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Abstract

Spinning membrane structures provide a mass-efficient solution for large space

apertures. This paper presents a detailed study of the wrinkling of spinning cir-

cular membranes loaded by transverse, uniform loads. Experimental measure-

ments of the angular velocities at which different membranes become wrinkled,

and of the wrinkling mode transitions that occur upon spin down of the mem-

brane, are presented. A theoretical formulation of the problem is presented,

from which pairs of critical angular velocities and critical transverse loads are

determined. A general stability chart is presented, which identifies the stability

limits in terms of only two dimensionless parameters, for any membrane. The

transition between bending dominated behavior and in-plane dominated behav-

ior is identified, and it is shown that in the bending-dominated case the critical

non-dimensional transverse load is independent from the non-dimensional an-

gular velocity.
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1. Introduction

Membranes are widely used in deployable space structures, as they allow

tight packaging for launch. Their low bending stiffness, which is advantageous

for efficient packaging, requires that the deployed shape is stabilized by applying

a state of prestress. This is often done by applying edge forces through a set of5

deployable booms (as in the James Webb sunshield (Clampin, 2008)). A lighter

and potentially simpler way of prestressing the membrane is by means of cen-

trifugal forces. It was recently demonstrated in the IKAROS solar sail (Sawada

et al., 2007), although unexpected shape deviations were observed (Satou et al.,

2015). Spinning membranes are also of interest for future, ultralight space-based10

solar power satellites. Both solar sails and solar power satellites require ultra-

light structures that can remain flat under the load of incident light from the

sun. Maintaining a flat shape is important to increase the propulsive action for

solar sailing or the total absorption of concentrated photovoltaics.

It is well known that thin sheets can carry very little compression, making15

them susceptible to wrinkling. There is an extensive literature on statically

loaded membranes, including many solution techniques that neglect the bending

stiffness altogether. Tension field theory is the main analytical tool (Reissner,

1938; Mansfield, 1970, 1989; Pipkin, 1986) whereas numerical solutions were

pursued by Stein and Hedgepeth (1961) and Miller and Hedgepeth (1982).20

The bending stiffness of the membrane, which determines the wavelength of

the wrinkles, was considered by several authors (Rimrott and Cvercko, 1986;

Cerda et al., 2002; Epstein, 2003). The development of heavily wrinkled config-

urations, through jumps in which the spatial wavelength of the wrinkles changes

suddenly, was studied by Wong & Pellegrino (2006a,b,c). There are also many25

applications in which membranes are loaded dynamically (Jenkins and Leonard,

1991).

The particular situation of interest in the present study is a spinning mem-

brane, deformed out of plane by a transverse uniform loading. For small loads

the structure deforms into an axisymmetric shallow “cone” and, at sufficiently30
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large transverse loads, it buckles into a wrinkled surface. A similar instability

in statically loaded plates was studied by Keller & Reiss (1958) using the von

Kármán plate equations, to illustrate a new iterative numerical method for cer-

tain boundary value problems in the nonlinear theory of thin plates and shells.

The dynamic problem was first studied by Simmonds (1962), using a stress based35

wrinkling criterion that neglects the bending stiffness of the membrane. In this

case, i.e., assuming zero bending stiffness, the onset of compression initiates

wrinkling. Simmonds noted that, in a spinning membrane transversely loaded

by gravity, circumferential compression first occurs on the outer edge. Hence, he

evaluated the load at which the circumferential stress on the outer edge becomes40

negative, and assumed this load to be equal to the critical buckling load of the

membrane. Okuizumi (2007) carried out experiments in a vacuum chamber on

thin, spinning membranes loaded by gravity and vibrating under axisymmetric

excitation (Okuizumi, 2009, 2014), using Simmonds’ stress criterion to predict

buckling.45

Benson & Bogy (1978); Benson (1983); Cole & Benson (1988) studied the

deflection of a floppy disk under a stationary, concentrated transverse load,

including the coupling effects of bending stiffness and in-plane forces. Chen

& Fang (2011) studied the buckling of a spinning heavy disk using the von

Kármán plate equations to account for the bending stiffness and pre-stress due50

to centrifugal forces. Their analysis showed the existence of several equilibrium

solutions. They theoretically and experimentally found the equilibrium shape

of a rotating heavy disk and experimentally measured buckling wave numbers

smaller than 4. These authors also analyzed the stability of rotating non-flat

disks (Chen & Chang, 2007; Chen & Fang, 2010; Chen, 2010), however they55

did not provide a complete theoretical understanding of the buckling of flexible

disks. For example, a “phase diagram” that clearly shows when the disk will

and will not buckle would be very useful for a space structure designer. Also, the

theoretical predictions in these previous studies were verified only qualitatively

with experimental observations, and only up to mode numbers of 5 or 6. No60

detailed numerical simulations were carried out.
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The present study considers circular, spinning membranes under a trans-

