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Abstract: This paper is concerned with self-powered, self-latching tube hinges, made by cutting three parallel slots in a thin-walled
carbon fiber reinforced plastic tube with a circular cross section. Thus, a hinge consists of two short tubes connected by three transversally
curved strips of material (known as tape springs). A particular tube hinge design is considered, with a diameter of about one-third that of
the hinges used previously; this requires the tape springs to reach strains close to failure when the hinge is folded. Three analyses of the
peak strains in a tube hinge are presented. The first analysis obtains general analytical expressions for the longitudinal fold radius of a tape
spring and the associated peak fiber strains. The second analysis is a finite-element simulation of the folding of a single tape spring and
the third analysis is a simulation of a complete tube hinge. It is found that the largest fiber strains in one- and two-ply hinges can be
predicted analytically with very good accuracy. It is also found that the contact and interaction between the three tape springs that form

a tube hinge, modeled in the third analysis, do not affect the peak strains significantly.
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Introduction and Background

There is a growing trend in the aerospace industry toward sim-
pler, cheaper, and more reliable deployable structures. Research is
being carried out into new structural concepts that can provide
enhanced levels of functionality in comparison with current de-
signs for deployable booms, solar arrays, etc., while also requir-
ing a smaller number of separate parts. One approach that is cur-
rently being pursued is the development of new structural
components which can be manufactured through shorter and sim-
pler processes, and in which several different functions are
combined.

This new approach has produced the self-powered, self-
latching tube hinge shown in Fig. 1, which is a replacement for a
traditional spring-driven pin-and-clevis hinge fitted with a latch.
Unlike a traditional mechanical hinge, the tube hinge does not
require any lubrication. The tube hinge considered in this paper is
made by cutting three parallel slots in a thin-walled carbon fiber
reinforced plastic (CFRP) tube with a circular cross section. The
slots divide the tube into three strips that are transversally curved;
these strips—known as tape springs—can be flattened transver-
sally and then bent longitudinally to form a localized fold in the
middle of the tube hinge, as shown in Fig. 1.

Tube hinges are designed such that their deformation during
folding is entirely elastic. Because the ends of the tube remain
essentially undeformed, only the deformation of the tape springs
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needs to be analyzed. More precisely, the folding of a tube hinge
can be described in terms of the tape spring on the inside of the
fold deforming in opposite-sense bending and the two outer tape
springs deforming in equal-sense bending. Here equal-sense
bending indicates that the bent tape spring has the same convexity
as the straight one, see Fig. 2(a); in this case the edges of the tape
spring are under compression. Conversely, opposite-sense bend-
ing indicates that the bent tape spring has opposite convexity to
the straight one, Fig. 2(b), in which case the edges of the tape
spring are under tension. Tape springs made of isotropic materials
(typically beryllium—copper or steel) have been used for many
years, and their behavior is well understood (Rimrott 1970; Cal-
ladine 1988; Seffen and Pellegrino 1999).

When an initially straight tape spring is subject to gradually
increasing equal and opposite end rotations, at first it takes a
uniform, longitudinally curved shape. For sufficiently small rota-
tions its moment-rotation relationship is linear; for larger rota-
tions the relationship becomes nonlinear, as follows. For
opposite-sense bending, when the end rotations reach a critical
value the tape spring suddenly snaps and forms an elastic fold that
is approximately straight in the transverse direction and has ap-
proximately uniform longitudinal curvature, see Fig. 2(b). Then,
if the rotations are further increased, the arc length of the fold
increases whereas its curvature remains constant. For equal-sense
bending the tape spring deforms by gradually twisting over two
adjacent, but separate, regions whose lengths grow until the two
folds merge into a single, localized fold. Once this single fold has
formed, Fig. 2(a), further increasing the end rotations results—

Fig. 1. Carbon fiber reinforced plastic tube hinge (unfolded, folded
110°, and folded 180°)
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Fig. 2. Two different ways of folding a tape spring: (a) equal-sense
bending; and (b) opposite-sense bending

again—only in an increase of the arc length of the fold region.
When it is released, a folded tape spring has a natural tendency to
deploy, thus resuming its straight configuration.

A tube hinge contains three tape springs, and hence the de-
ployment moment of a complete hinge is significantly higher than
that of a single tape spring. Also the moment that the hinge can
resist without starting to fold is much higher.

