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Computation of Wrinkle Amplitudes in Thin
Membranes

Y.W. Wong∗ and S. Pellegrino†

Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK

There is an increasing number of space missions in which it is proposed to use high
accuracy membrane structures and it is envisaged that some of these membranes will re-
main partially wrinkled in their operational configuration. Previous studies have focussed
only on the stress distribution in wrinkled membranes, but for high accuracy applications
the amplitude and wavelength of the wrinkles becomes important. This paper presents
a non-linear finite-element simulation technique, where the membrane is modelled in
ABAQUS with S4R5 shell elements, which accurately predicts the wrinkle details. For a
rectangular membrane in shear it is found that the wrinkled pattern varies abruptly when
the load magnitude is changed gradually. This simulation technique makes it possible to
“look inside” a membrane and thus identify features of the complex behaviour of thin
membranes that need to be included in simple models, which can be very useful.

Introduction
There is an increasing number of space missions in

which it is proposed to use high accuracy membrane
structures with a variety of shapes and sizes. Examples
are sunshields for low-temperature telescopes, space
based radars, inflatable reflector antennas and solar
sails.
Some of these membrane structures will remain par-

tially wrinkled in their operational configuration, and
this could potentially cause problems. For example,
large wrinkles would compromise the performance of
a sunshield or reflector, and could make a solar sail
uncontrollable. However, wrinkles of smaller magni-
tude may be acceptable and, indeed, may even have
beneficial effects, such as increasing the out-of-plane
stiffness or the vibration damping of the membrane.
This paper presents a computational study of a

wrinkled membrane in shear, a problem for which sev-
eral solutions and experimental results have already
been published. Initially the aim of this study was
to explore the accuracy and robustness of a numerical
simulation in which the membrane is modelled with
a fine mesh of shell elements. It was later discov-
ered that —due to the finite length of the membrane—
the number of wrinkles varies abruptly with the shear
displacement and this behaviour has the effect of in-
troducing a certain amount of hysteresis in the system.
The same numerical tools were then used to study
the mode-jumping instability associated with this be-
haviour. Apart from being an interesting example
of complex post-buckling response, it is possible that
in future this behaviour could be exploited, e.g. for
designing membrane structures with high vibration
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damping.
The paper begins with a brief review of previous

studies of wrinkled membranes, which so far have fo-
cussed mainly on identifying the wrinkled regions and
determining the magnitude of the tensile principal
stresses. An analytical study by the current authors
—leading to approximate expressions for the wrinkle
wavelength and amplitude of infinitely long, uniformly
sheared membranes— and an experimental study of
square membranes subject to tension and shear, are
particularly relevant to the present study.
Next, a non-linear finite-element simulation tech-

nique is presented, where the membrane is modelled
in ABAQUS with S4R5 shell elements. The simula-
tion consists of three main parts, namely (i) setting up
an initial, lightly prestressed membrane; (ii) carrying
out an eigenvalue analysis leading to the imperfection
modes that are seeded into the membrane; and (iii)
a post-wrinkling analysis with hand-tuned numerical
stabilisation to go past the instabilities associated with
mode jumping.
The following section presents a detailed numerical

study of a particular rectangular membrane. Its over-
all behaviour is bilinear, depending on whether the
membrane is flat or wrinkled, and is determined purely
by the tensile principal stresses in the membrane.
However, a more in-depth study of the ABAQUS re-
sults shows a complex variation in the shape of the
membrane and the associated compressive stresses.
Also, cycling the shear displacement back and forth
produces an envelope of response curves —not a sin-
gle one— thus indicating that any particular solution
is unlikely to be unique.
Two separate validation studies are then presented,

for a rectangular membrane in shear and a square
membrane in tension and shear.
A discussion concludes the paper.
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Fig. 1 Sheared Kapton foil with extensive wrin-
kling.

Background
Consider a thin, rectangular membrane of length L

and height H. Let the horizontal edges be attached to
rigid blocks held at a fixed distance and the vertical
edges be free, and impose a purely horizontal transla-
tion of one of the two blocks. After only a very small
displacement, wrinkles start to form in the membrane
and, as the displacement is increased, the number of
wrinkles increases and the out-of-plane deformation
also increases.
Figure 1 shows a photograph of such a membrane.