verse, uniform load. No particular wrinkling criterion is assumed and both

centrifugal forces and the effects of the membrane’s bending stiffness are taken

into account. The angular velocities and buckling (wrinkling) modes of mem-65

branes with different properties and geometries were measured experimentally,

and buckling mode transitions were observed during spin down. The buckling

problem is formulated analytically and a complete solution that provides the

critical angular velocities and critical loads, as well as the buckled shapes of

the spinning membrane, is obtained. The von Karman plate model is used to70

study buckling from the initial, axisymmetric configuration. A wide range of

parameters is considered and a master curve that determines the stability of a

membrane in terms of two non-dimensional parameters, namely the the equiv-

alent gravity and the equivalent angular velocity, is obtained. It is also shown

that the shape of the wrinkled membrane varies depending on the angular ve-75

locity, and the link between this result and the experimentally observed mode

transitions is investigated. Comparison of the present results to the Simmonds

theory shows that neglecting the bending stiffness of the membrane is inaccu-

rate in certain regimes. Hence, the limit of validity of the pure membrane and

static plate theories are established.80

The first part of the paper presents the experimental setup for spinning

membranes loaded by gravity, and presents specific results for three cases. Two

analytical models are considered and compared, to explain these experimental

observations, first a pure membrane model that neglects the bending stiffness

and second a von Kármán plate formulation that includes both bending stiffness85

and in-plane stress due to centrifugal force. These models are used to evalu-

ate the critical transverse load at any given angular velocity. For the latter

model the corresponding wrinkling wave number is also obtained. An alterna-

tive, finite element simulation scheme is developed, to derive the buckling limit

following a nonlinear loading path. A comparison of results from experiments,90

membrane and plate theories, and finite element simulations is presented in the

form of a general stability chart, which identifies the stability limits in terms
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of dimensionless parameters, for any membrane. Experimental measurements

and numerical simulations for the wrinkling mode transitions that occur during

spin down of a wrinkled membrane are presented. Finally, an application to a95

spinning solar power collecting membrane in space is described.

2. Experiments

2.1. Test Setup

An experimental setup that horizontally spins a membrane in a transparent

vacuum chamber, at controlled angular velocities of up to 1200 rpm, was de-100

veloped, as shown in Fig. 1. A uniform transverse load on the membrane was

provided by Earth’s gravity.

Figure 1: Schematic of test setup.

A flat, closed loop 90 Watt brushless motor with Hall sensors from Maxon,

model EC 90, with an ESCON 50/5, 4-Q servocontroller was used. The motor

voltage profile was prescribed though NI Signal Express and a digital-to-analog105

converter was used to input the profile to the controller. The rotation of the

hub was measured and found to closely follow the imposed profile, see Fig. 3.
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There were two main reasons for setting up the experiments inside a vacuum

chamber. First, it is difficult to spin up the membrane in air as it tends to

stick to the supporting plate. Second, the surrounding air would perturb the110

membrane equilibrium shape while the membrane is spinning, by dynamically

exciting it and creating flutter instabilities. Use of a custom made, transparent

acrylic chamber of size 125×103 cm−3 enabled illumination and imaging of the

membrane from the outside.

The chamber was positioned on a thick aluminum plate with a central, sealed115

hole for the leads connecting the controller to the motor. A roughing pump

from Welch provided a steady vacuum level of 0.03 atm, which is adequate to

avoid flutter. Renshaw et al (1994) derived an analytical model to estimate

the flutter limit for rotating disks in air, considering an infinite enclosure and

a hub to membrane ratio of 0.3. Based on those estimates and considering the120

dimensions of the present experiments, flutter should theoretically be avoided

even in the case of the thinnest membrane tested. In addition, buckling shapes

are stationary (in the rotating frame) while flutter-induced vibration causes

dynamic deflections. Hence, since all measurements of the membrane were in

the same rotating frame of reference, it was confirmed that buckling shapes had125

been measured. The full setup is shown in Fig. 2.

Stereo Digital Image Correlation (DIC), as implemented by Correlated So-

lutions, was used to measure the equilibrium shapes of the membranes. The

stereo DIC system consisted of two Point Grey Grasshopper cameras (GRAS-

50S5M-C) with a resolution of 2448 × 2048, 3.45 µm pixel size and a gain range130

between 0 and 24 dB. The lenses had a focal length of 12 mm and the stereo

angle was set at about 25◦. The cameras were held 70 cm above the chamber

to achieve the required field of view. The commercial software VIC-Snap was

used to acquire synchronized images of the membrane, at a specified rate, and

the software VIC-3D by Correlated Solutions was used to correlate the pairs of135

images. The largest membrane had a diameter of 40 cm and the field of view

was about 50 cm, corresponding to a pixel size of 200 µm. The out-of-plane

accuracy of the measurements can be estimated from the standard deviation
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Figure 2: Full test setup starting from input voltage to motor controller, lower right, to

measured 3D shape of spinning membrane, upper right.

value, 1σ, provided by Vic-3D. For all our measurements, 1σ < 0.04 px which,

taking into account the geometry of the setup, leads to an out-of-plane accuracy140

of about 40 µm. Note that this value is smaller than the smallest thickness of

the test membranes.

2 mm wide (10 px) speckles were marked on the membrane with black ink

and a roller rubber stamp after spraying the membrane with a thin layer of

white paint. The paint thickness was 10 µm and its effect on the buckling limit145

of the thinnest Kapton membrane can be quantified by assuming the density

of the paint to be equal to Kapton and its Young’s modulus to be negligible in

comparison to the Young’s modulus of Kapton. Hence, modeling the painted
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Kapton as a uniform isotropic membrane with a density of 1700 kg m−3 instead

of the actual density of 1420 kg m−3, the theory of Section 3 shows that the150

paint introduces an error of only 3% on the buckling speed and 5% on the wave

number.

