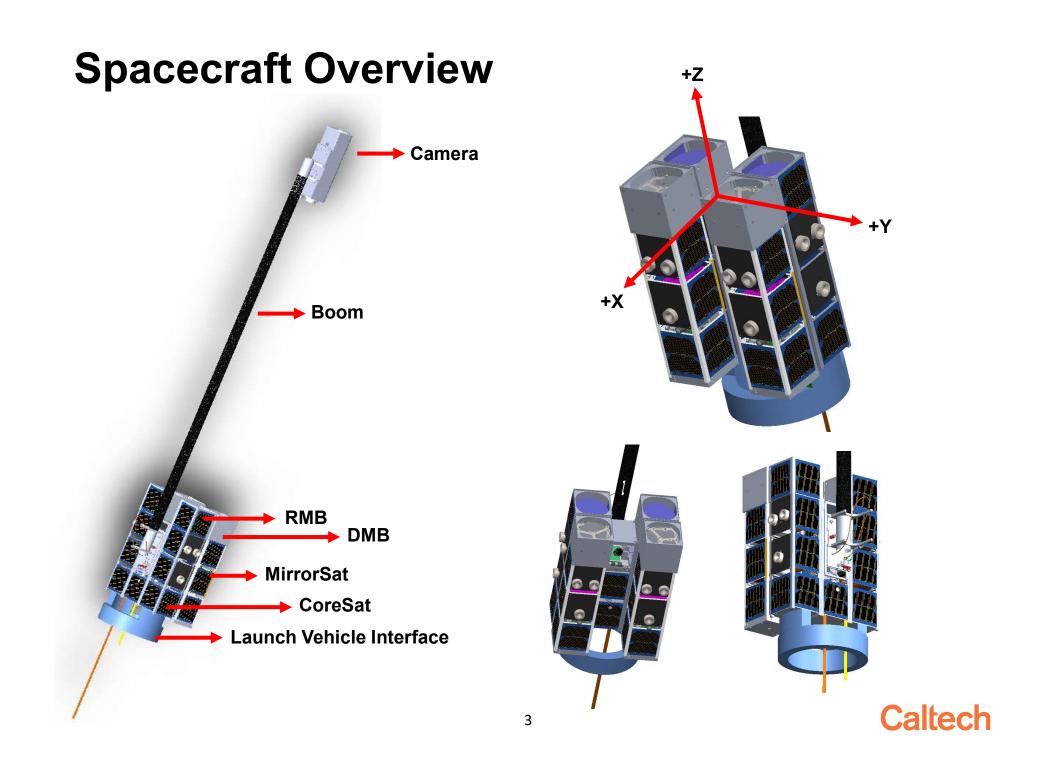
space structures laboratory

CoreSat – Conceptual Design Review


Fabien Royer, Thibaud Talon, Maria Sakovsky, Daniel Pastor Moreno, Marcello Gori, Ashish Goel January 3rd, 2017

Outline

- Requirements and System Overview
- Sub-system descriptions
 - Avionics
 - Structures
 - ADACS
 - EPS
 - RF/Comms.
 - Rendezvous and docking
- Integration and test plan
- Spacecraft operations
- Future plan (AE105 projects)

Orbit and Deployment Chronology

Piggy-back on PSLV: LEO orbit, h<1000km, as low as possible

t = 0	LaunchDetach from launcher and orbit verification	Ļ
2 orbits	 Turn on satellite: - turn on critical systems switch from battery to solar panels 	Ţ
4 orbits	 Verify and stabilize satellite: - power, communications spin rate, temperature, attitude camera (dark measurement) 	
8 orbits	 Telescope deployement: - 1st stage boom deployment - 2nd stage boom deployment - Unrestrain DM1, DM2, RM1, RM2 	
9 orbits	 Adjust and stabilize satellite attitude Point spacecraft to first target 	

Orbit and Deployment Chronology

9 orbit	 Image stars, Moon and Earth with reference mirrors (0.3° FoV) Check ADCS drift requirement (0.1° 3σ)
10-12 orbits	 Begin calibration for the fixed+deformable mirrors compact configuration with target stars. Image stars, Moon and Earth in full compact configuration
13-14 orbit	 (Fire MirrorSat 1 frangibolt) (Spin reaction wheels of the MirrorSat 1) (Switch off MirrorSat 1 ADCS and) undock MirrorSat 1 Redock MirrorSat 1 on the same CoreSat face and redo imaging Undock MirrorSat 1 Carry out CoreSat 90° spin and capture MirrorSat 1
14-15 orbit	 •(Fire MirrorSat 2 frangibolt) •(Spin reaction wheels of the MirrorSat 2) •(Switch off MirrorSat 2 ADCS and) undock MirrorSat 2 •Redock MirrorSat 2 on the same CoreSat face and redo imaging •Undock MirrorSat 2 •Carry out CoreSat 90° spin and capture MirrorSat 2

Orbit and Deployment Chronology

15 orbit	 Check docking success and attitude
16 orbits	 Begin calibration for the fixed+deformable mirrors wide configuration with target stars. Image stars, Moon and Earth in full wide configuration
17-18 orbits	•Turn on ADCS of MirrorSat 1 •Undock MirrorSat 1 •Fire thruster of MirrorSat 1 and go away
18.5 orbit	 Redock MirrorSat 1 using LIDAR and nadir sensors
19-20	•Turn on ADCS of MirrorSat 2 •Undock MirrorSat 2
orbits	•Fire thruster of MirrorSat 2 and go away
20.5 orbit	•Redock MirrorSat 2 using LIDAR and nadir sensors