In the central part the wrinkles form a regular pattern,
and the wavelength of the wrinkles, i.e. the separation
between two consecutive troughs or crests, will be de-
noted by 2λ, see Figure 1.
Much work has already been done on the wrin-

kling of membranes; this work can be broadly divided
into three different categories, which will be briefly re-
viewed next.

Analytical Approach

Most analytical studies so far have assumed that
membranes have negligible bending stiffness and hence
are unable to carry any compressive stresses.
The classical approach is the tension field theory,

first introduced in 1929[1] for the analysis of thin webs
in I-beams that are allowed to go much beyond their
initial buckling load. In its original form, this the-
ory considered a set of parallel wrinkle lines but later
a simpler geometrical formulation was proposed,[2]

which allowed for non-parallel tension rays. A further
generalization[3, 4] of this theory showed that the di-
rection of the tension rays maximizes the (stretching)
strain energy in the membrane. Closed form solutions
for membranes with different shapes and anisotropic
membranes were developed.
An alternative approach has been proposed for

partly wrinkled membranes,[5] such as a pressurized
cylindrical tube in pure bending. In this case the mem-
brane can be divided into taut regions and wrinkled
regions, and in the wrinkled region a variable Poisson’s
ratio can be defined such that there are no compres-
sive stresses anywhere. Computer implementations of

this approach will be mentioned in the next section.
A further approach considers finite elastic deforma-

tions of membranes with a special kind of strain energy
density function, known as a relaxed strain energy.
This function is zero if at least one principal stress is
compressive.[6, 7] A formulation of this type has been
incorporated into standard finite-element schemes for
membranes,[8] however only the in-plane deformation
in the wrinkled regions can be predicted with this ap-
proach. A generalisation of this theory in the context
of a saturated elasticity theory has been recently pro-
posed.[9]

In the above solutions the membrane is always
modelled as a no-compression material with negligible
bending stiffness, which amounts to assuming that a
wrinkled membrane will form an infinite number of in-
finitesimally small wrinkles. Inspired by an analytical
solution of the gravity-induced wrinkling in a hanging
blanket,[10] which for the first time had considered a
critical compressive stress in the membrane, we have
recently proposed a simple theory[11] to predict wrinkle
wavelengths and amplitudes for a rectangular mem-
brane in uniform shear.
This theory assumes that a membrane with Young’s

Modulus E, Poisson’s ratio ν, and thickness t carries
a uniform, compressive principal stress, σ2, equal to
the buckling stress of an infinitely wide, thin plate of
length λ

σ2 = − π2Et2

12(1− ν2)λ2 (1)

Based on this assumption, it can then be shown that
the wrinkle half-wavelength, λ, of a membrane subject
to a shear displacement δ, as shown in Figure 1, and
hence to a shear angle, γ, defined by

γ = δ/H (2)

is accurately predicted by

λ =

√
πHt√

3(1− ν2)γ
(3)

The wrinkle amplitude, A, is given by

A =

√
2(1− ν)Ht

√
γ

π
√
3(1− ν2)

(4)

Hence, λ is inversely proportional and A directly pro-
portional to the fourth root of the shear angle, and
both of them are directly proportional to the square
roots of the length and thickness of the membrane.
Note that both quantities are independent of the
Young’s Modulus of the membrane.

Numerical Approach

Closed-form solutions based on the theoretical ap-
proaches described in the previous section exist only
for simple boundary conditions. For more complex
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geometries, numerical solutions are the only viable op-
tion. The first finite element algorithm to incorporate
wrinkling theory[12, 13] iteratively modified the mem-
brane stiffness until all compressive stresses had been
eliminated. Three different states of the membrane,
namely taut, wrinkled, and slack were considered. A
recent extension of this approach[14] has implemented
a user subroutine that exploits the powerful numerical
solvers currently available in commercial FE packages,
e.g. ABAQUS and NASTRAN, and obtained success-
ful predictions of the shape and pattern of the wrinkle
regions in a square membrane subjected to point loads
and inflated balloons of different shapes.
A different scheme that models the membrane as a

no compression material in a non-linear geometrical
analysis has been successful in simulating the shapes
of inflated air-bags,[15] including the formation of some
large “folds” in the surface and also of extensive wrin-
kled regions.
A penalty tension field parameter has been used to

approximate the stress state in a parachute during de-
ployment; modelling issues, including the influence of
the order of integration and local remeshing in the
wrinkled regions, have been discussed.[16] A discrete
bar network model of simple membrane structures has
been proposed.[17]