In DIC, choosing a larger subset decreases the noise but also decreases the

spatial resolution of the measurement. Hence, a subset of 29 pixels (correspond-

ing to a square with side length of 0.58 cm) and a density of 7 pixels were chosen,155

providing 51,372 measurement points overall, corresponding to a spatial resolu-

tion of about 5 mm. The software parameters were set to: linear shape functions

within each subset, with Gaussian weights, 8-tap spline pixel interpolation, and

zero-normalized square difference minimization algorithm.

At the maximum angular velocity of 1,200 rpm the edge velocity of the160

membrane is 25 m s−1. To reduce blurring on the outer edge and achieve

sub-pixel resolution, the exposure time was set at 13 µs, which corresponds to

a motion of 160 µm (0.8 px) for the speckles on the edge of the membrane.

With these settings, no blurring was noticeable in the images, although the

measurement noise was greater at higher angular velocity and towards the edges165

of the membranes.

2.2. Results

Before starting an experiment, the membrane was attached at the center to a

rigid hub connected to the motor. Under these static conditions, the membrane

forms a smooth cylindrical shape resting on the plate supporting the motor.170

The test procedure consisted in spinning up the membrane to the maximum

angular velocity (1200 rpm); at this speed all tested membranes had reached a

fully axisymmetric shape. For the first two test samples (aluminum plates Al-13

and Al-20, see Table 1), the angular velocity was decreased in steps of 50 rpm.

Pairs of images were taken with the DIC cameras, after waiting 1 min after each175

step, to allow for any transient dynamic effects to dissipate. This sequence was

repeated until the shape was no longer axisymmetric. For the third test sample

(Kapton membrane Ka-20, see Table 1) the angular velocity was decreased at a
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uniform rate of 1 rpm s−1 and images were taken every 10 seconds (see Fig. 3).

Test membrane Al-13 Al-20 Ka-20

Young’s modulus E (GPa) 69 69 2.5

Poisson’s ratio ν 0.34 0.34 0.34

Density ρ (kg m−3) 2700 2700 1420

Thickness h (µm ) 152 152 50

Outer radius b (cm) 13 20 20

Inner radius a (cm) 1.3 2 2

Table 1: Properties and dimensions of three test membranes.
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Figure 3: Measured angular velocity of motor axis (hub angular velocity is 2
3

because of gears).

180

After completing these tests, the Vic3D software was used to obtain the

shape of the membrane at each angular velocity, after removal of the rigid body

components of the motion. For the aluminum membranes the wave number

n was small and could be estimated directly from the images. For the mem-

brane Ka-20, the experimentally obtained shapes were decomposed using the185

computed vibration mode shapes of the membrane as a basis. At all angular
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velocities a significant n = 0 component was measured, corresponding to the ax-

isymmetric, gravity induced deformation. Components in the range n = 1, . . . 6

were considered to be due to the initial non-flatness of the membrane. In ad-

dition, only deflections larger than the thickness of each tested membrane were190

considered to be due to buckling, as smaller deflections were attributed to noise

or imperfections. Thus, a membrane was considered to have buckled if a buck-

ling mode shape with amplitude greater than h and n ≥ 6 could be observed

An analysis of the membrane shapes at each angular velocity showed that at

a critical angular velocity the axisymmetric (pre-buckling) shape transitions to195

an n-fold symmetric buckled (wrinkled) shape. The wrinkling wave number n

depends on the specific properties of the membrane. At lower angular velocities

further transitions occur to buckled shapes with smaller values of n, as discussed

in more detail in Section 5.

It will be shown in Section 3 that, for given Poisson’s ratio and hub to200

outer radius ratio, this buckling problem is governed by two non-dimensional

parameters: the equivalent gravity and the equivalent angular velocity. The

three test membranes in Table 1 span a wide range of these two parameters;

their axisymmetric, pre-buckling and buckled shapes are shown in Fig. 4. Note

that the experimental pre-buckling shapes are not perfectly axisymmetric, due205

to geometric imperfections in the membranes.

Note that, due to imperfections and noise, several wave numbers can coexist

in a measured buckled shape. In order to identify the dominant wave number,

the measured shapes were decomposed using the computed vibration modes

shapes of the membrane as a basis, as explained earlier. Figure 5 is a plot of the210

amplitude corresponding to each value of n for decreasing angular velocity, for

the Kapton membrane. The critical velocities were found to be 1,100 rpm for

Al-13, 800 rpm for Al-20, and 793 rpm for Ka-20. The wrinkling wave numbers,

just after buckling, were n = 3 for Al-13, n = 3 for Al-20, and n = 12 for Ka-20.
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(a) Al-13, ω=1200 rpm. (b) Al-13, ω=1050 rpm.
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(c) Al-13, ω=950 rpm.

(d) Al-20, ω=1200 rpm. (e) Al-20, ω=750 rpm.
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(f) Al-20, ω=700 rpm.
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(i) Ka-20, ω=783 rpm.