This paper considers a particular tube hinge design, with a
diameter of about one-third that of the hinge shown in Fig. 1. This
design requires the tape springs to fold so tightly that they come
into contact, and have to operate close to failure. Hence, a de-
tailed analysis of the strains induced by the folding process is
required. In fact, three analyses of increasing complexity and so-
phistication will be carried out, of which the first is based on an
extension to orthotropic materials of Rimrott’s (1970) and Calla-
dine’s (1988) analysis of the longitudinal curvature of the fold
region in an isotropic tape spring.

For this particular tube hinge design, the paper presents three
different analyses of the peak strains induced by the folding pro-
cess. The geometric and material properties of the hinge are pre-
sented in the next section. The first analysis, presented in the
section entitled “Analytical Estimates,” obtains general analytical
expressions for the longitudinal fold radius of a tape spring and
the associated peak fiber stresses and strains. The second analysis
is a finite-element simulation of the folding of a single tape spring
and the third analysis is a finite-element simulation of a complete
tube hinge. The predictions obtained from the three approaches
are compared in the “Results” section, and a discussion concludes
the paper.

Geometrical and Material Properties

The tube hinges considered in this paper are 82 mm long and
have a circular cross section with radius R=6.5 mm. In the central
section there are three 50-mm-long tape springs, each subtending
an angle of 70°, thus leaving 50° for each slot. The slots are
machined with end radii of 3 mm.

The tube hinges are made from plain weave carbon fiber T300/
913 prepregs [plain weave, 913C-814-40% with a total fiber con-

Table 1. Properties of 913C-814-40% Prepregs

46.0 (kN/mm?)
4.5 (kN/mm?)
Poisson’s ratio, vi,=v,; 0.065

Elastic moduli, £}, =E»,
Shear modulus, G,

Table 2. Geometry of Tube Hinges

Tape spring length, L 50 mm
Midsurface transverse radius, R 6.5 mm
Subtended angle, 6 70°

Thickness, t laminate [+45] 0.27 mm

laminate [+45], 0.47 mm

tent of 60%, produced by Hexcel (Duxford, U.K)]. The properties
of this prepreg are given in Table 1. Two particular layups will be
considered for the tube hinges, a one-ply and a two-ply laminate
with fibers at +45 and —45° to the axis of the tube hinge. The
thicknesses of these laminates, based on measurements presented
in Yee and Pellegrino (2005) are 0.27 and 0.47 mm, respectively.
The geometric properties of the tube hinges are summarized in
Table 2.

The maximum bending strains that can be survived by (flat)
laminates made from these prepregs were measured by Yee and
Pellegrino (2005). The one-ply laminate, folded into a cylindrical
surface whose axis is perpendicular to one set of fibers and par-
allel to the other set, fails when the maximum surface strain in the
direction of the fibers is 2.7% (note that this value is larger than
the failure strain in pure tension or compression), whereas the
two-ply laminate fails at a strain of about 2.0%. On the other
hand, when these laminates are folded into a cylindrical surface
whose axis is at 45° to the fibers, they fail when the maximum
bending strain is in excess of 5%, corresponding to a surface
strain of 2.5% along the fibers.

Hence, taking in each case the lower fiber strain as the limiting
value, it will be assumed that a one-ply hinge can survive surface
strains along the fibers of up to 2.5%, whereas for a two-ply hinge
a strain limit of 2.0% will be assumed. These values will be used
to assess the feasibility of designing tube hinges with the proper-
ties given previously.

Analytical Estimates

Consider a tape spring of length L, uniform thickness ¢, and trans-
verse radius of curvature R, whose cross section subtends an
angle 0, as shown in Fig. 3(a). This section presents a simple
analytical model for estimating the longitudinal radius of curva-
ture, r, of the fold region—shown in Fig. 3(c)—for the case of
composite tape springs made from 0,90 prepregs such as those

z

S S

Fig. 3. (a) Initial configuration of tape spring; (b) definition of stress
resultants (M, not shown); and (c) folded configuration
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described in the section “Geometrical and Analytical Properties.”
The maximum strain in the fold region is also predicted.

It is assumed that the tape spring is made from a composite
laminate, where lamina k—which is assumed to be in a state of
plane stress—is orthotropic and has elastic stiffnesses Q;;, i.e.,
(Jones 1999)

0y Oy Op O €
0, |=|01 On O € (1)
0 Qs L V12

where the stress/strain axes 1 and 2 are aligned with the fiber
directions.