After testing many different wrinkling criteria, sev-
eral authors have concluded that a combined stress-
strain criterion is the best way of modelling real wrin-
kled membrane.
A general feature of all of these numerical studies is

that they adopt a purely two-dimensional model of the
membrane. This approach can accurately predict the
stress distribution in the membrane, including wrin-
kled regions, and also the extent of these regions, but
it can provide no information on wrinkle details. We
believe that the only way of addressing this shortcom-
ing in full is by modelling the membrane with shell
elements instead of membrane elements. Of course,
this considerably increases the complexity of carrying
out a successful simulation.

Experimental Approach

Early experiments on wrinkled membranes focussed
on the measurement of overall response parameters,
such as the end rotation of a pressurized cylinder in
pure bending[5] or the torque-rotation relationship of
a stretched circular membrane attached to a central
hub.[5, 18]

Performing detailed measurements on thin mem-
branes is not easy, mainly because high accuracy
non-contact measurement apparatus is needed. A set
of carefully planned experiments, including accurate
measurements of wrinkle details, were carried out very
recently on a square membrane subjected to different
combinations of shear and tension forces.[19] These ex-
periments showed that both the wrinkle amplitude and

the number of wrinkles increase with the applied shear
force, but decrease with the tension force. The reverse
relationship was found between the wrinkle wavelength
and the applied forces. Selected results from these ex-
periments will be used to validate our solution method,
in the section Validation of Finite Element Results:
Comparison with an Experiment.
The measurement technique introduced by Jenkins

et al.[19] has been extended to square membranes sub-
jected to four corner point loads, to include the effect
of thermal gradients within the membrane.[20]

Finite Element Modelling Technique
The bending stiffness of a membrane, although very

small, plays a key role in determining the shape and
amplitude of the wrinkles. It is essential to include
this stiffness in any model that aims to capture this
kind of detail, hence the obvious choice is to model
the membrane with shell elements.
All analyses presented in this paper were carried

out with the ABAQUS[21] commercial package. This
package offers several different shell elements, and pre-
liminary runs were carried out with 3-node triangular
and 4-node quadrilateral full integration general pur-
pose elements (S3, S4); these elements have six degrees
of freedom at each node. 4-node and 9-node reduced
integration thin shell elements (S4R5, S9R5), with five
degrees of freedom per node, were also investigated.
The S3 element uses constant bending and mem-

brane strain approximations, therefore a very fine
mesh is required to capture the bending deformation
due to wrinkling. Note that the fineness of the dis-
cretisation that is required is related to the expected
wrinkling wavelength. The formulation of element S4
is similar to S3 for bending, but the in-plane strain
field has been enhanced to eliminate shear locking ef-
fects. This, however, has the effect of making the
element too stiff in-plane. Both S4R5 and S9R5 are
thin shell elements with three in-plane translations
and two in-plane rotation components, and use re-
duced integration with hourglass control to avoid shear
locking. Both elements can model thin shells fairly
accurately and S4R5 was chosen since it is computa-
tionally more economical. Also, in general it is best
to avoid higher-order elements in highly geometrically
non-linear problems.
A wrinkling analysis is typically performed in three

stages, as follows, after —of course— defining the finite
element mesh, type of elements, and material proper-
ties.

Initial Conditions

The initial stage consists in applying a small uni-
form prestress to the membrane, to stabilize it. The
shell elements are very thin and hence their bending
stiffness is so small that obtaining meaningful results
when in-plane loads are applied can be a real challenge.
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It is important that the amount of prestress applied at
this stage should be large enough to successfully steer
the subsequent buckling mode analysis, but without
significantly affecting the final results.
After applying the initial prestress, a static, geomet-

rically non-linear equilibrium check (*STATIC, NL-
GEOM) is carried out, to allow a small re-distribution
of the state of prestress, together with small in-plane
displacements.