System Engineering

CoreSat Requirements

ADCS

- **Pointing accuracy:** error < 0.1° 3σ all axes
- Attitude stability: drift < 0.02° 3σ for 600s all axes during payload operation
- Slew rate: > 3° /s 3σ during rendez-vous maneuvers
- **Pointing direction:** able to operate with Sun > 20° off optical (Z) axis

Directly linked to:

Mission objective 1: 1 star image, 80% encircled energy Mission objective 2: autonomous docking and reconfiguration

Communication with Ground

•Frequency range: VHF U/L (1.2 kbps) & UHF D/L (9.6 kbps)

System Engineering

CoreSat Requirements, Interfaces

Payload/CoreSat Interface			
	Mechanical	Electrical	
Camera	Provide hold-downs for launch	5W at 5V power and I2C com (image data)	
Boom	Support kinematic mount	Separation device: >2V and >1.5 A	
Reference mirror boxes	Support reference mirror boxes	2 W power at 5V	

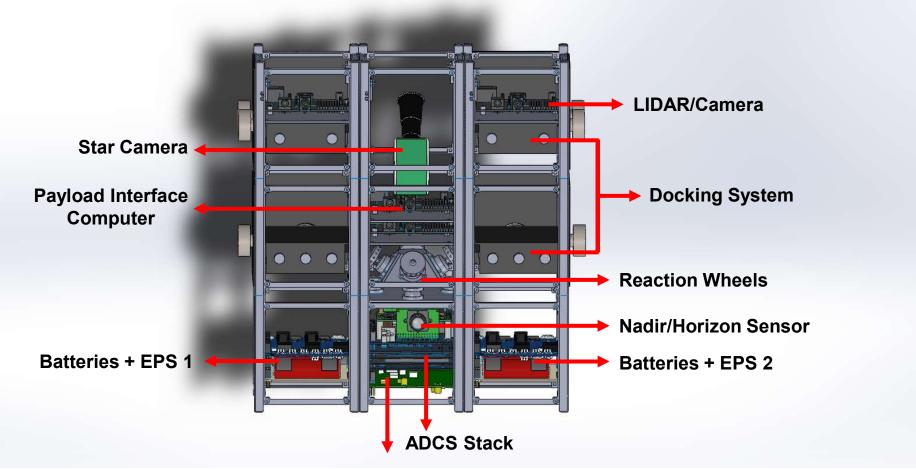
Launcher/CoreSat Interface

•Accomodation: PSLV compatible launch interface

System Engineering

CoreSat Requirements, Interfaces

MirrorSats/CoreSat Interface


Mechanical	Electrical
Provide hold-down for launch	5W at 5V power to both docked MirrorSats
Provide CoreSat docking mechanism	Communication with MirrorSats via Wi-Fi
	Independently sense MirrorSats during RDV/docking

System engineering team (near future plan):

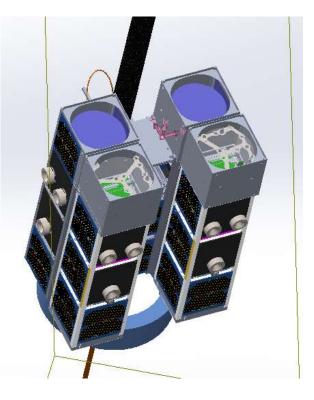
Update and review of interface control document for the CoreSat.

CoreSat Overview

UHF/VHF Radio

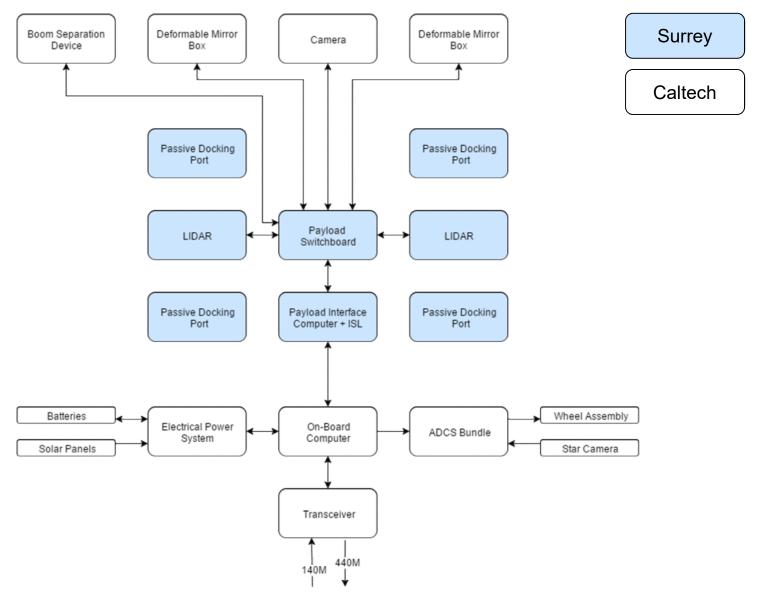
<u>Notes</u>

- Star Camera mounted at 45° from z-axis
- Sun-sensor and nadir sensor to be provided unobstructed view between solar panels
- Not available for RDV