A standard transformation of Eq. (1) to the global curvilinear
coordinate system x,y,z shown in Fig. 3(a) gives

T2 0

o, 0, 01 O €,
o, =01 0n 0kl (2)
Txy O 0z O |LT™

The tape springs that are of specific interest for the present study
have the 1,2 coordinate system at 45° to x,y, hence

(_2 16= st =0 (3)
Assuming that plane sections remain plane, the laminate stiff-

ness matrix is obtained from classical lamination theory (Jones
1999)

N, €
N'v €,0
No | _|A Blv),
Y — ’Y,xy ( 4 )
M, B D]| «,
M, K,
= Mxy - b ny -

Eq. (4) is a relationship between the stress resultants per unit
length—i.e., the normal and in-plane shear forces per unit length,
N,,Ny,N,,, and bending and twisting moments per unit length,
M, .M, ,M,—with the corresponding deformation variables—
i.e., the midplane strains, eg,eg,ygv, and the mid-plane curvatures,
K., Ky, Ky, The sign convention for deformations is that they are
positive in a sense such that the corresponding positive stress
resultants do positive work.

If the prepregs are arranged symmetrically, as it is the case for
the tube hinges that are being considered in this paper, we have a
symmetric laminate and hence B=0 (Jones 1999). Therefore,
stretching and bending are decoupled and, since no stretching of
the midsurface of the tape spring will be allowed, only the D
matrix is of interest for the rest of the analysis.

In general (Jones 1999)

[
D=2 Q@) - @e)’) (5)
k=1

where n=number of laminas and k=1 is the bottom lamina. From
Egs. (3) and (5) D s=D,,=0. Therefore

M, Dy Dy || &y
= (6)
My D12 D22 Ky
and the third relationship is simply M, =Dk, which, however,

will not be needed for the rest of the analysis, as x and y are axes
of principal curvature in the fold region, i.e., ny:O.

Radius of Curvature of Fold Region

Consider a tape spring in which a localized elastic fold has been
formed, as shown in Fig. 3(c). Here { denotes the angle of the
fold—i.e., the angle between the almost straight zones on either
side of the fold—and r the longitudinal radius of curvature of the
fold region. For isotropic tape springs Rimrott (1970) and Calla-
dine (1988) have shown that r=R by minimizing the total strain
energy in the fold region with respect to r, for a given angle .
Their derivation assumes that the transition regions are unaffected
by a change of r and hence need not be considered in the analysis;
the same simplifying assumption will be made in the present
analysis.

In the initial configuration the tape spring has principal curva-
tures (0,+1/R) in the x and y directions, respectively, every-
where. In the deformed configuration these principal curvatures
become (+1/r,0) for equal sense bending and (-1/r,0) for
opposite-sense bending, in the fold region. Hence, the principal
curvature changes in the fold region are

I 1
Ak, Ak,) = (i—,— —) 7
(Ak,,Ak,) TR (7)
where the positive and negative signs in the first term refer to
equal and opposite sense bending, respectively.

The bending strain energy per unit area of shell is given by
Mansfield (1989)

u= %[AKX AK\]|:$X:| (8)

y

Substituting Eq. (6) and expanding

u= %(DHAK)ZC +2D Ak, Ay + D22AK§) 9)

To obtain the total strain energy, the energy per unit area is mul-
tiplied by the area of the fold region, Rr{s0. Then, substituting Eq.
(7) and simplifying

ROW (D 2D D
U=—¢<J1—12+—r 2”) (10)
2 r R R
Minimizing U with respect to r
dU Re¢( Dy, D22>
—=—"\|-—+—75 /=0 11
dr 2 P R (1)
which gives
D
r=1/ R (12)
Dy,

An expression identical to Eq. (12)—but considering only
opposite-sense bending—was obtained by Schulgasser (1992).
Note that for isotropic tape springs D;;=D,, and hence r=R, as
already known; also note that the radius of the fold is independent
of the sense of bending.