Eigenvalue Buckling Analysis

The next step of the analysis consists in determining
the buckling mode shapes of this lightly stressed mem-
brane. These modes are then used to seed small im-
perfections that will trigger the formation of wrinkles
in the subsequent geometrically non-linear analysis.
An eigenvalue buckling analysis (*BUCKLE) is used

to predict the possible wrinkling modes of the mem-
brane subjected to its actual boundary conditions and
loading. The loading is typically defined in terms of a
set of applied forces or displacements at the edge of the
membrane, and has to represent the loads on the real
structure. It is important that both the initial stresses
and displacements from the previous stage of the anal-
ysis, as well as those due to the applied load, should
be included in the calculation of the tangent stiffness
matrix; this is done by default in ABAQUS. The eigen-
values and eigenvectors of the tangent stiffness matrix
correspond to the load magnitudes and shapes of the
possible wrinkling modes of the membrane.
After computing the possible wrinkling modes, a lin-

ear combination of some selected eigenmodes is intro-
duced as a geometrical imperfection into the structure.
The eigenvectors corresponding to the lowest eigenval-
ues are often those of greatest interest, and so normally
the imperfections that are seeded in a structure are
obtained as linear combinations of these particular
eigenvectors. However, the lowest eigenvalue corre-
sponds to the first buckling load, i.e. the load which
causes the first wrinkle to form; this is not the objec-
tive of our study. The first wrinkle forms almost as
soon as the load is applied, but we are interested in
following the evolution of this first wrinkle, leading to
the formation of a second one, and so on until a large
number of wrinkles is obtained. Therefore, we base our
choice of the imperfection modes that are introduced
in the membrane on the expected, final wrinkling pat-
tern and so we choose those eigenmodes which more
closely resemble the diagonal wrinkle pattern that we
aim to predict.
Once the appropriate eigenmodes shapes have been

chosen, geometrical imperfections in the form of out-
of-plane deformations are introduced (*IMPERFEC-
TION):

∆z = Σiwiφi (5)

where wi is the ith eigenmode and φi is a scaling fac-
tor whose magnitude is chosen as a proportion of the

thickness of the membrane. Values between 1% and
100% of the thickness have been used, considering dif-
ferent imperfection magnitudes to test the sensitivity
of the predicted response.

Post-wrinkling Analysis

A geometrically non-linear (*NLGEOM) incremen-
tal analysis is carried out under edge displacement
incrementation, using the Newton-Raphson solution
method. Since the equilibrium path of the wrinkled
membrane includes many unstable branches, each cor-
responding to a localised snap-through due to the
formation of an additional wrinkle, the only type of
solution algorithm able —in theory— to compute the
response of the structure in full is the Riks method.
The response of the structure cannot be computed
in full if the displacement is increased monotonically.
However, all attempts to use the arc-length solution
method in ABAQUS (*RIKS) were unsuccessful —
possibly because wrinkling is a highly localized type
of instability— and hence monotonic displacement in-
crementation was the only remaining option.
Automatic stabilization was provided through the

STABILIZE function available in ABAQUS. This
option automatically introduces pseudo-inertia and
pseudo-viscous forces at all nodes when an instabil-
ity is detected. Then, instead of continuing with the
quasi-static analysis, ABAQUS automatically switches
to a dynamic integration of the equations of motion for
the structure, thus reducing the likelihood of numeri-
cal singularities.
The fictitious viscous forces that are introduced by

the stabilize function are calculated on the basis of the
model’s response in the first increment of the analysis
step, by assuming that the energy to be dissipated is
a fraction of the strain energy during the first step.
This fraction is called damping intensity and has a
default value of 2 × 10−4. To achieve good accuracy,
it is generally desirable to set this parameter to the
lowest possible value for which convergence can still
be achieved.

Analysis of Membrane in Shear
A rectangular membrane with the dimensions de-

fined in the section Background, see Figure 1 and
Table 1, has been analysed for a 3 mm translation
of the upper edge. Figure 2 shows the finite element
mesh; each element has approximately unit aspect ra-
tio.
The initial step stabilized the membrane by apply-

ing a uniform prestress σy = 1.7 N/mm2, which was
achieved by moving the upper edge by 0.05 mm in the
y-direction.
Next, an eigenvalue buckling analysis was carried

out with a prescribed horizontal displacement of 3 mm
at the upper edge. Earlier analyses had shown that the
eigenmodes corresponding to eigenvalues smaller than
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Table 1 Properties of Kapton foil

Length, L (mm) 380
Height, H (mm) 128
Thickness, t (µm) 25
Young’s Modulus, E (N/mm2) 3530
Poisson’s ratio, ν 0.3
Density, ρ (kg/mm3) 1.5× 10−6

δ = 3 mm

   H = 
128 mm

L = 380 mm

x
y

z

Fig. 2 Finite element mesh.