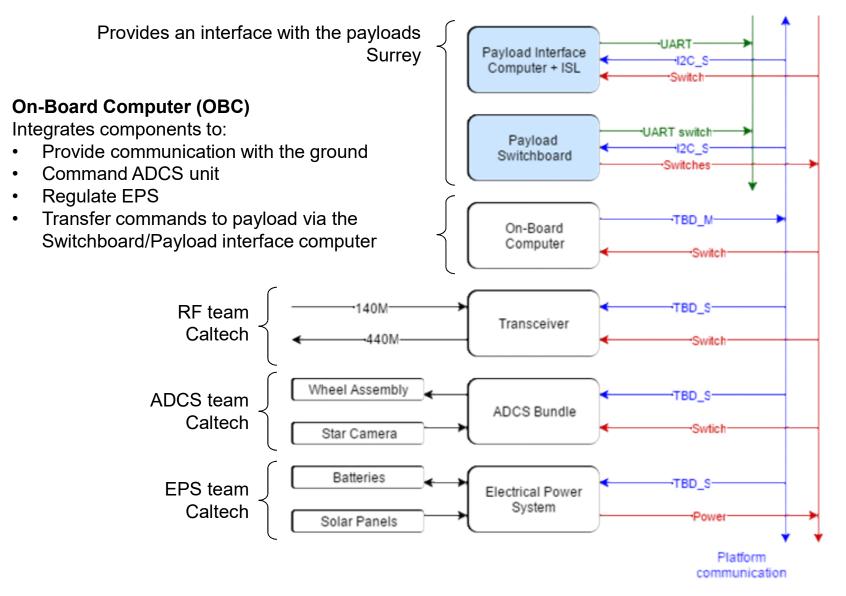

Not Shown

- Frangibolts
- Antenna deployment mechanism
- GPS antenna

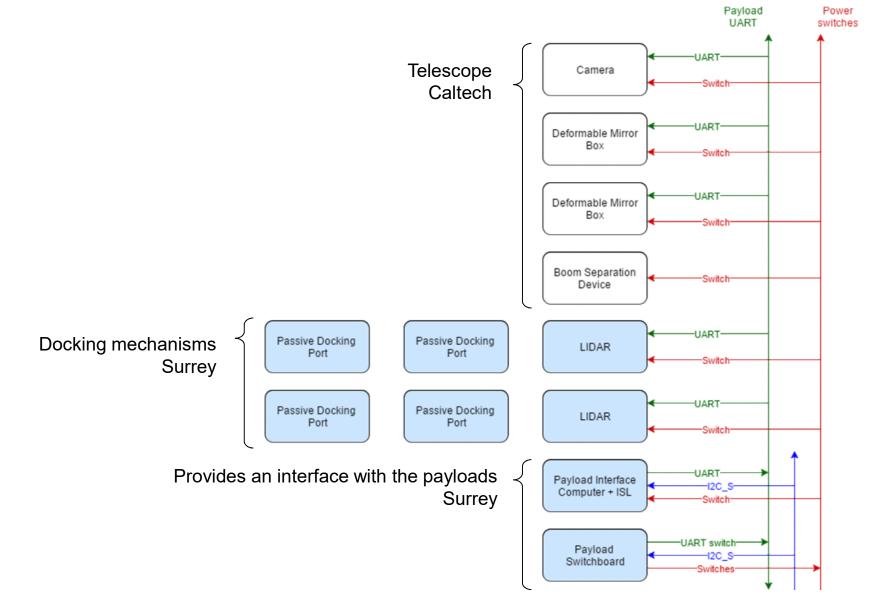
Mass Properties


Sub-System	Quantity	Mass (g)
Chassis	1	260
1U Solar Panels	19	313
Surface Structural Panels	12	511
Docking Units	4	1700
LIDAR/Camera (RDV electronics)	2	400
ADCS Stack	1	300
Reaction Wheels	1	1000
Star Camera	1	166
EPS + Batteries	2	900
UHF/VHF Radio	1	85
Payload Interface Board	1	200
UHF, VHF Antennas and Deployment Mechanism	1	250
Launch Interface	1	600
Launch Interface Mounts	2	300
CoreSat Total		6985
MirrorSat	2	12200
Camera	1	3500
Rigid Mirror Box	2	1000
Deformable Mirror Box	2	800
Boom + Camera Interface + CoreSat Interface	1	600
Total System Mass		25085

	8.469	0.003	-0.406	
I =	8.469 0.003 -0.406	8.365	0.009	$kg.m^2$
	-0.406	0.009	0.354	



Avionics – Block Diagram



Avionics – Hardware Diagram

Avionics – Hardware Diagram

Avionics – Software

- Software for Payload Interface Computer provided by Surrey
- Software for OBC

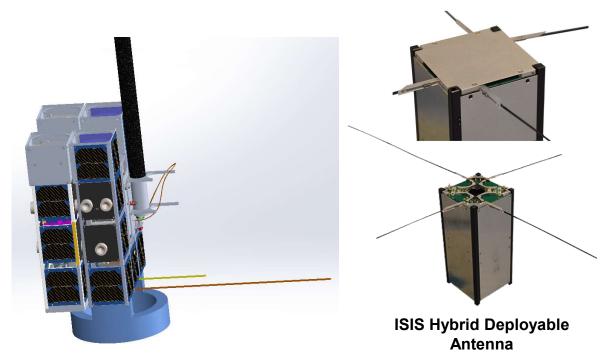
- Each payload (ADCS, EPS, RF/Comms, Payload Interface Computer) defines its commands and schemes to operate it to write **Drivers**
- System engineering team defines the modes of operation and the state of the payloads for each
- Scheduler
 - Checks the functionality of the satellite and triggers safe mode if needed
 - Checks for incoming commands from the ground and feedback to be sent
 - Sends commands to different payloads according to incoming messages