Maximum Strains in Fold Region

Since the fold region is subject to pure bending and the laminate
is symmetric, €, and €, are zero on the midplane. They vary
linearly through the thickness and their maximum values are
reached on the top and bottom surfaces of the tape spring
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Table 3. Analytical Predictions of Maximum Strains (%) in One-Ply
[+45°] Tape Spring

Bending mode Location €, €, €
Equal sense +t/2 2.08 -2.08 0.0
—t/2 -2.08 2.08 0.0
Opposite sense +t/2 -2.08 -2.08 -2.08
—t/2 2.08 2.08 2.08
t t
€= EAKX, €, == EAK}, (13)

where the positive and negative signs correspond to z=+17/2 and
z=—1/2, respectively. Substituting Eqs. (7) and (12) into Eq. (13)
the maximum principal strains are found to be

=z 221 (14)

where the sign is + for equal-sense bending and z=+1¢/2, or for
opposite-sense and z=—¢/2; whereas the sign is — for equal-sense
bending and z=-¢/2, or for opposite-sense and z=+17/2. And

_t
€=F —

y R (15)

where the sign is — at z=+1¢/2 and + at z=—1/2, regardless of the
sense of bending. Since x and y are principal directions of curva-
ture, v,,=0.

The corresponding stresses can be obtained from Eq. (2)
which can be reduced to

|:0-x:|= Qll le |:€x:| (16)
Oy le sz €

Application to One-Ply Tape Spring
A 0.27-mm thick one-ply tape spring with fibers at +45° and —45°
is considered. The lamina stiffness matrix, Q;;, the transformed

lamina stiffness matrix, Qij, and the relevant part of the laminate
stiffness matrix can be readily calculated from the experimental
data presented in Table 1, using VISILAM (Avery 1998)

0,1=05,=29.1 X 10* N/mm?

0,,=20.1 X 10> N/mm?
and

D]] =D22=477 N mm

D, =33.0 Nmm
Since D;=D,,, Eq. (12) gives
r=R=6.5 mm (17)

and hence this tape spring behaves like an isotropic one.

The maximum principal strains on the top and bottom surfaces
of the tape spring can then be obtained from Egs. (14) and (15),
and are presented in Table 3. It is particularly useful to compute
the strain along the fibers, €, by means of a strain transformation,
as its value can then be compared to the failure strain in bending
of a single-ply lamina, quoted in the section entitled “Geometrical
and Material Properties.” The value of €, in the direction +45° is

springs B, C

spring A
(b)

Fig. 4. Typical finite element models of (a) tape spring and (b) tube
hinge

presented in the last column of Table 3. The maximum strains in
a two-ply [+£45°], tape spring can be calculated in a similar way.

Simulation of Folding Process

Detailed simulations of the folding of a single tape spring and of
a complete tube hinge, consisting of three identical tape springs,
were carried out with the ABAQUS (2003) finite element package.
Both one-ply and two-ply tape springs were analyzed, and the
linear-elastic material properties presented in Table 1 were as-
sumed.

One reason for carrying out these simulations is to assess the
accuracy of the simple analytical model presented in the previous
section, and to identify any limitations. Also, by comparing the
deformation of a single tape spring with that of a tape spring that
is part of a tube hinge, one can better understand the behavior of
tube hinges, and thus obtain simple estimates of the maximum
strains caused by folding.

Finite Element Model

Since the interaction between the bending and stretching stiff-
nesses of the tape springs that make up a tube hinge plays an
important role in determining its overall structural behavior, thin
shell elements are clearly the most appropriate choice. ABAQUS
Standard (2003) offers several shell elements, and preliminary
runs were carried out with four-node quadrilateral full integration
general purpose elements (S4); these elements have six degrees of
freedom at each node. Four-node reduced integration shell ele-
ments (S4R5) with five degrees of freedom per node were also
investigated. Eventually, the latter element was adopted, as it per-
forms well for large rotations with only small strains, uses re-
duced integration with hourglass control to prevent shear locking,
and is computationally economical.

A typical mesh for a tape spring involved 200 elements length-
wise by 30 elements widthwise. The mesh for a complete tape
tube hinge had a similar mesh density, and hence the number of
elements was proportionally larger, see Fig. 4.

Simulation Techniques

The multiple point constraint (MPC) option was used to define
the boundary conditions. For both the tape spring and the tube
hinge models, the nodes on either end were tied to a MPC node,
located at the centroid of the end cross section, through rigid
beam elements. The main reason for locating the MPC nodes at
the centroid is that at the beginning of the loading process the
structure will thus be under pure bending when rotations are ap-
plied at the ends.