Table 2 Effect of imperfection magnitudes

φ1, . . . , φ4 wmax (mm) wmin (mm)

0.025t 1.12 -1.49
0.125t 1.09 -1.49
0.250t 1.14 -1.51

0.2 correspond to local deformation modes of the mem-
brane, and hence are of no interest for the wrinkling
analysis. Hence, the Lanczos solver in ABAQUS was
set to produce only eigenmodes whose eigenvalues are
greater than 0.2; the first four are presented in Figure
3. Note that all of these modes closely resemble the
expected wrinkled pattern.
In order to test the sensitivity of the model to the

amplitude of the prescribed imperfections, many dif-
ferent combinations of eigenmodes and scaling factors
were considered. For each set, a complete wrinkling
simulation was carried out and the maximum and
minimum out-of-plane displacements, wmax and wmin,
were computed; some sample values are given in Ta-
ble 2. Note that the out-of-plane displacements are
practically unchanged when the magnitude of the im-
perfection is increased by a factor of 10. Also note that
the particular displacements listed in the table corre-
spond to the largest two wrinkles, on either side of
the membrane, but the smaller wrinkles between these
large ones were also found to have the same amplitude
and wavelength, regardless of the size of imperfection.
It was thus concluded that the particular magnitude

of the imperfection that is chosen is not critical and
it was decided to use a “standard” imperfection con-
sisting of the first four eigenmodes corresponding to
eigenvalues greater than 0.2, normalised by ABAQUS,
each multiplied by a scaling factor φi = 0.125t.

           Mode   1: Eigenvalue =  0.20423

         Mode   2: Eigenvalue =  0.20428
x

y

            Mode   3: Eigenvalue =  0.20437

         Mode  4 : Eigenvalue =  0.20449

z

x

y

z

x

y

z

x

y

z

Fig. 3 First four eigenmodes with eigenvalue > 0.2.

The parameter that controls the amount of numeri-
cal damping introduced by ABAQUS in case of an in-
stability has the default value 2×10−4. It was reduced
to 1× 10−8 using *STABILIZE, FACTOR = 1× 10−8

to minimize the deviation between the computed equi-
librium path and the actual path.
Finally, three different mesh sizes were used to inves-

tigate the effect of mesh density on the final wrinkled
shape. It was observed that there is no change in the
number of wrinkles when, starting from a reference
mesh with 6950 elements, the number of elements is
roughly doubled. However, if the number of elements
is halved a smaller number of wrinkles is predicted,
see Table 3, which suggests that the reference mesh is
sufficiently fine to produce mesh-independent results.
Since the computational time increases roughly pro-
portionally to the number of elements, it would be
pointless to use a mesh finer than the reference one.

Overall Behaviour

Figure 4 shows a plot of the total shear force ap-
plied to the membrane versus the shear displacement
imposed. Note that the global behaviour of the mem-

5 of 11

American Institute of Aeronautics and Astronautics Paper 2002-1369



Table 3 Number of wrinkles for different meshes

No. elements Total dof’s No. wrinkles

3960 19800 15
6950 34750 17
13134 65670 17

0 1 2 3
0

20

40

60

80

100

120

140

160

180

Displacement, δ (mm)

To
ta

l f
or

ce
, R

 (
N

)

Fig. 4 Overall force-displacement relationship.