Figure 4: Axisymmetric shapes (a, d, g), pre-buckling (b, e, h), and buckled (c,f,i) equilibrium

shapes of tested membranes. Deflection units are mm.

3. Analytical Solutions215

Consider an initially flat, circular membrane of uniform thickness h, outer

radius b and attached at the center to a rigid, circular hub of radius a. The

membrane has density ρ, Young’s modulus E and Poisson’s ratio ν. A polar

coordinate system r, θ is defined. The membrane is spun with angular velocity

ω = θ̇ around an axis perpendicular to the hub; a uniform distributed load220

q0 is applied in the direction of the spin axis; the deflection component of the

membrane in the axis direction is w at a radial distance r, as shown in Fig. 6. q0

corresponds to a normal pressure loading on the membrane, or it can represent

a gravity loading q0 = ρgh where g is the acceleration due to gravity.

Following Chen & Fang (2011), the following non-dimensional parameters
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Figure 5: Experimentally derived wave numbers for Ka-20 test sample, at ω =

855, 793 , and 783 rpm. The horizontal line h = 50 µm indicates the membrane thickness.

are defined:

r =
r̄

b
α =

a

b

w =
w̄

h
Φ =

Φ̄

D

Ω =

√
ρh

D
b2ω G =

b4

Dh
q0 (1)

where D = Eh3/12(1− ν2) is the flexural stiffness and Φ is a stress function.225

Note that r, w,Φ with overbars are dimensional quantities, whereas the non-

dimensional quantities without overbars will be used later in the analysis.

3.1. Membrane Theory

The membrane equations for a thin, spinning membrane (without any bend-

ing stiffness) under a transverse load were formulated by Simmonds (1962).

Having defined the loading parameter:

k =
16Eq20

(3 + ν)
3
h2ρ3b4ω6

(2)
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h

ω
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θ

Figure 6: Definition of geometry and loading.

Simmonds assumed that wrinkling occurs when the circumferential stress on

the outer edge transitions from tensile to compressive. He then showed that230

the critical value of k at which wrinkling occurs, kcrit, depends only on the

non-dimensional outer radius α, and on the Poisson’s ratio of the membrane.

kcrit has been plotted in Fig. 7 and more details are provided in the Appendix.

Figure 7: Variation of kcrit with α and ν.

Simmonds’ result can be expressed in terms of the dimensionless parameters

G and Ω defined in Eq. 1, and it can be shown that G is proportional to the
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cube of Ω:

G =

√
kcrit (α, ν) (3 + ν)

3

192 (1− ν2)
Ω3 (3)

3.2. Thin Plate Theory

A more detailed theory, first proposed by Nowinski (1964), includes the235

bending stiffness of the membrane and uses the von Kármán plate theory. In

this theory, the stability of the deflected membrane is related to the positive

definiteness of the stiffness operator. The membrane will buckle when at least

one eigenvalue reaches zero and the wrinkling wave number corresponds to the

waviness of the unstable mode.240

The geometrically nonlinear axisymmetric equilibrium equations of a spin-

ning plate, outlined in the next section, are perturbed to derive the eigenvalue

problem that is then solved for increasing angular velocities, considering a wide

range of gravity magnitude and a wide range of eigenmodes, until negative

eigenvalues are obtained.245

3.2.1. Nonlinear Equilibrium Equations

The governing equations for spinning membranes derived by Nowinski (1964)

and later summarized by Nayfeh (2000) are as follows:

ρh
∂2w̄

∂t̄2
+D∇4w̄ +

1

2
ρhω2r̄2∇2w̄ + ρhω2r̄

∂w̄

∂r̄
=

∂2w̄

∂r̄2

(
1

r̄

∂Φ̄

∂r̄
+

1

r̄2
∂2Φ̄

∂θ2

)
+
∂2Φ̄

∂r̄2

(
1

r̄

∂w̄

∂r̄
+

1

r̄2
∂2w̄

∂θ2

)
− 2

(
1

r̄

∂2Φ̄

∂r̄∂θ
− 1

r̄2
∂Φ̄

∂θ

)(
1

r̄

∂2w̄

∂r̄∂θ
− 1

r̄2
∂w̄

∂θ

)
+ q0 (r̄, θ, t̄) (4)

∇4Φ̄− 2 (1− ν) ρhω2 = Eh

[(
1

r̄

∂2w̄

∂r̄∂θ
− 1

r̄2
∂w̄

∂θ

)2

− ∂2w̄

∂r̄2

(
1

r̄

∂w̄

∂r̄
+

1

r̄2
∂2w̄

∂θ2

)]
(5)

Here, the natural frequencies of the in-plane modes of vibration are assumed

to be large compared to the frequencies of the transverse modes so that radial
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and circumferential accelerations (∂
2u
∂t2 and ∂2v

∂t2 ) can be neglected. Also, the

constant forcing term q0 has been added to Nowinsky’s equations.250

The boundary conditions at the clamped edge are:

w̄ = 0,
∂w̄

∂r̄
= 0, u = 0, and v = 0 (6)