The three tape springs that constitute a tube hinge come into
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Fig. 5. Folding sequence of tape spring subject to opposite-sense
bending: (a) =0°; (b) y=30°; (¢) y=113°; and (d) y=170°

contact during the folding process; hence contact between these
tape springs needs to be suitably modeled. ABAQUS defines the
contact conditions between two bodies using a strict “master-
slave” algorithm. The (*CONTACT PAIR) option needs to be
specified for the two deformable surfaces, one of which is defined
as the master surface and the other as the slave surface. In addi-
tion, the INTERACTION parameter is used to associate the con-
tact pairs being defined with a surface interaction model, such as
friction. The SMALL SLIDING parameter was chosen, instead of
the standard FINITE SLIDING, to achieve greater sensitivity to
local initial gaps at the interface, caused by mismatch in the dis-
cretization of meshed surfaces that come into contact. The SLID-
ING parameter sets up a slave node that interacts with the same
region of the master surface throughout the analysis, despite the
large displacements that occur during the simulation. The SUR-
FACE BEHAVIOR parameter was set to the default,
PRESSURE-OVERCLOSURE=HARD; this option provides ar-
bitrarily large contact forces as soon as the surfaces come into
contact.

After having unsuccessfully attempted to use the default con-
tact definition, a symmetric master-slave approach was adopted,
i.e., two sets of contact pairs were defined for the same two sur-
faces, switching the roles of master and slave between the two
surfaces. Despite involving additional computations, this ap-
proach was found to provide improved convergence and greater
accuracy.

A geometrically nonlinear (*NLGEOM) incremental analysis
was carried out using the Newton—Raphson solution method, with
automatic stabilization provided through the STABILIZE func-
tion. This solution option automatically introduces pseudoinertia
and pseudoviscous forces at all nodes when an instability is de-
tected. Instead of continuing with the standard quasi-static analy-
sis, Abaqus automatically switches to a pseudodynamic integra-
tion of the equations of motion for the structure, thus avoiding
numerical singularities. The pseudoviscous forces are calculated
based on the model’s response in the first increment of the analy-
sis step, by assuming that the dissipated energy is a fraction of the
strain energy during the first step. This fraction is known as
damping intensity, and has a default value of 2X 107, To attain
accurate results, it is desirable to set this parameter to the lowest
value at which convergence is achieved. In most of the analyses
presented in the next section the damping intensity was set to
11078,

Results

This section presents the finite element simulation results for both
the tape spring and the tube hinge, and compares the maximum
strains and fold radii obtained from these detailed analyses with
results from the simple analytical model presented in the section
entitled “Analytical Estimates.”

+069%
{a}

fafafe s tibabd

SERERS98 R
EELLER R

Fig. 6. (Color) Principal strains on surface z=+¢/2 of one-ply tape
spring under opposite-sense bending: (a) maximum principal strain,
€,; and (b) minimum principal strain, €,

Folding of Tape Spring

Fig. 5 shows a series of snapshots from the folding sequence of a
one-ply [+45°] tape spring subject to opposite-sense bending,
under monotonically increasing end rotations of the two MPC
nodes. The tape spring has a cross-sectional radius R=6.5 mm
and subtends an angle 6=130°.

The FE simulation provides the entire strain field in the folded
tape spring, from which a key assumption of the analytical model,
namely that both the longitudinal and transverse curvatures are
uniform throughout the fold region, can be verified.

Figs. 6 and 7 show contour plots of the principal strains for
opposite-sense and equal-sense bending of the tape spring, re-
spectively. Only the strains on the surface z=+1/2 are shown, as
the distribution on the opposite surface is practically identical, but
with the sign reversed, thus indicating that the shell is in pure
bending throughout. This observation confirms the validity of a
key assumption made in setting up the analytical model, namely
that the mid-plane normal strains are negligibly small. Note that
the strain distribution is uniform through the central part of the
tape spring, corresponding to the fold region, hence confirming
that this region is uniformly curved. Also note that under
opposite-sense bending—which causes high biaxial compressive
strains in the fold region—high tensile strains occur in four corner
regions that are symmetrically located with respect to the fold, see
Fig. 6(a).