Fig. 5 Principal stress directions and magnitudes.

brane is essentially linear, although a slight softening
can be observed near the origin. This corresponds
to the formation of the first set of wrinkles, and
signals the end of the purely in-plane behaviour of
the membrane. The initial in-plane shear stiffness is
101 N/mm, which decreases by about a third.
A vector plot of the stress distribution correspond-

ing to the final displacement of 3 mm is shown in Fig-
ure 5. For each element, the directions and magnitude
of the two principal stresses have been plotted, but in
fact the major stress, σ1, is so much larger than the
minor stress, σ2, that only one vector shows. The di-
rection of the major principal stress corresponds to the
direction of the wrinkles, which are clearly inclined at
45◦ and uniform in the central part of the membrane.
Near the side edges there are two lightly stressed tri-
angular regions, but the top-right and bottom-left cor-
ners act as stress risers, with stress concentrations of
up to 2.5.
A deeper understanding of the stress distribution in

the wrinkled membrane can be obtained by consider-
ing the principal stresses across the mid-height section

0 200 400

0

10

20

30

40 δ = 3 mm 

δ = 1.6 mm

x (mm)

σ 1
, σ

2 
(N

/m
m

2 )

σ2

σ1

Fig. 6 Principal mid-plane stresses across mid-
height section.

(y = 64 mm). Figure 6 shows plots of the major and
minor principal stresses through the mid-plane of the
membrane for two different values of the shear dis-
placement. The plots show that σ1 increases rapidly
—starting from zero at the edges— to an approxi-
mately uniform, positive value, whereas σ2 remains
very small.
In fact the mid-plane, minor principal stress is neg-

ative and roughly uniform in each case. It can be
predicted with Equation 1, as discussed in the section
Background: Analytical Approach.

Detailed Behaviour

The post-wrinkling behaviour of a rectangular mem-
brane in shear shows some very interesting effects,
which become apparent if one looks closely enough.
When the shear displacement is gradually increased

the wrinkles grow in amplitude, then become unstable,
and then generate even more wrinkles with smaller
wavelength. A complete history is shown in Figure
7; this is a plot of δ vs. the position of the points
of maximum and minimum out-of-plane displacement,
i.e. the crests and troughs of the wrinkles, across the
mid-height section of the membrane.
Note that the solid lines on the two sides of the plot

are almost straight and vertical, indicating that the
edge wrinkles do not move. Looking further in, to-
wards the centre of the plot, the first dotted line and
the second solid line are continuous, but gently curved
outwards. All other lines contain one or more bifurca-
tion points, which indicates that additional wrinkles
are created. The first five bifurcations occur very
quickly, at the start of the simulation; afterwards the
values of δ associated with each jump can be clearly
identified, and are labelled (6)–(10). As the number of
wrinkles increases the membrane becomes more stable
and hence a greater increase of δ is required to get to
the next bifurcation.
Because the wrinkles can most easily reorganise
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Fig. 7 Trajectories of wmax and wmin.

-1
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0

1
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1

0 100 200 300 400

(δ = 0.1 mm) (δ = 0.2 mm)

(δ = 1.4 mm) (δ = 2.6 mm)

(δ = 0.6 mm)(δ = 0.5 mm)

Fig. 8 Mid-height cross-sections for different δ’s.

themselves in the middle of the membrane, new wrin-
kles tend to appear in this region. The large wrinkles
on the sides do not move, as they are “pinned” by the
corner supports.
Figure 8 shows different shapes of the mid-height

section of the membrane, as δ is increased. The par-
ticular shapes shown here were obtained immediately
after the bifurcations labelled (2), (4), (6), (7), (9)
and (10) in Figure 7. The number of wrinkles, defined
as the number of crests in each plot, is 9, 11, 13, 14,
16 and 17 respectively. Note that the wrinkle ampli-
tude in the central region increases from 0.13 mm to
0.33 mm in these plots, while the wavelength obviously
decreases.
The transition from one shape to the next is not

smooth, but is triggered by a local instability that
leads to mode jumping; this behaviour can also be ob-
served in an experiment. The sequence of jumps is seen

0 1 2 3
0

0.02

0.04

0.06

0.08

0.1

(6) 

(7) 
(8) 

(9) 

(10) 

(1- 5) 

−σ
2 

(N
/m

m
2 )

Displacement, δ (mm)

Fig. 9 Plot of minor principal stresses, showing
evidence of mode jumping.

most clearly in a plot of the minor principal stress, σ2,
at a representative point of the membrane vs. the shear
displacement, as shown in Figure 9. Here the stresses
at three points near the centre of the membrane have
been plotted. Which particular point is chosen is not
significant, but jumps that are associated with an in-
stability that is far away from the chosen point may
not show; therefore, it is useful to monitor the stress
at several points. Note that σ2 is always compressive;
also note that it would have been pointless to plot the
major principal stress, which is too large for the jumps
to show.
Figure 9 clearly shows ten jumps, numbered (1)–

