almost evenly distributed in the central parallelogram region.

The top left and bottom right corner regions are slack and so there are no wrinkles in these

regions.

A correction to the measured total force has been applied, using Equations 42 and 43

with a constant friction value, have been applied to correct the shear force, respectively for

the cases of loading and unloading. The results have been plotted in Figures 14 and 15.
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Figure 13. Wrinkling pattern for 38 micron thick Stratofilm 420 subject to 3 mm shear
displacement.

A comparison between the shear force time variation between the four tests is shown

in Figure 14. The increase in shear force is approximately linear during the loading ramp.

Then it gradually decreases when the displacement remains constant and tends to a constant

value.
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Figure 14. Measured time dependence of shear force, after correction for friction effects: (a)
“M” machine direction parallel to direction of shearing; (b) “T” transverse direction parallel
to direction of shearing.

The relationship between the shear force and displacement for the four tests is shown in

Figure 15. The curves for total shear displacements of 2 mm and 3 mm generally follow the

same shape and kinks appear at the point of initial unloading due to the shear force correction

when the friction suddenly changes direction. Clearly the simplified friction correction model
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that has been used does not do a good job at the point of transition.
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Figure 15. Measured force-displacement relationships, after correction for friction effects: (a)
“M” machine direction parallel to direction of shearing; (b) “T” transverse direction parallel
to direction of shearing.

Since the differences in corresponding displacements are minor, the temperature did

not change and the loading can be assumed quasi-static, it is interesting to compare the

maximum shear forces in the four tests, see Table 5. With everything else fixed, one finds

that the greater the shear displacement, the greater the shear force is. Also, for the same

displacement, the film arranged with the machine direction parallel to the long edge carries

a higher shear force than the film placed in the transverse direction; however the difference

is generally less than 10%. This is because Stratofilm 420 has only a weak anisotropy.

Table 5. Maximum shear forces

Test No. a b c d

Direction of film M M T T

Displacement δx (mm) 2.31 3.36 2.39 3.34

Max total horizontal force F (N) 17.618 21.206 16.633 19.271

Max shear force S (N) 16.320 19.908 15.335 17.973

VII. Comparison of Results and Discussion

The general orthotropic viscoelastic membrane model can be tested by comparing the

simulation results to the results from the experiments. The first issue is how many steps
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should be used to represent the time history of the imposed displacement. As an example, we

have investigated the linear loading ramp for the M test with a displacement δx = 3.36 mm,

at the time tL = 10.775 s. We have found that the total estimate for the shear force

at this time increases from 16.445 N, to 18.970 N, and 20.117 N for single-step, two-step

and three-step approximations, respectively. The first two results differ by 15% but the

difference of the last two reduces to 6%. Taking 20.117 N as the correct solution, we have

assumed that a two-step approximation for linear ramp loading is sufficiently accurate. The

experimental measurement of the force at this time was 19.908 N, which confirm that the

two-step solution is close to the physically correct value. At the stress-concentration corners

of the membrane there is a maximum principal strain of 5.2%, which is at the limit of Rand’s

viscoelastic model.25,26

Based on this observation, the discretization technique that has been adopted for the

actual displacement function is shown in Figure 16, depending on where the chosen time t

falls with respect to the ramp times.
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Figure 16. Discretization of displacement function using two-steps for each ramp; (a) case
t < tL; (b) case tL < t < tL + tC ; (c) case tL + tC < t < tL + tC + tU .

The first thing to note from the simulation results is that the wrinkling angles are on

average 44.6◦ and 48.3◦, respectively, in the M and T cases. This difference is too small to be

detected in the experiments. Figures 17 and 18 compare the relationships between total shear

force and time obtained from the simulations with both uncorrected and friction corrected
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experimental results. During the initial loading, especially the first 1 s, the comparison

shows significant differences; however this is not surprising. The differences are due to the

presence of inertia forces in the experimental results, due to the mass of the edge block that

was not included in the finite-element model, and to the fact that when the shear forces

are small the force sensor is less accurate and also friction is comparatively large and so

our rather rough technique for removing friction effects is not accurate. The simulations

and the experimental results are much closer from t ≈ 2 s onwards and particularly for the

case δx = 3 mm. In Figure 17(b) during the constant displacement phase the maximum

difference between simulation and friction-corrected measured shear forces is 0.83 N, or

7.15%. In Figure 18(b1), the maximum difference the maximum difference is 0.58 N, or

5.28%. Figure 18(b2) provides a more detailed comparison of the unloading curves shown in

Figure 18(b1), to provide a more detailed comparison of the unloading curves. In this range

the maximum difference is 0.74 N.
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Figure 17. Comparison between simulation and measurement for “M” test: (a) maximum
shear displacement 2 mm; (b) maximum shear displacement 3 mm.

The hysteretic relationship between shear force and displacement is shown in Figure 19.

Different loading and unloading paths result from the cumulative effects of viscoelasticity,

which has a significant influence on the behavior of the wrinkled films.

VIII. Conclusion

The objective of this study was to investigate the wrinkling of orthotropic viscoelastic

membranes. The method developed in this paper, based on a modification of the material

stiffness matrix to incorporate the effects of orthotropic wrinkling and viscoelasticity, has

been shown to be an effective way of capturing in a finite element simulation the behavior
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Figure 19. Comparison between simulation and experiment for “T” test: (a) maximum shear
displacement 2 mm; (b) maximum shear displacement 3 mm.

of a real plastic film.

In the wrinkling model the state of a membrane element (taut, wrinkled, slack) is defined

by a mixed criterion. Once it has been established that an element is wrinkled, an iterative

scheme searches for the wrinkle orientation angle and the correct stress distribution, involving

only uniaxial tension in the wrinkle direction, is then obtained.

This wrinkling model has been validated by a comparison with a published solution for

the case of a time-independent isotropic membrane under simple shear. The model has then

been applied to a particular type of viscoelastic balloon film, known as StratoFilm 420. Us-

ing the Rand-Schapery model for this film, a time-dependent pseudo-elastic stiffness matrix

was defined and so, instead of having to compute the convolution integral throughout the

simulation, we were able to compute the behavior of a membrane structure by superposi-

tion of a series of incremental response functions. These calculations were implemented in

standard finite element software.

Experimental tests on StratoFilm 420 under simple shear were carried out, including

loading and unloading, and the experimental results were compared with ABAQUS/Explicit

simulations. The results agree very well once friction and dynamic effects are excluded.

There are differences of about 10% in the shear forces measured on membranes arranged

in different material directions because StratoFilm 420 has only weak anisotropy; hence

the direction of the wrinkles changed by less than 4◦ when the film was rotated through

90◦. Significant differences were seen between loading and unloading curves, indicating that

viscoelastic behavior is a significant source of energy dissipation.

Viscoelastic simulations based on the convolution integral in Eq. 7 would be computa-
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tionally intensive for large structures undergoing significant geometry changes, such as the

deployment of balloons. Moreover, computing intermediate results at many stages of deploy-

ment of a balloon is of little interest as the stresses remain small until the balloon reaches its

final configuration and begins to pressurize. This paper has shown that for the balloon film

SF 420 acceptable results are obtained from pseudo-elastic simulations based on a two-step

representation of each ramp in the loading function. Therefore, applications of the present

approach to balloon simulations is expected to be much more efficient than attempting to

predict the detailed behavior of the balloon using a much finer representation of the loading

together with an incremental form of the convolution integral.
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