CoreSat Structure

Fabrication plan

- Preliminary design of custom chassis based on current information of internal modules, docking system and volume requirements
- Adjust the design to the modifications of other subsystems occurring in the meantime
- CAD design of the structure and FEM design for modal analysis

Key design considerations


- Compatible with CubeSat form-factor for various sub-systems
- Allows maximum area for solar panels
- Aperture for nadir/horizon sensors, sun-sensors, star camera
- Clearances for avoiding interference during docking

Antenna and Launch Vehicle Interface

Antenna mounting

- Better orientation with ground station
- No interference with MirrorSats
- Deployment mechanism fits in the gap between the launch vehicle interface and the chassis

ISRO's IBL230V2 Mounting diameter: 230 mm Mass: 0.6 kg

Launch Vehicle Interface

- Select launch vehicle interface (IBL230V2)
- Select/design the mounting part based on clearance requirements

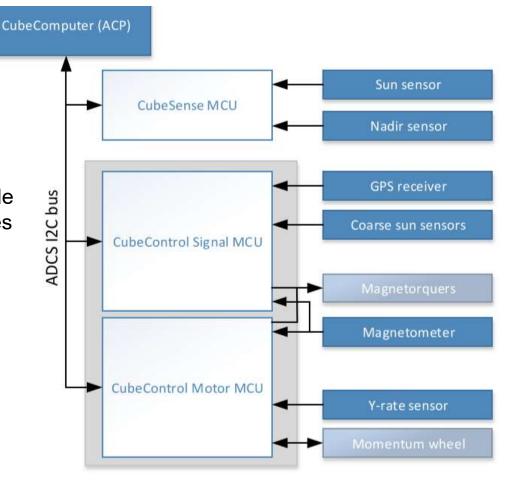
ADCS Requirements

3 main requirements:

- Pointing accuracy: pointing error all axes < 0.1° 3σ
- Attitude stability: angular drift < 0.02°/s for 600s during payload operations
- RDV manoeuvers: slew rate > 3°/s

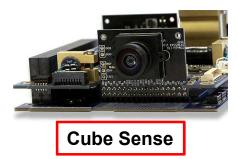
Stellenbosch System Overview

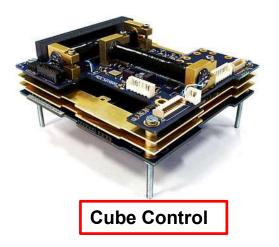
Sensors

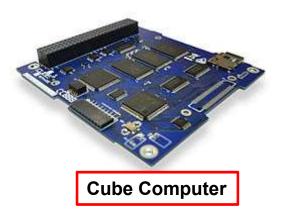

- Coarse sun sensors, coarse attitude
- Sun sensor, attitude
- Nadir sensor, coarse attitude
- Rate gyro, angular rate
- Magnetometer (boom deployed), attitude
- Star camera, precision attitude and rates
- GPS receiver, position

Actuators

- Magnetotorquer (x3)
- Momemtum wheels (x3)


Computers


- CubeComputer
- CubeSense MCU
- CubeControl Signal MCU
- CubeControl Motor MCU



Stellenbosch System Overview

Sinclair Wheel

- CubeComputer
 - 32-bit ARM Cortex M3
 - Low power (200 mW @ 48 MHz)
 - Radiation tolerant
 - FPGA-based EDAC
 - SEL protection circuits

CubeCamera (no details available)

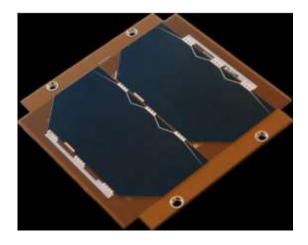
• Similar camera flown on SumbandilaSat

Disturbance Torques

- Main External Torques
 - Gravity Gradient

$$T_g \approx \frac{3\mu}{2R^3} \Phi T_z^6 N m_y$$

• Atmospheric Drag


$$T_a \approx \left(2 \cdot \frac{1}{2} - \frac{1}{2} \right) \frac{d}{d} = \frac{1}{2} \sqrt{2} \delta a v^2$$

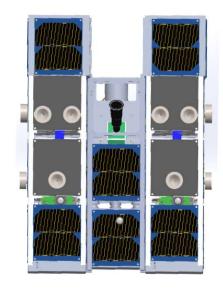
- Magnetic $T_m \approx A \mathcal{B} \cdot 10^{-6} N m$
- Solar Pressure $T_{srp} \approx (0, 2-1, 0) \frac{F_s}{C} Mag(1+\rho)$
- Internal Disturbances
 - Reaction Wheels Vibrations

EPS – Solar Panels

- COTS GOMSpace NanoPower P110 series with AzurSpace 3G30A triple junction cells or
- CubeSat Kit PMDSAS solar panels with SpectroLab UTJ cells
- 2.35 W orbit-averaged power (OAP) per panel in 6am-6pm polar sun-synchronous orbit
- Possible strategy: Whenever not in science phase and not in eclipse, orient –X face towards the sun (OAP: 21.15 W, assuming solar panels on the mirror boxes, narrow config.)
- MirrorSats receive power only in 'wide' configuration (total OAP: 35.25 W)
- In the 'narrow' configuration, CoreSat transfers power to the MirrorSats
- Panel deployment possible from –X