(10). Jump (1) occurred almost immediately after
displacing the upper edge. This indicates that the
bending stiffness of the membrane is so small that
wrinkles start forming immediately. Due to the ge-
ometric imperfections introduced in the membrane,
the first jump is directly to a configuration with seven
wrinkles. This is followed in rapid sequence by jumps
(2)–(5); then the membrane settles in a more stable
state. It is interesting to note that, as the membrane
becomes more stable, σ2 remains almost constant be-
tween consecutive jumps.
From a numerical simulation viewpoint, it should

be noted that jumps (1)–(6) occur at almost equal
stress levels, hence it is likely that secondary bifur-
cation paths exist in this region. In some cases it
was found that the solution diverges, then the anal-
ysis had to be restarted after increasing the damping
intensity factor to 1× 10−7. This allowed the analysis
to continue, but then the damping intensity had to be
decreased before the next jump. Varying the numeri-
cal damping in a simulation has the effect of creating a
certain amount of hysteresis, whose effects can be seen
by cyclically loading and unloading the membrane.
Now, let’s look more carefully into the mode-

jumping. Figure 10 shows an enlarged view of the
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Fig. 10 Compressive stress during jump (6).
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Fig. 11 Variation of mid-height cross section dur-
ing jump (6).

stress-displacement plot near jump (6); eight points
—labelled (a)–(h)— have been marked on the equi-
librium path and the corresponding mid-height cross-
sections are shown in Figure 11.
This sequence of cross sections shows that the 13

wrinkles that had formed previously remain stable un-
til σ2 has almost reached a peak, at point (c). Here
a small asymmetry begins to appear in the cross-
sectional plot, which rapidly grows into a new wrinkle
(d)–(e). Thus, the transition from 13 to 14 wrinkles
occurs over a very small displacement increment and
then the new mode stabilizes itself while the magni-
tude of σ2 rapidly decreases.
It is also interesting to investigate the behaviour of

the membrane during a simulated loading–unloading
cycle. Figure 12 shows the variation in the number
of wrinkles when the shear displacement is increased
from 0 to 3 mm, and then decreased to 0, and finally
increased again to 3 mm. Figure 13 shows the cor-
responding plot of the stress σ2 at an element in the
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Fig. 12 Number of wrinkles during load cycling.
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Fig. 13 Compressive stress during load cycling.

middle of the membrane. Note that during unloading
the wrinkles tend to stay on, thus the final number of
wrinkles does not start decreasing until the shear dis-
placement has been reduced to δ = 0.8 mm, at which
point the number of wrinkles suddenly decreases from
17 to 14. Thus, the behaviour on unloading is differ-
ent from loading. The stress variation is also much
smoother during unloading, see Figures 12–13.

During reloading the membrane generally follows
the same path as during first loading, however, the fi-
nal configuration with 17 wrinkles is achieved slightly
earlier this time. This may be due to the effect of
the geometrical imperfections left in the membrane
at the end of the first load cycle, which may have
facilitated the formation of the “correct” pattern of
wrinkles. Also note that the stabilisation factor varies
during each simulation, and also during load reversal;
it is difficult to quantify the effect of this variation.
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Fig. 15 Comparison of wrinkle amplitudes.

Validation of Finite Element Results
The results obtained from the ABAQUS simulation

will be compared to the predictions from (i) the ap-
proximate analytical model of Wong and Pellegrino[11]

and (ii) a recently published experiment.[19]

Comparison with Analytical Solution

Figures 14 to 16 compare the variation of the wrin-
kle half-wavelength and amplitude, and of the minor
principal stress with the shear angle in a rectangular
membrane with the properties listed in Table 1. Each
figure shows both an analytically predicted curve, from
Equation 1, 3, and 4, respectively, plus 13 results from
an ABAQUS simulation.
The wrinkle wavelength and amplitude were ex-

tracted from the ABAQUS output by plotting the mid-
height cross section, selecting visually the uniformly
wrinkled region, and finally measuring the average
wavelength and amplitude off each plot. The stress
values were obtained by averaging over the the central
half of the cross section.
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Fig. 16 Comparison of mid-plane compressive
stresses.