Of particular importance to the design of a composite tape
spring is the peak strain along the fibers, €;, which has been
plotted in Fig. 8 for the particular fibers at +45° to the axis of the
tape spring. The first thing to note in Fig. 8§ is that the largest
strain, of around —2.3%, occurs when the tape spring is subject to
opposite-sense bending; this result agrees with the analytical pre-

013 %

EEE
FELPELEL2,

Pl R R = s e O3 B

1B}

Fig. 7. (Color) Principal strains on surface z=+¢/2 of one-ply tape
spring under equal-sense bending: (a) maximum principal strain, €,;

and (b) minimum principal strain, €,
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Fig. 8. (Color) Strain along fibers at +45°, on surface z=+1/2 of
one-ply tape spring for (a) opposite-sense bending and (b) equal-
sense bending

dictions in Table 3. In the case of opposite-sense bending, Fig.
8(a), fairly large tensile strains occur in two small regions on
either side of the fold. There are only two such regions, not four
as in the case of principal strains, because here we are considering
the strain along one particular set of fibers. In the case of equal-
sense bending, Fig. 8(b), the strain in the central part of the fold
region is quite small—again, as expected from Table 3—and so
the largest strains occur in the small regions on either side of the
fold. These peak localized strains, of up to —1.3%, are much
smaller in magnitude than the maximum fiber strains for the case
of opposite-sense bending, which are —2.4%.

The characteristic tape-spring behavior that has been seen
throughout this paper, where the deformation is concentrated in a
uniformly curved fold region—as opposed to the uniform defor-
mation that would be observed in a flat strip subject to the same
end rotations—requires that the angle 0 subtended by the cross
section be sufficiently large to trigger this type of behavior. How
large this angle needs to be depends on the interaction between
out-of-plane bending and in-plane stretching, as well as on the
degree of anisotropy of the tape spring.

In the absence of a general, analytical expression for this lim-
iting value of 0, a parametric study was carried out into the effect
of gradually increasing 6 in one-ply [+45°] and two-ply [+45°],
tape springs. The study focused on tape springs under opposite-
sense bending but, once the critical value of 6 had been identified,
it was checked that the same value of 6 would give the same type
of behavior also for equal-sense bending. In all cases, a total
rotation y=170° of one end of the tape spring, with respect to the
other end, was imposed.

The results of this study, in terms of the variation of the radius
of longitudinal curvature at the center of the tape spring, and the
peak tensile and compressive strains are presented in Table 4.
Because 6 does not appear in Eq. (12), the analytical prediction
for r is 6.50 mm in all cases.

For the smaller 6’s the longitudinal radius of the fold region, r,
of the one-ply tape spring is about 50% larger than the transverse
radius of the undeformed cross section, R=6.5 mm. The maxi-
mum strains are inversely proportional to the curvature, and
hence much smaller. For reference, note that a 50 mm long, flat
strip subject to a total rotation $=170°(=2.97 rad) would have
r=50/2.97=16.8 mm. Hence, clearly some localization of the de-
formation has already been achieved for 6=70°, although the fold
radius continues to become tighter until 6=130° in the one-ply
tape spring and 6=150° in the two-ply one.

Table 4. Fold Radii and Maximum Strains in Tape Springs from
ABAQUS

Laminate Bending mode 0 (deg) r (mm) € (%)
One-ply Opposite sense 70 9.27 -1.91, 1.77
[+45°] 90 8.11 -2.01, 1.97
110 7.35 -2.17, 2.10
120 6.96 -2.27,2.17
130 6.52 -2.37,2.25
Equal sense 130 6.57 -1.26, 1.02
Two-ply Opposite sense 130 7.16 -3.78, 3.61
[+45°], 140 6.65 -3.93,3.73
150 6.49 -4.10, 3.88
Equal sense 150 6.53 -2.06, 1.68

Folding of the Tube Hinge

Fig. 9 shows four configurations of a one-ply tube hinge. In Fig.
9(a) the tube hinge is undeformed, hence {s=0. In Fig. 9(b), cor-
responding to a rotation i =43° between the two ends, a local-
ized fold has formed in Spring A, which is under opposite-sense
bending. Springs B and C are under equal-sense bending plus
some twisting. Two localized folds have formed in each spring,
but so far have joined up only on one edge. The first contact
between Spring A and Springs B and C occurs at = 79°; they
remain in contact from then on. Fig. 9(c), corresponding to
=~ 82°, shows a single localized fold in each tape spring, with
the fold in Spring A providing an outer constraint for the folds in
Springs B and C. In Fig. 9(d), corresponding to a rotation
= 170°, the end tubes also come into contact. This interference
can be avoided by adding two small, equal and opposite shear
forces at the ends of the tube hinge, in addition to the pure mo-
ments which have driven the folding process.