Deployable Panels

- 45 deg angle to avoid docking interference
- Narrow: 31.1 W
- Wide: 35.25 W


- 45 deg angle to avoid blocking RMB
- Narrow: 26.4 W
- Wide: 40.5 W



Power Output from Other Faces

+X	Narrow	Wide
CoreSat + MirrorSat	14.1/23.5 W	28.2/37.6 W
With extra 3U units	14.1/23.5 W	28.2/37.6 W

+Y/-Y	Narrow	Wide
CoreSat + MirrorSat	14.1 W	4.7/9.4 W
With extra 3U units	21.15 W	11.75/16.45 W

Power Budget

Sub-System	Peak Power (W)	Qty.	Total Peak Power (W)
MirrorSat Charging (MC)	5	2	10
ADCS (stack + wheels, no GPS)	8	1	8
Star Camera (SC)	1	1	1
Frangibolts	9	4 (1)	9
OBC1	3.5	2	7
Camera	5	1	5
Rigid Mirror Payload	2	2	4
Payload Interface Computer (PIC)	7	1	7
WiFi	1	2	2
LIDAR + LEDs	2.5	2 (1)	2.5
Comms. Radio	2.4	1	2.4
EPS (95% eff.)	0.75	1	1.5
Boom Deployment	4	1	4

Operating Modes

- 1. Boom deployment
- 2. Detumbling
- 3. Frangibolt release
- 4. Nominal consumption
- 5. Ground communication
- 6. Science operations
- 7. Docking maneuvers

Nominal Consumption: EPS + ADCS = 9.5 W Science Operation Peak: EPS + ADCS + PIC + Camera + RMP + SC = 26.5 W Docking Peak: EPS + ADCS + PIC + LIDAR + WiFi + SC = 22 W

EPS – Boards

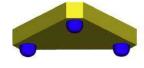
- Two EPS/Battery sets (+Y and –Y)
- 3 ports with MPPT
 - PVCP1: External charging port
 - PVCP2: Y panel
 - PVCP3: X Panel
- GOMSpace NanoPower P31u X 2
- Integrated battery/Panasonic 18650B
- Battery heater?
- Distribute load across 2 EPS units?

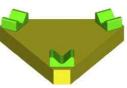
RF Communications

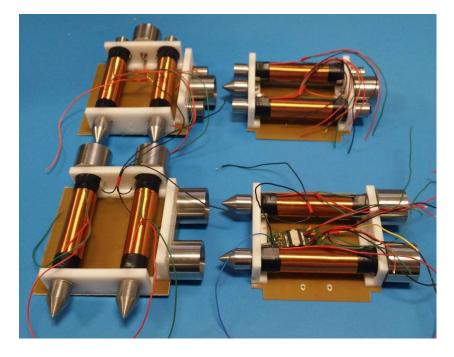
- Existing solution
 - Surrey ground station
 - ISIS TRXUV VHF/UHF Transceiver
 - Deployable monopole antennas similar to STRaND-1 satellite
 - Surrey's Saratoga data transfer protocol

Open issues

- Antenna placement
- What hardware and software can we obtain from Surrey
- Need to propose data sizes, rates, formats
- Need to file for frequency allocation