The mid-plane strains are related to the transverse displacement w, the radial

displacement u, and the circumferential displacement v by:

er =
∂u

∂r̄
+

1

2

(
∂w̄

∂r̄

)2

(7)

eθ =
u

r̄
+

1

r̄

∂v

∂θ
+

1

2r̄2

(
∂w̄

∂θ

)2

(8)

erθ =
1

r̄

∂u

∂θ
+
∂v

∂r̄
− v

r̄
+

1

r̄

∂w̄

∂r̄

∂w̄

∂θ
(9)

It follows that:

eθ = 0, and
∂

∂r̄
(r̄er)− er −

∂

∂θ
(erθ) = 0 (10)

From Eq. 10 the following conditions on the displacements u, v are obtained, in

terms of the stress function:

∂2Φ̄

∂r̄2
− ν

(
1

r̄

∂Φ̄

∂r̄
+

1

r̄2
∂2Φ̄

∂θ2

)
− (1− ν)

2
ω2r̄2 = 0

∂3Φ̄

∂r̄3
+

1

r̄

∂2Φ̄

∂r̄2
− 1

r̄2
∂Φ̄

∂r̄
+

2 + ν

r̄2
∂3Φ̄

∂r̄∂θ2
−3 + ν

r̄3
∂2Φ̄

∂θ2

− (1− ν)ω2r̄ = 0 (11)

At the free edge the boundary conditions are:

Nr = 0, Nrθ = 0, Mr = 0, and Qr +
1

r̄

∂Mrθ

∂θ
= 0 (12)

The in-plane forces are related to Φ̄ by:

Nr =
1

r̄

∂Φ̄

∂r̄
+

1

r̄2
∂2Φ̄

∂θ2
− 1

2
ρhω2r̄2 (13)

Nθ =
∂2Φ̄

∂r̄2
− 1

2
ρhω2r̄2 (14)

Nrθ = −1

r̄

∂2Φ̄

∂r̄∂θ
+

1

r̄2
∂Φ̄

∂θ
(15)
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The moments and traverse shear forces are related to w by:

Mr = −D
(
∂2w̄

∂r̄2
+
ν

r̄

∂w̄

∂r̄
+

ν

r̄2
∂2w̄

∂θ2

)
(16)

Mθ = −D
(

1

r̄

∂w̄

∂r̄
+

1

r̄2
∂2w̄

∂θ2
+ ν

∂2w̄

∂r̄2

)
(17)

Mrθ = −D (1− ν)

(
1

r̄

∂2w̄

∂r̄∂θ
− 1

r̄2
∂w̄

∂θ

)
(18)

Qr = −D ∂

∂r̄

(
∇2w̄

)
(19)

Qθ = −D
r̄

∂

∂θ

(
∇2w̄

)
(20)

Combining Eqs 13, 15, 16, 18, and 19 with Eq 12 gives:

∂

∂r̄

(
∇2w̄

)
+

(1− ν)

r̄2
∂2

∂θ2

(
∂w̄

∂r̄
− w̄

r̄

)
= 0

∂2w̄

∂r̄2
+ ν

(
1

r̄

∂w̄

∂r̄
+

1

r̄2
∂2w̄

∂θ2

)
= 0

1

r̄

∂Φ̄

∂r̄
+

1

r̄2
∂2Φ̄

∂θ2
− 1

2
ω2r̄2 = 0

−1

r̄

∂2Φ̄

∂r̄∂θ
+

1

r̄2
∂Φ̄

∂θ
= 0 (21)

Introducing the non-dimensional parameters in Eq. 1, Eqs 4 and 5 can be

written in the form:

∇4weq + Ω2

(
1

2
r2∇2weq + r

∂weq
∂r

)
− L(weq,Φeq) = G

∇4Φeq + 6
(
1− ν2

)
L(weq, weq)− 2 (1− ν) Ω2 = 0 (22)

where the operator L is defined as:

L(w,Φ) =
∂2w

∂r2

(
1

r

∂Φ

∂r
+

1

r2
∂2Φ

∂θ2

)
+
∂2Φ

∂r2

(
1

r

∂w

∂r
+

1

r2
∂2w

∂θ2

)
− 2

(
1

r

∂2Φ

∂r∂θ
− 1

r2
∂Φ

∂θ

)(
1

r

∂2w

∂r∂θ
− 1

r2
∂w

∂θ

)
(23)

The non-dimensional boundary conditions can be obtained from Eqs 6, 11,

and 21, by replacing ω by its dimensionless expression Ω.

The axisymmetric equilibrium shape of the membrane can be obtained from

a subset of the above equations. The fourth equation in Eq. 21 is identically
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satisfied and can be neglected. The remaining Eqs 21 - 22 define a boundary255

value problem consisting of two coupled 4th order ODEs that can be solved in

Matlab using the built-in function bvp4c.

3.2.2. Buckling Equations

To derive the eigenvalue problem, a small perturbation (buckling mode),

w, from the axisymmetric equilibrium configuration is considered. Substituting

this perturbation into Eq. 22 and linearizing provides the stiffness operator near

the axisymmetric equilibrium. The eigenvalues λ and eigenmodes (w,Φ) of the

stiffness operator are the solutions of the boundary value problem:

−λw +∇4w + Ω2

(
1

2
r2∇2w + r

∂w

∂r

)
= L(w,Φeq(G,Ω)) + L(weq(G,Ω),Φ)

∇4Φ = −12
(
1− ν2

)
L(weq(G,Ω), w) (24)

The boundary conditions for the buckling mode are the same as the conditions

on weq in Eqs 6 - 21, only replacing Ω with zero. Note that this approach260

is different than that of Chen & Fang (2011), where the centrifugal effect was

separated from the main equation (see Eq. 17 of Chen & Fang (2011)).