It can been seen that the half-wavelengths λ ob-
tained from ABAQUS agree extremely closely with the
analytical predictions made over the whole range of γ.
The wrinkle amplitudes are very close for γ < 0.005,
but then diverge by up to 0.05 mm although they fol-
low similar trends.
The variation of the minor principal stress predicted

by ABAQUS also follows the same trend as the ana-
lytical model. The two predictions are very close for
γ < 0.004. For larger shear angles discrepancies of
up to 30% are observed, particularly for intermediate
values of γ.

Comparison with an Experiment

The next test of the finite element modelling tech-
nique presented in this paper was based on an experi-
mental study of a square Mylar foil with side length of
228.6 mm, subjected to a combination of tension and
shear forces.[19] The experimental setup, shown in Fig-
ure 17, consisted of two straight edges (grippers), one
attached to a rigid foundation, the other controlled
by two stepper motors. The axial and shear forces
applied to the membrane, in the x and y-directions
respectively, are measured by force transducers and
monitored by a computer-controlled system. A capac-
itance displacement sensor was used to measure the
profile of the membrane at a distance of 100 mm from
the stationary gripper.
A variety of experiments were conducted, with shear

loads in the range 0–5 N and axial loads in the range
1–5 N.[19] The load case chosen to test our simulation
consists of a shear load of 4 N and a tension load of
5 N.
An ABAQUS model of the membrane was set up,

consisting of 9900 S4R5 shell elements; the grippers
were assumed to be made of Aluminium and modelled
with beam elements, type B21. The beam elements
were connected to the edge of the shell elements using
the Multi Point Constraint (*MPC, TIE) option in
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Fig. 18 Comparison between ABAQUS results
and measurements by Jenkins et al.[19]

ABAQUS. The same loading conditions as in the ex-
periment were simulated, by first stretching the mem-
brane in the x-direction until the full axial load had
been applied and by then applying the shear load as a
separate step while the axial force was kept constant.
During the first step, translation in the x-direction
only was allowed, whereas in the second step both x
and y-translations of the moving edge were allowed.
Figure 18 compares the measured out-of-plane de-

formation for this load case,[19] with the ABAQUS
results.
It can be seen that away from the edges the

ABAQUS model predicts the wrinkle wavelength and
amplitudes very accurately. Near the edges there is a
mismatch, mainly because the out-of-plane translation
of the free edges had to be restrained in the simula-
tion, to avoid singularities, whereas in the experiment
they were left unrestrained. Also, in the experiment
a small, unknown prestress had been applied to elim-
inate initial wrinkling; in the simulation an arbitrary
prestress of 0.25 N was applied, i.e. 5% of the total
tension, during the first stage.
A more detailed comparison of experiment and sim-

ulation is presented in Table 4.

Table 4 Comparison of simulation and experiment

Jenkins ABAQUS

No. of wrinkles 8 8
Amplitudes (mm) 0.18–0.42 0.23–0.42
Half-wavelength (mm) 7.94 10.7
Wrinkle angles∗ 35.5◦ 36◦

Discussion and Conclusions
The finite element simulation technique presented

in this paper has been shown to be robust and ca-
pable of producing good quality results. Regarding
the validation that has been presented, a key point to
note is that neither the analytical solution is exact —
indeed, it is only a simple approximate solution— nor
the experimental comparison can be guaranteed to be
absolutely error free. Of the two, the latter is likely to
be the most accurate and, disregarding the differences
associated with the side edges, the results from the
ABAQUS simulation in Fig. 18 agree almost perfectly.
The detailed implementation of our simulation pro-

cedure is not straightforward but, with the details
provided in this paper, it is hoped that anybody suf-
ficiently familiar with ABAQUS will be able to repro-
duce and extend our results.
The potential usefulness of our simulation technique

goes beyond the computation of the wrinkle details.
Having been able to “look inside” the membrane and
plot —for example— the compressive stress across the
wrinkles has provided a convincing backing for the
assumption, made in our earlier study,[11] that the
average principal compressive stress in a uniformly
wrinkled membrane is approximately given by Equa-
tion 1. Being able to do this sort of thing makes it
possible to identify features of the complex behaviour
of thin membranes that need to be included in simple
models, which can be very useful.
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