Fig. 10 shows contour plots of the surface strains along the
fibers at +45°. It is interesting to note that the strain distribution in
the outer surface of Spring A, Fig. 10(a), is similar to that on the
surface z=+1/2 of a tape spring on its own, Fig. 8(a). Also, the
strain distribution on the inner surface of Spring A, Fig. 10(b), is
essentially equal and opposite to that on the outer surface. This
indicates that, as already for the case of a tape spring on its own,
the midplane strains are again negligibly small.

\

spring A
spring A
(@

Fig. 9. Folding sequence of tube hinge: (a) y=0°; (b) y=43°; (c)
~=82°; and (d) y=170°
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Fig. 10. (Color) Strain along fibers at +45° for one-ply tube hinge.
Spring A, (a) outer surface and (b) inner surface; Spring B, (c) outer
surface and (d) inner surface

Figs. 10(c and d) show contour plots of the surface strains on
Spring B; note that they are generally much smaller than in
Spring A; the peak values are about half of those in Spring A. It is
interesting to note that, because Spring B has been twisted as well
as bent, the regions of high localized fiber strain magnitudes in
Figs. 10(c and d) are both on the same edge of the tape spring,
whereas in Fig. 8(b) they are on either edge.

The moment-rotation plot obtained from this simulation is
shown in Fig. 11. Note that the hinge behaves approximately
linearly for rotations ¢ <<7.7°; at =7.7° a limit point is reached
and the corresponding moment is 940 N mm. The tube hinge then
gradually softens, reaching a minimum moment of =236 N mm
which remains practically constant over a large range of {s. The
response upon unloading has not been investigated.

If the direction of ¥ is reversed the hinge response is again
initially approximately linear, but this time Springs B and C are
under opposite-sense bending and so the limit moment is higher,
—1,363 N mm, at a rotation {y=1.5°. As for positive moments, the
tube hinge then softens, reaching a minimum moment amplitude
of =362 N mm at i=—42.2°.

A comparison of the fiber strains predicted by the simple ana-
Iytical model with the finite-element predictions, using both the
single tape-spring model (recall that here the angle subtended is
6=130°) and the complete hinge model (here each tape subtends
an angle 6=70°), is presented in Table 5. Note that the analytical
predictions for the largest fiber strain—which occur in the tape

B0 b

Moment (Nmm)
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Fig. 11. Moment-rotation finite-element relationship for one-ply
tube hinge

Table 5. Maximum Strains (%) along Fibers in Tube Hinges

ABAQUS
Bending Tape Tube
Laminate Spring mode Location Analytical  spring hinge
One-ply A Opposite Outer  -2.08 -2.37 -2.41
[x45°] sense Inner 2.08 2.25 2.34
B,C Equal Outer 0.00 -1.26,1.23 -1.20, 1.20
sense Inner 0.00 1.02, -1.33 -1.27, 1.04
Two-ply A Opposite Outer  -3.62 -4.10 -3.72
[+45°], sense Inner 3.62 3.88 3.31
B,C  Equal Outer 0.00 -2.06, 1.90 -1.58, 1.48
sense Inner 0.00 -2.02, 1.68 —1.61, 1.48

spring under opposite-sense bending—are underestimated by 10—
15% when compared with the most accurate estimate, i.e., the
complete hinge model. The analytical predictions for the maxi-
mum fiber strain in Springs B and C, which are under equal-sense
bending, are not accurate—for the reasons already discussed in
the section entitled “Folding of Tape Spring.” However, note that
in these springs the peak strains are about half of those in
Spring A.

Discussion and Conclusions

The first part of this paper has presented an extension to ortho-
tropic shells of Rimrott’s (1970) and Calladine’s (1988) analytical
model for predicting the longitudinal fold radius, r, of the uni-
formly curved region at the center of an isotropic, tape spring
with transverse radius of curvature R. It has been shown that

/D
r=/ =R (18)
D22

for both equal- and opposite-sense bending of the tape spring. The
corresponding principal strains and stresses in this curved region,
which are in the longitudinal and transverse directions, can be
estimated from Egs. (14)—(16). From these, the peak fiber strains
can be obtained from a standard strain transformation.