The buckling modes are expressed by separation of variables:

w(r, θ) = W (r) exp(inθ)

Φ(r, θ) = Φ(r) exp(inθ) (25)

where n is an integer (due to periodicity in θ) and i the imaginary unit. The

mode shapes end up being real valued.

3.3. Results265

When G is increased, the edge displacement provided by the axisymmetric

solution increases nonlinearly up to buckling. Its variation for Ω = 200 has been

plotted in Fig. 8a. The variation in the critical edge deflection on the point of

buckling, for increasing Ω, has been plotted in Fig. 8b. Note that the trend of
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Figure 8: Axisymmetric equilibrium of spinning membranes.

weq(1) is close to linear, but the deflection at Ω = 0 (static circular plate) is270

0.80h, whereas at Ω = 200 its value is 55h.

For membranes with given values of α and ν, and for Ω = 64, the eigenvalues

were computed for increasing G until the lowest eigenvalue became equal to zero,

thus defining the condition G = Gcrit. The same Matlab function bvp4c was

used but this time an initial guess for both the shape function and the eigenvalue,275

and an additional boundary condition on the shape function (W (1) = 1, for

example) had to be provided. The results from the previous increment in G

were used as initial guess for the next increment.

The variation of the eigenvalues for increasing values of G has been plotted in

18



Fig. 9 for modes with one nodal circle and several values of n. In this example,280

the membrane geometry was set to α = 0.1, the Poisson’s ratio to ν = 0.34 and

the angular velocity to Ω = 64.

n=0

n=1

G

5 5.5 6 6.5 7 7.5 8

×10
4

10
3

10
4

10
5

n=2

n=15

n=0

n=1

Gcrit

Figure 9: Variation of eigenvalues with G, for Ω=64, α=0.1, and ν=0.34. Note that Gcrit =

6.6 × 104 and ncrit = 10.

In this figure, note that the eigenvalues corresponding to n = 0, 1 increase

monotonically with Ω: these eigenvalues never become zero. For all other modes,

the corresponding eigenvalue reaches zero at some value of G, hence providing285

the buckling load associated with that particular value of n. For each value of

Ω, the critical value of G corresponds to the lowest intersection with the axis

λ = 0. Specifically, Gcrit = 6.6× 104 and ncrit = 10.

Figure 10 shows the two additional cases Ω = 0, Gcrit = 40 and n = 2; and

Ω = 200, Gcrit = 1.6 × 106 and n = 22. Note that for larger Ω’s the critical290

wave number occurs when there is an inversion in the trend of G for increasing

n.

The critical wave numbers for two particular membrane geometries, α =

0.1, 0.7 (with ν = 0.34), spinning at increasing angular velocities have been

plotted in Fig. 11, together with the corresponding buckling mode shape. Note295

that the waviness of the critical buckling mode increases with increasing Ω.
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Figure 10: Eigenvalue variation for different eigenmodes.

3.4. Parametric Analysis

Results for a wide range of Ω and G but fixed α and ν have been presented

already. This section studies the influence of α and ν on the stability of spinning

membranes.300

The finite element software Abaqus/Standard was used for this analysis.
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Figure 11: Variation of critical mode wave number and mode shapes with normalized angular

velocity, for ν = 0.34, and for α=0.1, and α = 0.7.

Instead of choosing the built-in buckling option, which provides a linear pertur-

bation analysis that however does not account for nonlinearity of the loading

path, a Python script was written to compute the critical loads and wave num-

bers for a wide range of values of G and Ω.305

The membrane was modeled as a linear elastic material with the properties

of Kapton film, simulated with S4R elements: 4-node doubly curved thin shell

elements with reduced integration, hourglass control, finite membrane strains,

and 5 integration points through the thickness. These shell elements are nu-

merically efficient, and based on the Kirchhoff shell theory. The central hub310
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was modeled by rigidly constraining the nodes along the inner edge of the mem-

brane. It is important to define a fine mesh along the outer edge, as wrinkling

is triggered by compression along this edge and an insufficiently fine mesh could

cause the wrinkles to become localized. Hence, a dense mesh was defined, with

1000 nodes on the outer edge and 1000α on the inner edge. The simulation was315

run in two steps. First, a nonlinear static step, to evaluate the axisymmetric

equilibrium of the membrane under centrifugal forces and gravity. Second, a

frequency analysis, to determine the gravity load that leads to the first zero

eigenvalue for each Ω. A secant method algorithm was used. Ω was increased in

small increments and the results of the previous Ω were used as initial guess for320

the next search. A similar technique would be suitable to estimate the buckling

load for any problem that involves a nonlinear loading path.

The wrinkle wave number was automatically computed using the Fourier

transform of the outer edge deflection. The results from this analysis and the

previous Matlab solution were compared for the case α=0.1 and ν=0.34 and325

gave the exact same results over the full range Ω=[0...200].

