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Closed-Loop Deployable Structures
W.W. Gan∗ and S. Pellegrino†

University of Cambridge, Cambridge, CB2 1PZ, UK

This paper is concerned with a novel kind of deployable structures that form closed
loops that fold into a bundle of bars using simple hinges. These structures, first envisaged
by Dr J.M. Hedgepeth, have potential applications for ultra-lightweight solar arrays, solar
sails, and radar structures. A systematic study of the kinematics of closed-loop structures
is carried out, and a scheme for simulating the deployment of both symmetric and non-
symmetric linkages is presented.

Introduction and Background
Many deployable structures form single or multiple,

often interlaced, closed loops. Some of these structures
form space frames, and have already had a variety of
applications,1,2 but this paper is concerned with a dif-
ferent type of structure, a kind of mechanical linkage
that forms a segmented hoop that folds into a bundle
of bars.
The first application of this type of structure was en-

visaged, to our knowledge, in a study co-authored by
J.M. Hedgepeth in 1973.3 Figure 1 shows an example
of the main solution proposed, which was later adopted
in the edge beam of the Hoop-Column Antenna, see
Figure 2. In these structures the rim consists of an
even number (four or more) of equal-length hinged
segments and each joint involves two hinges and an
intermediate block. However, Appendix A of Ref. [3]
considered an alternative hinging method, which ap-
parently had been suggested by A. Buseman during a
progress review meeting at NASA Langley.4

This alternative solution is illustrated in Figure 3
and is the object of the present study. An advantage
over the previous scheme is that it requires half the
number of hinges and can provide better controlled de-
ployment. Although new as a deployable structure, the
four-sided version of this linkage is an example of the
classical 4-bar linkage discovered in 1903 by the Cam-
bridge mathematician G.T. Bennett.5 The six-sided
version of this linkage was also known, as it had been
discovered by M. Goldberg in 1943.6 It is shown as
model H on the right-hand side of Figure 4, together
with many other models made by Goldberg.
Structures of this kind have potential applications

for solar arrays —as envisaged in Ref. [3]— and also
solar sails. They could also be used to deploy and sup-
port flexible active surface for SAR structures. Here
the configuration that is most frequently required is
rectangular, and preliminary studies of closed-loop
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Fig. 1 Two-hinge method for deploying rim (from
Ref. [3]).

structures whose fully-deployed configuration is rect-
angular have been carried out.7 For example, Figure 5
shows a six-bar structure with self-locking hinges that
forms a rectangular frame.
In this paper we present a systematic study of the

kinematics of closed-loop structures. The proposed ap-
proach is suitable for both symmetric linkages —such
as those envisaged in Ref. [3]— and for much less sym-
metric structures such as that of Figure 5.

Modelling of Closed-Loop Linkages
A general formulation for linkages connected by rev-

olute joints is naturally set up by considering a series
of sets of cartesian coordinate axes, as explained next.
Given a fixed coordinate system, O,X, Y, Z, the

general position and orientation of a local coordinate
system, P1, x1, y1, z1, can be described by a translation
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Fig. 2 Deployment of Hoop-Column Antenna
(from Ref. [3]).

a

α1

α3

Fig. 3 One-hinge method for deploying rim (from
Ref. [3]).

Fig. 4 Models made by Goldberg (from Ref. [6]).

Fig. 5 Deployable 6-bar structure with self-locking
hinges.

from O to P1 followed by a rotation to P1, x1, y1, z1.
The two quantities that describe this transformation
are a vector v1 (3×1) and a matrix R1 (3×3). Follow-
ing Denavit and Hartenberg8 it is convenient to write
them as a single 4×4 matrix

T1 =




R1 v1

0 0 0 1


 (1)

Here R1 is defined according to the standard x-
convention for the Euler angles φ, ω, ψ that transform
the global coordinates system into x1, y1, z1

9

R1 =



cosφ − sinφ 0
sinφ cosφ 0
0 0 1






1 0 0
0 cosω − sinω
0 sinω cosω






cosψ − sinψ 0
sinψ cosψ 0
0 0 1


 (2)

Note that R1 transforms the local coordinates
x1, y1, z1 into the global coordinates X,Y ,Z.

O

R    1
Z  

Y

X   

x   

x   1

z   

y   

z   1

y   1
P   1

v   1

Fig. 6 General transformation of a coordinate sys-
tem.

Next, consider a further transformation of this set
of axes, from P1, x1, y1, z1 to P2, x2, y2, z2 as shown in
Figure 7. This transformation is represented by

T2 =




R2 v2

0 0 0 1


 (3)
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Fig. 7 Transformation from P1, x1, y1, z1 to
P2, x2, y2, z2.

where v2 = P1P2 and its components are defined in the
local coordinate system P1, x1, y1, z1 and hence trans-
form from P1, x1, y1, z1 to P2, x2, y2, z2. The relative
rotation R2 transforms from the system x2, y2, z2 to
x1, y1, z1; note that this goes in the opposite direction
to v2.
Consider the compound transformation T1,2, i.e. T1

followed by T2. The translation vector is v1 followed
by R1v2, because the second translation needs to be
transformed to the first coordinate system, hence

v1,2 = v1 +R1v2 (4)

The rotation matrix is obtained from

X = R1x1

x1 = R2x2

Hence,

X = R1R2x2 (5)

Therefore, clearly

T1,2 =




R1R2 v1 +R1v2

0 0 0 1


 (6)

This can also be obtained by post-multiplying T1 by
T2:

T1 × T2 =




R1 v1

0 0 0 1







R2 v2

0 0 0 1




=




R1R2 v1 +R1v2

0 0 0 1


 (7)

Z
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v   1,2

R     1,2

Fig. 8 Compound transformation T1,2, i.e. T1 fol-
lowed by T2.