Next, a detailed study of the deformation and strains induced
by folding CFRP tape springs and tube hinges with a +45° lay-up
has been presented. This study has shown that the largest fiber
strains in tape springs under opposite-sense bending occur in the
uniformly curved fold region and can be predicted analytically
with good accuracy. The same approach also gives accurate pre-
dictions for the maximum principal strains in tape springs under
equal-sense bending, which also occur in the uniformly curved
fold region. However, in this case the maximum fiber strains
occur in small regions at the edge of the fold, and for two specific
cases that have been analyzed in detail it has been found that
these maximum fiber strains are around 50% of the maximum
principal strain in the fold region.

It thus follows that the design of composite tape springs is
significantly different from that of metallic tape springs, mainly
because yielding in metals takes place under high shear. A metal-
lic tape spring is closest to yielding when it is under equal-sense
bending; in this case the maximum shear stress, T,,,, 1S approxi-
mately equal in magnitude to the longitudinal and transverse
stresses (which have opposite signs). On the other hand, when a
metallic tape spring is under opposite-sense bending, 7,,,,=~0 in
the fold region, as the two principal stresses are approximately
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equal. All of this is opposite to a composite tape spring with fibers
at +45 and —45°, which fails when the fiber strain is too high.

A parametric study of the effects of varying the angle 6 sub-
tended by the cross section has been conducted, showing that the
longitudinal radius of curvature at the center of a folded one-ply
[+45°] tape spring decreases by about 30% when 6 is increased
from 70 to 130°. Thus, a tape spring with 6= 130° fully shows
the characteristic, localized fold that is observed in steel tape
measures, both for opposite-sense and equal-sense bending. The
two-ply [+45°], tape spring also converges to the analytically
estimated value of r, but an even larger subtended angle,
0=150°, is required. Clearly, the increased bending stiffness of
the thicker laminate requires a larger subtended angle for the
stretching-dominated behavior to take over.

From a design viewpoint, the principal attraction of tape
springs with larger 0’s is that they snap firmly into the straight
configuration—a very attractive feature in the design of self-
latching hinges—and form well-identified folds with radius of
curvature insensitive to the fold angle. However, smaller 6’s will
generally result in smaller strains.

Finally, an 82 mm long tube hinge with a diameter of 13 mm,
consisting of three tape springs has been investigated. It has been
found that contact between the tape springs occurs at fold angles
of around 80°, but does not affect substantially the distribution
and magnitude of the maximum fiber strains. A finite-element
analysis of a single tape spring with identical properties to the
tape springs that make up the tube hinge provided, for both cases
that have been considered, conservative estimates of the peak
strains. These estimates were particularly accurate for the single-
ply tube hinge.

It has been shown (in Table 5) that an 82-mm-long tube hinge
with a cross-sectional radius of 6.5 mm and 50-mm-long tape
springs would be subject to a maximum fiber strain of —2.4% in
the folded configuration, if made from a one-ply, 0.27-mm-thick
913C-814-40% prepreg with fibers at +45 and —45° to the longi-
tudinal axis. This strain is just within the limit of the material. A
tube hinge made from a two-ply laminate, would be 0.47 mm
thick and would be subject to maximum strains well in excess of
the material limit. For this laminate to survive the folding process,
the cross-sectional radius of the tube should be increased, or at
least the radius of the tape spring that goes into opposite-sense
bending.

In concluding, it is noted that the limiting strains measured by
Yee and Pellegrino (2005) were obtained from uniaxial bending
tests. Biaxial bending test data are currently unavailable.
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Notation

The following symbols are used in this paper:

= bending stiffness;

length of tape spring;

= bending or twisting moment per unit length;
normal or in-plane shear force per unit length;
number of laminas;

= =ZXI~0
|

Q,-j,Qi' = lamina stiffnesses;

= initial transverse radius of curvature;
= longitudinal radius of curvature of fold region;
= thickness;

= total strain energy;

= strain energy per unit area;

shear strain;

= change;

normal strain;

bending or twisting curvature;

normal stress;

shear stress.

angle subtended by cross section; and
= fold angle.

~

S o2a 8 FAmn bR T4~ X
|

Subscripts

k lamina index;
x,%z = longitudinal, transverse, and normal directions;
and
1,2 = fiber directions.
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