The master curves shown in Fig. 12 were obtained by running the Python

script. Figure 12a and Fig. 12b show the influence of α (for ν=0.34) and ν for

(α=0.1) on Gcrit. They show that ν has little influence on the critical load,

while increasing α has the effect of increasing Gcrit for given Ω, or decreasing330

Ωcrit for given G. Figure 12c shows that increasing α at constant ν has the

effect of increasing the wave number as well, but at higher Ω this effect tends

to disappear. Figure 12d shows the influence of ν on the critical wave number,

for the case α=0.1. It shows that increasing the Poisson’s ratio ν has the effect

of increasing the wave number, for a given Ω.335

3.5. Discussion

A physical interpretation of the buckling behavior of thin membranes can

be obtained from simple energy arguments. Consider a rigid bar pinned at the

top and loaded by gravity. If the support rotates at uniform angular velocity

about a vertical axis, the bar is in equilibrium at an angle to the vertical. The340
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Figure 12: Variation of critical loads (G,Ω) and wrinkling wave number, with α for ν=0.34,

and with ν for α=0.1 .

value of this angle is determined by the balance between gravity and centrifugal

(D’Alembert) forces. Next, consider a thin circular membrane, held at the

center and spinning around a vertical axis through this point. In analogy to the

rigid bar, it wants to take up an axisymmetric, near-conical configuration, which

provides stationary potential energy due to centrifugal force and gravity. This345

configuration requires the outer perimeter of the membrane to become shorter,

and this shortening induces in-plane strain energy in the membrane. When this

energy is too high, the membrane can find an alternative equilibrium shape

around the cone, by creating a wavy configuration with lower energy. When the

membrane is thin the centrifugal force also creates a tensioning hoop stress that350

releases some of the compression induced by the cone deflection. This means

that at high Ω we expect higher deflection before buckling, as confirmed by

Fig. 8b. The waves in the buckled configuration increase the bending energy
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of the membrane while releasing some of the in-plane energy associated with

shortening the outer perimeter. Because the bending energy of the wrinkled355

membrane increases with both bending stiffness and wave number, membranes

with higher bending stiffness need fewer waves to achieve the same amount of

internal energy, which explains why at lower Ω the wave number is smaller.

In Fig. 9, it is important to note that close to Gcrit the eigenvalue vs. loading

curves become tightly bunched and hence there are many values of n within a360

small range of Gcrit. Therefore, it can be expected that it will be difficult to

observe experimentally the predicted buckling mode.

4. Comparison of Plate Theory with Membrane Theory, Finite Ele-

ment Simulations, and Experiments

Figure 13 shows a comparison of the results from the present theory with365

the membrane theory by Simmonds (1962), with nonlinear finite element sim-

ulations, and with the experimental results presented in Section 2. According

to pure membrane theory, Gcrit is proportional to Ω3, and the coefficient of

proportionality decreases with both α and ν (Eq. 3). This theory does not re-

solve the waviness of the wrinkled mode shape. Figure 13 shows that the two370

theories converge at high values of Ω, which is to be expected since the effect of

the bending stiffness of the membrane tends to become negligible.

Nonlinear static finite element simulations similar to the simulations de-

scribed in Section 3.4 were carried out. For each angular velocity the critical

load was estimated in two steps. First, a centrifugal force was statically ap-375

plied to the membrane. Then, a gravity load was added in small increments,

in a second static step. The membrane was assumed to have buckled once the

amplitude of its outer edge waviness became greater than twice the thickness

h of the membrane. The results of this analysis have been plotted with black

hollow circles in Fig. 13, and they practically coincide with the results from the380

plate theory, across the full range of Ω. It is interesting to note that even if the

von Kármán equations are an approximation to the three-dimensional nonlin-
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Figure 13: Comparison between buckling theory, membrane theory, finite element simulations

and experiments.

ear elastic model, and are normally assumed to be valid for deflections limited

to the plate thickness, in the present case they give excellent results for much

larger deflections. For Ω = 10, 200 the edge deflections just before buckling are385

respectively 4.5h, 55 h.

Also plotted, in green in Fig. 13, are the critical pairs (G,Ω) for the three ex-

periments presented in Section 2. These results are also in excellent agreement

with the critical angular velocities from the plate theory. However, the theoret-

ical buckling wave numbers are 3, 4, and 18 respectively for Al-13, Al-20, and390

Ka-20, whereas the experiments gave the values 3, 3, and 12 (see Table 2). As

noticed in Section 3.5, the buckling limits tend to become quite close at higher

values of Ω, and it is conjectured that this effect, in combination with initial

curvature of the Kapton membrane, may explain why the theoretically obtained

wave number is less accurate for the dimensions of the membrane Ka-20.395
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Test membrane Al-13 Al-20 Ka-20

n experiment 3 3 12

n theory 3 4 18

ωcrit experiment (rpm) 1100 800 783

ωcrit Abaqus (rpm) 1050 921 730

Table 2: Comparison between experiments and theory.

5. Buckling Mode Transitions During Spin Down

A more detailed study was carried out of the experimentally observed changes

in wrinkled shapes when the angular velocity is decreased below the critical an-

gular velocity.