A more general compound transformation, consist-
ing of n transformations can be expressed as

T1,n = T1 × T2 × . . .× Tn

=




R1 v1

0 0 0 1


 . . .




Rn vn

0 0 0 1


(8)

and is useful in describing the configurations of a link-
age of n rods connected by revolute joints.

Closed Loop Linkages
We will describe a general method of analysis for

closed loop linkages consisting of n rods connected by
revolute joints. We will describe first the case n =
4, which corresponds to a Bennett linkage. Figure 9
shows a square framework that folds into a compact
bundle of rods. This model is made from wooden bars
connected together by “door” hinges. During folding,
the model preserves two planes of symmetry, and one
2-fold symmetry axis.

Single Rod with 2 Joints

Consider a rod with two non-parallel revolute
joints attached to the ends. Its geometry can be
represented by the transformation matrix T1, where
v describes the direction and length of the member
and R describes the relative orientation of the two
joints. If the rod has unit length (a2+d2 = 1), we have

v =



a
0
d


 =




√
6

3
0√
3

3




The relative orientation of the two revolute joints is
obtained by performing a series of elementary rota-
tions φ, ω and ψ, respectively, about the z, ξ′ and ζ ′
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Fig. 9 Model of four-member frame (Bennett link-
age).

axes, as shown in Figure 10. Here

φ = −30◦

ω = +90◦ + tan−1(1/
√
8) = +109.47◦

ψ = −150◦

The corresponding transformation matrix is

T1 =




− 2
3

√
3

3 −
√

2
3

√
6

3√
3

3 0 −
√

6
3 0

−
√

2
3 −

√
6

3 − 1
3

√
3

3
0 0 0 1




Two Rods Connected by a Joint

Consider the two rods OP1 and P2P3, as shown in
Figure 11, connected at point A where P1 = P2. The
second member P2P3 is arranged in such a way that
x1 is collinear with x2 when the hinge rotation θA is
zero.
We can write the following expression for the trans-
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z  = ζ'   1
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y   1
z    1
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Fig. 10 Formulation of transformation matrix for
element of Bennett linkage.

formation matrix

T1,3 = T1 × TθA
× T3

=




R1 v1

0 0 0 1






cos θA − sin θA 0 0
sin θA cos θA 0 0

0 0 1 0
0 0 0 1







R3 v3

0 0 0 1




Note that the hinge rotation appears only in the ma-
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Fig. 11 Two rods of a Bennett linkage.

trix in the middle; T1 and T3 are constant.

Closed Loop of Four Rods

By an obvious extension of the above two-rod exam-
ple we can formulate a closed-loop, four-rod linkage as
the product of four constant matrices and four angle-
dependent matrices:

T1 × TθA
× T3 × TθB

× T1 × TθC
× T3 × TθD

= I (9)

Here, the identity matrix on the right-hand-side im-
poses the condition that the loop should remain closed
in all configurations, and hence (i) the first and last
points are the same, and (ii) the axes of rotation of
the first and last revolute joints coincide. We will call
this equation the loop closure equation.

Loop of n Rods

Consider a closed loop of the type shown in Figure 3,
consisting of n rods with identical cross-section, their
cross-section being isosceles triangles. For these rods
to fit together as a bundle in the folded configuration,
the apex angle of the isosceles triangle must be

α1 =
2π
n

(10)

We also define
α2 =

1
2
α1 (11)

Finally, consider a radial section of the structure in its
deployed configuration, Figure 3, through one of the
hinges. This section is also an isosceles triangle, and
the angles at the base are

α3 = arctan(sinα2 tanα2) (12)

The hinges are mounted alternately on the inner and
outer side faces of the isosceles triangles.
Hence, we can obtain the following expressions for

the angles φ, ω, ψ and the lengths a, d

φ1 = − arctan(tanα2 sinα3)

ω1 =
π

2
+ arctan

y√
x2 + z2

ψ1 = −π − φ1

a1 = cosα3

d1 = sinα3

where

x = cosα3 tanα3 − sinα3 cosα1

y = sinα3 tanα3 + cosα3 cosα1

z = sinα1

The corresponding expressions for the second rod are

φ2 = −φ1

ω2 = −ω1

ψ2 = −ψ1

a2 = a1

d2 = d1

Using these expressions, we can set up the loop
closure equation for this linkage. It is analogous to
Equation 9, but now includes n constant matrices and
n angle-dependent matrices.
The hinge angle for which the linkage is fully de-

ployed is

θA = arccos[1−2 cos2 α3(sin(
π

2
− π
N

)+sin2 α2 tanα3)2]