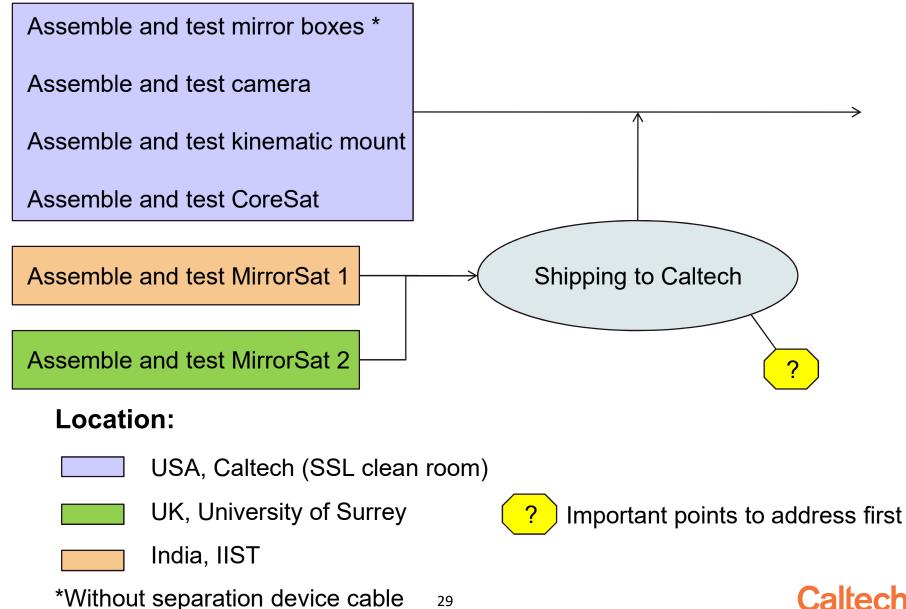


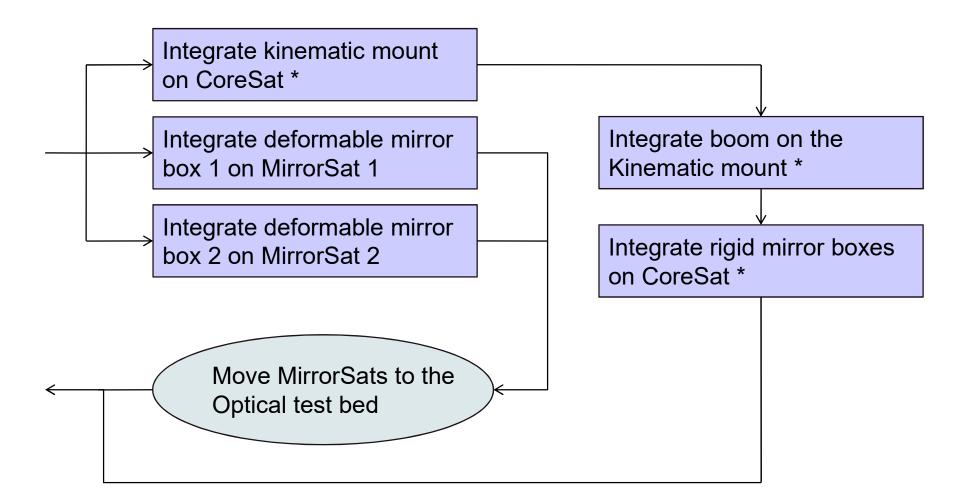


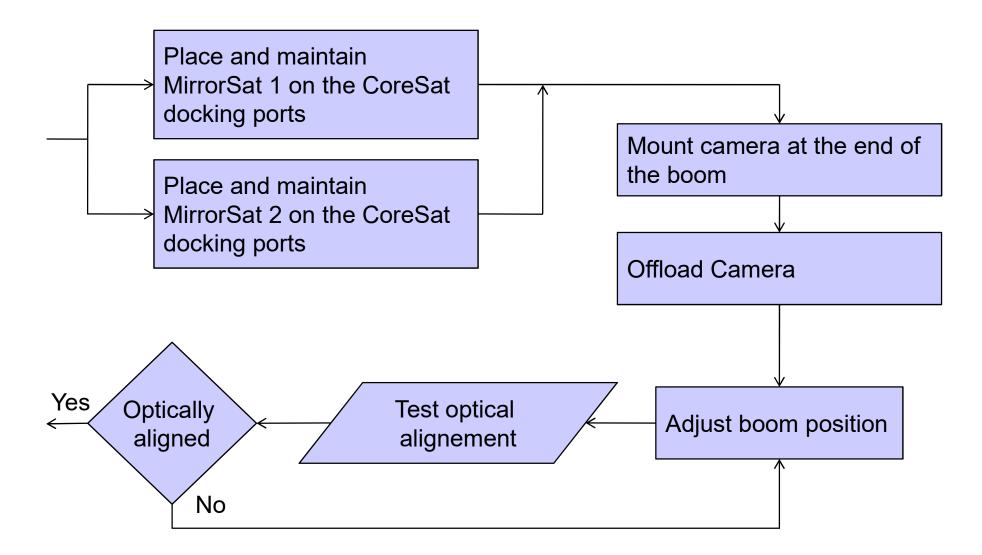

Sub-systems Description

Rendezvous and docking

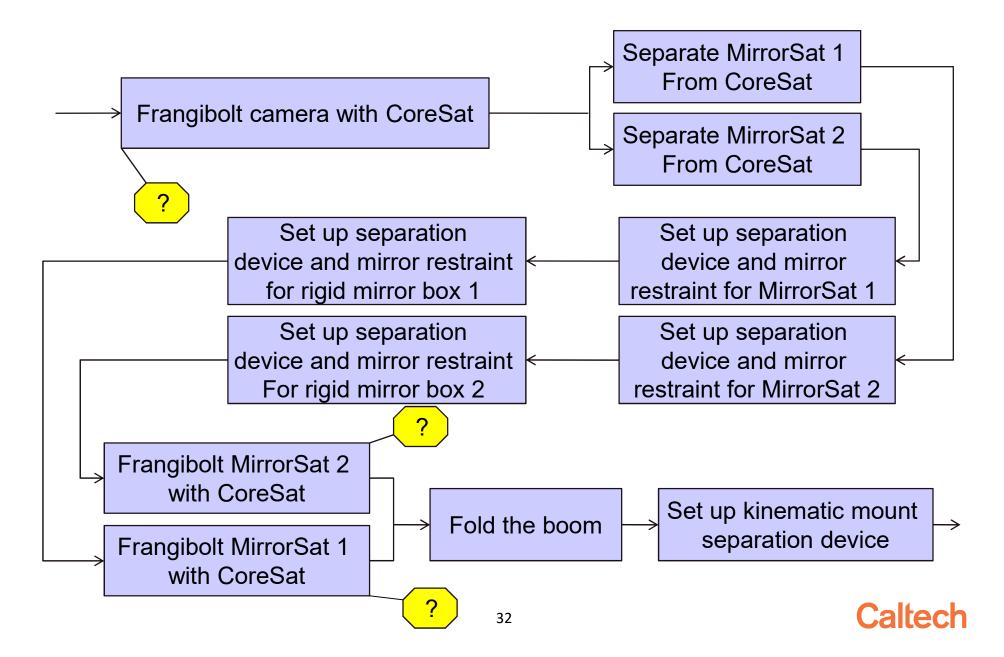
- Composed of 4 permanent magnets on the coresat coupled with 3 « probe and drogue » (60° cone and 45° cup) and 4 electromagnets on the MirrorSats
- Use Kelvin Clamp principle
- Monitored by earth sensor and LIDAR