A range of selected shapes observed in the experiments is shown in Fig. 14.400

A numerical simulation of the spin-down process for the membrane Ka-20,

assumed to be initially flat, was performed with Abaqus/Standard. The finite

element model was similar to the one described in Section 3.4, but this time

an Euler-Backward integration scheme was used to compute quasi-statically the

changes in the shape of the membrane as the centrifugal loading was decreased to405

simulate the membrane spin down. The accelerations due to changes in angular

velocity and Coriolis effects were neglected. The simulation was performed in

three steps. First, the centrifugal forces corresponding to a spin rate of 1000

rpm, were applied in a single, nonlinear static step. Once the membrane had

become stiff enough to sustain gravity, a gravity acceleration of amplitude 9.81410

m s−2 was applied in a nonlinear static step. Finally, the centrifugal forces

were linearly decreased to zero, in increments corresponding to angular velocity

changes of 0.5 rpm. Three computed equilibrium shapes are shown in Fig. 15.

A comparison of simulation results and experiments, for the membrane Ka-

20, is presented in Fig. 16 (red and yellow plots, respectively). Although there415

is a significant difference in the initial buckling mode wave number for this

membrane, as already noticed in Section 4, it is interesting to note that the
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Figure 14: Selected spin-down shapes of test membranes. Deflection units are mm.

wave numbers predicted by the simulation decrease rather rapidly, and become

quite close to the experimentally observed trend for ω < 600 rpm.

The numerical simulation of the actual spin down of membrane Ka-20 has420

been compared to the plate buckling theory. As the theory only describes the

first transition from axisymmetric to wavy shape, one can only compare the first

critical angular velocity (i.e. the highest angular velocity at which the membrane

loses its axisymmetric shape) and the waviness of the first buckled shape during

the simulated spin down. The comparison shows that buckling happens at 727425

rpm and n=18. These values are very close to the theoretical values of 736 rpm

and n=18, and thus there is an excellent match between theory and numerical

simulations. Also note that the remaining buckling mode transitions do not

match. An analysis of these mode transitions was carried out by Chen & Fang

(2011).430
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6. Application to Spinning Spacecraft

Consider a circular membrane with a perfectly absorbent surface, spinning

in geostationary orbit and pointed to the sun. It provides an ideal photovoltaic

surface to gather solar energy.

Its radius is r = 10 m, the thickness h = 100 µm, and the Young’s mod-435

ulus and Poisson’s ratio are identical to Kapton (see Table 1). This choice is

made for simplicity, since the photovoltaic material has not been specified. The
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magnitude of the solar pressure in geostationary orbit is q0 = 4.57× 10−6 Pa.

For these properties, G = 1.2× 105 and then the minimum non-dimensional

rotation speed to avoid buckling is Ωcrit=79, obtained from Fig. 13. This value440

corresponds to ω = 1.3 rpm.

7. Conclusion

Transverse uniform body forces acting on a spinning membrane induce de-

flections much greater than the membrane thickness, and these deflections result

in compressive hoop stresses around the edge of the membrane. These stresses445

can buckle the membrane, forming a series of azimuthal wrinkles.

A general formulation of the problem has been presented, in terms of the

dimensionless load G and dimensionless angular velocity Ω, defined in Eq. 1, and

the critical values of G and Ω have been plotted in Fig. 13. For Ω < 1, Gcrit

depends only on the bending stiffness of the membrane (bending dominated450

behavior), and hence it is constant with G. For Ω > 10, the results of the

membrane theory are recovered, confirming that wrinkling depends only on the

mid-plane stress, and hence G increases with the cube of Ω (in-plane dominated

behavior). Both of these specific numerical limits increase if the ratio between

inner and outer radius of the membrane, α, is increased. Figure 13 is a useful455

chart from which one can determine the critical values of G and Ω, and also if

buckling is governed by membrane or flexural behavior. If buckling is governed

by flexural behavior, G is independent of Ω.

The buckling eigenvalues and the corresponding eigenmodes of the spinning

membrane have been plotted for a specific value of Ω in Fig. 9. The figure460

shows that all eigenvalues for n ≥ 2 decrease when Ω increases. The wrinkling

mode of the membrane is determined by the eigenvalue that reaches zero first.

The variation of the azimuthal wave number of the critical buckling mode for

a specific value of Ω has been plotted in Fig. 11. It has been observed, both

in experiments and through numerical simulations, that the wrinkling mode465

changes during spin down of the membrane. This behavior, plotted in Fig. 16,
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qualitatively resembles the critical mode variation corresponding to different Ω.

APPENDIX

Following Simmonds (1962), kcrit can be obtained by solving a boundary

value problem of the second-order ODE

d2f

dξ2
+

[
k (1− ξ)2

f2

]
+ 2 = 0 (26)

with boundary conditions

f(1) = 0 (27)

f(α)− 2α2

1 + ν

(
df

dξ

∣∣∣
ξ=α

+
4α2

3 + ν

)
= 0 (28)

The ODE is solved for increasing values of k, until the wrinkling criterion

2
df

dr

∣∣∣
r=1

+
8

3 + ν
= 0 (29)

is satisfied.
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