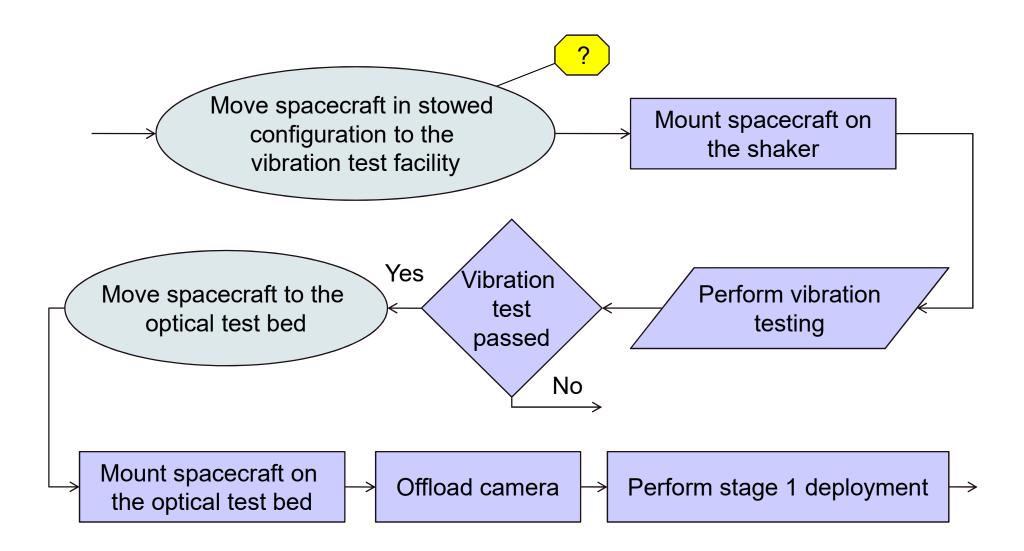


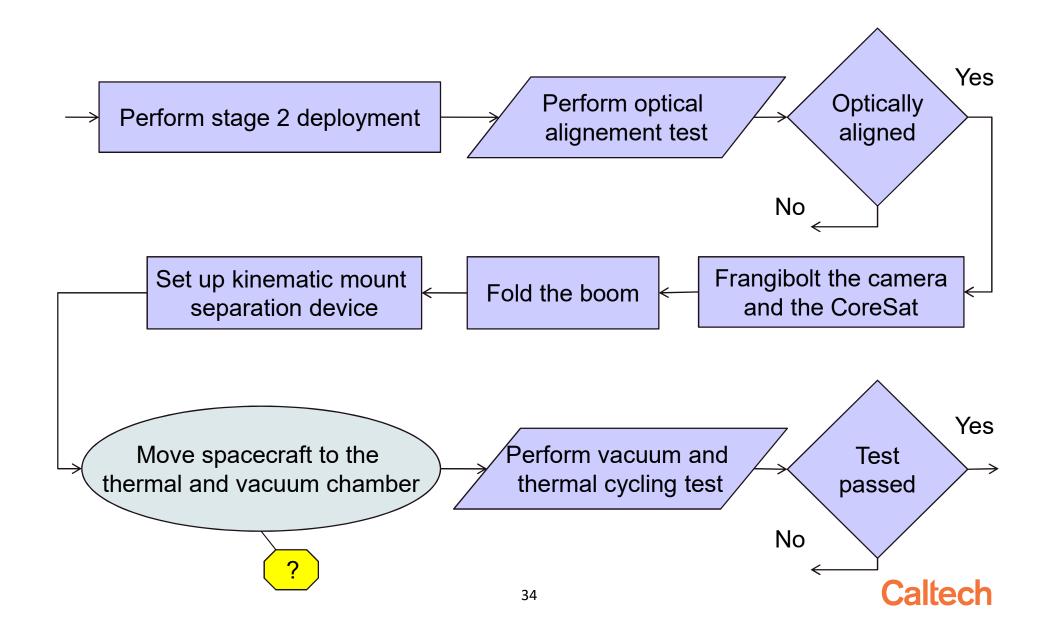

CoreSat magnets polarities

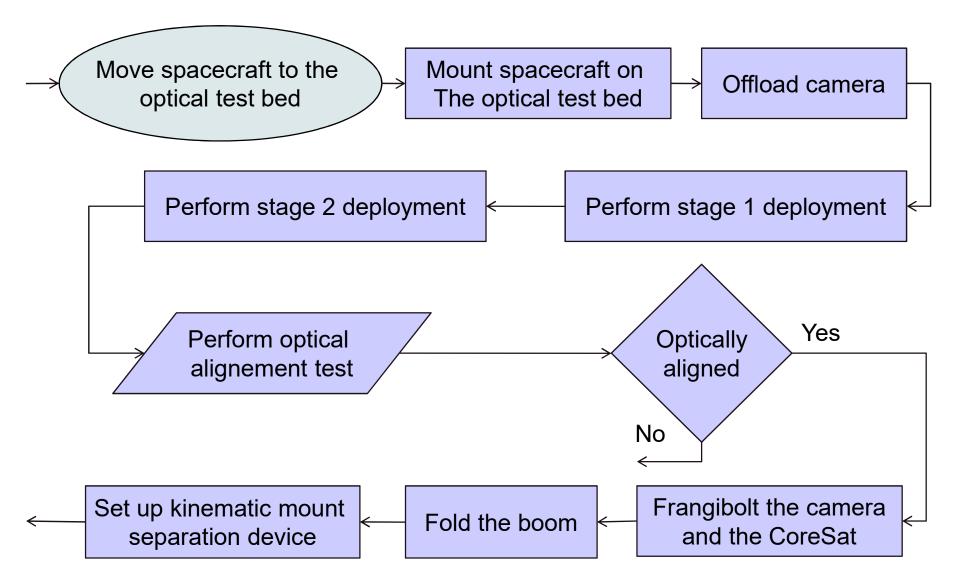


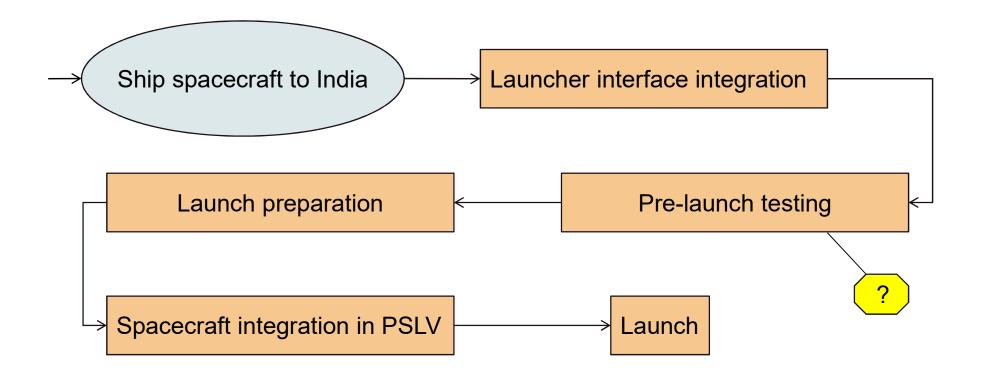
*Without separation device cable



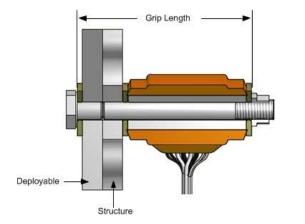

*On the optical test bed

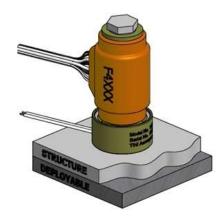




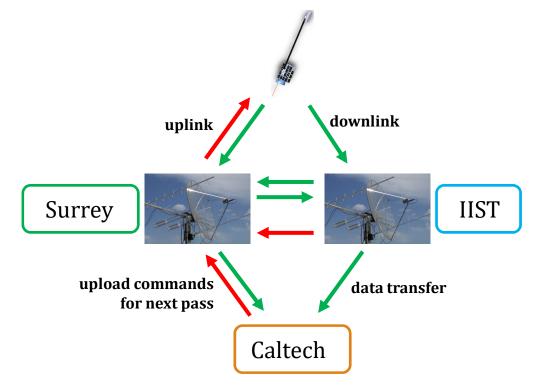


Caltech

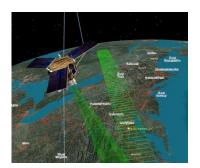


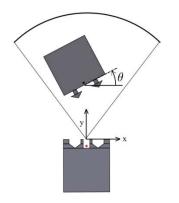

Caltech

- Question raised by this test plan
- Where should we do the testing? The optical test bed is at Caltech.
- Can we have access to external test facilities? (shaker, vacuum chamber, electromagnetic chamber)
- Are we re-testing in India if the final assembly is made in Caltech?
- How do we assemble the frangibolts? Need to take care of clearances to mount them.



Spacecraft Operations


- Primary ground station at University of Surrey, operated jointly by personnel from Caltech and IIST
- Downlink-only ground station at IIST



Next Steps: System Engineering

- Develop an orbital model of the spacecaft using AGI STK software
 - Feed in to EPS and ADCS teams
- Determine upper bounds on the docking maneuver clearance needed (no-go volume around the CoreSat)
 - Simplified model with fixed magnetic fields, focus on translational data
- Update interface control documents, maintain power budget and mass budget, verify requirements
 - System engineering meeting at the beginning of every AE105 presentation
- Elaborate CoreSat integration and test plan
 - Communicate integration requirements to subsystem teams

Next Steps – Structures

Divide in three sub-tasks and possibly three sub-groups

- Task 1: Structural design
- Task 2: Antenna positioning and mounting
- Task 3: Lunch Vehicle Interface

Task 1 Involves CAD design based on sub-system requirements and mass / volume requirements and subsequent FEM modal analysis; a plan will be developed for fabrication of the custom chassis compatible with the CubeSat form-factor

Task 2 involves the positioning of the antenna for communication, without negative interaction with other moving components (i.e. docking, boom deployment)

Task 3 involves the selection of a launch vehicle interface (LVI) and an interface between the LVI and the spacecraft

Next Steps – ADCS

- Generate requirements for various operational modes
- Analyze magnetic torque disturbances
- Preliminary component selection
- Detailed ADCS analysis
- Create Hardware Test Plan

Next Steps – EPS

- Develop orbit simulator to estimate orbit averaged power for few candidate orbits
- Study various COTS solar panel, EPS and battery solutions
- Estimate power consumption for various operation modes
- Trade-off fixed vs deployable panels
- Develop test procedures for solar panels, batteries and EPS
- Deliverables
 - Final design of the power system
 - CONOPS for various mission scenarios
 - Arrangement of solar cells on the outer surface

Next Steps – Avionics and RF

• Avionics

- Component selection and trade-off (if necessary) for OBC
- Board design, Wiring Interface between OBC and systems
- FlatSat Design and integration of components
- Software Write drivers for each system
- Software Write scheduler
- RF
 - Component selection and trade-off (if necessary)
 - Hardware procurement
 - Select data sizes, rates, formats
 - Testing of integrated comms system

space structures laboratory

Questions?