Analytical Solution of Loop Closure
Equation

For the Bennett linkage symmetry can be assumed,
hence θA = θC and θB = θD. Thus, Equation 9 can
be simplified to






− 2
3

√
3

3 −
√

2
3

√
6

3√
3

3 0 −
√

6
3 0

−
√

2
3 −

√
6

3 − 1
3

√
3

3
0 0 0 1






cos θ2 − sin θA 0 0
sin θA cos θA 0 0

0 0 1 0
0 0 0 1







− 2
3 −

√
3

3 −
√

2
3

√
6

3
−

√
3

3 0
√

6
3 0

−
√

2
3

√
6

3 − 1
3

√
3

3
0 0 0 1






cos θB − sin θB 0 0
sin θB cos θB 0 0

0 0 1 0
0 0 0 1







2

= I
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and solving this equation symbolically yields

θB = tan−1
(
2
√
3 cos2 θA − 3 sin θA cos θA

+3 sin θA − 4
√
3 cos θA + 2

√
3
)

/ (
− cos2 θA − 2

√
3 sin θA cos θA

+2
√
3 sin θA − cos θA + 2

)
(13)

A plot of θA against θB is shown in Figure 12.
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Fig. 12 θA vs θB for Bennett linkage.

Numerical Solution of Closure Equation
Here we present a general solution method, based on

a predictor-corrector scheme suitable for implementa-
tion in a standard Newton-Raphson iteration, for the
loop closure equation. For definiteness, we refer to a
Bennett linkage. We assume that the linkage is given
in its initial configuration, e.g. the hinge angle s θA0 ,
θB0 , θC0 and θD0 are equal to zero and all four rods fit
together as a bundle.

Predictor Step

From the closure equation

T1 TA0 T3 TB0 T1 TC0 T3 TD0 = I (14)

Consider small geometry changes in each hinge with
zero strain or deformation in the rods. For the linkage
to remain intact it needs to satisfy the equation:

T1 TA T3 TB T1 TC T3 TD = I (15)

where TA, TB , TC and TD correspond to the general
configuration defined by θA, θB , θC and θD. Consider
the Taylor expansion of the hinge angles. By ignoring
higher-order terms we have

sin(θA0 +∆θA0) ≈ sin θA0 + cos θA0(∆θA0)
cos(θA0 +∆θA0) ≈ cos θA0 − sin θA0(∆θA0)

Substituting into, e.g. the transformation matrix TA,
yields

TA =



cos(θA0 +∆θA0) − sin(θA0 +∆θA0) 0 0
sin(θA0 +∆θA0) cos(θA0 +∆θA0) 0 0

0 0 1 0
0 0 0 1




� TA0 +




− sin θA0 − cos θA0 0 0
cos θA0 − sin θA0 0 0

0 0 0 0
0 0 0 0


 ∆θA0

= TA0 + UA0 ∆θA0 (16)

where UA0 is the derivative of TA calculated at A0.
Substituting Equation 16 and similar into (14) yields

T1 (TA0+UA0∆θA0) T3 (TB0+UB0∆θB0) · · · = I (17)

Expanding Equation 17 and rearranging, we have

T1TA0T3TB0T1TC0T3TF0

+(T1UA0T3TB0T1TC0T3TD0) ∆θA0

+(T1TA0T3UB0T1TC0T3TD0) ∆θB0

+(T1TA0T3TB0T1UC0T3TD0) ∆θC0

+(T1TA0T3TB0T1TC0T3UD0) ∆θD0 = I (18)

From Equation 14, the first term of Equation 18 is
equal to the identity matrix. Hence, the sum of
the remaining terms must be zero. Defining A =
T1UA0T3TB0T1TC0T3TD0 , etc. this equation can be re-
arranged into

A∆θA0 +B∆θB0 + C∆θC0 +D∆θD0 = [0] (19)

where [0] is a 4×4 null matrix. It is interesting to note
the form of these matrices




0 a1,2 a1,3 a1,4
−a1,2 0 a2,3 a2,4
−a1,3 −a2,3 0 a3,4
0 0 0 0


∆θA0

+




0 b1,2 b1,3 b1,4
−b1,2 0 b2,3 b2,4
−b1,3 −b2,3 0 b3,4
0 0 0 0


∆θB0 + . . . = [0](20)

At first glance, the matrix equation (20) would ap-
pear to be equivalent to 9 scalar equations in 4 un-
knowns, not 16, since the 7 equations corresponding
to the diagonal and the last row are always satisfied.
The fact that the 3× 3 sub-matrix in the top-left cor-
ner is skew-symmetric corresponds to the fact that
any rotation can always be defined by only three ele-
mentary rotations, hence 6 of the 9 coefficients of this
sub-matrix are dependent on the other 3.
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Hence, this yields a 6 × 4 system of equations



a1,2 b1,2 c1,2 d1,2
a1,3 b1,3 c1,3 d1,3
a2,3 b2,3 c2,3 d2,3
a1,4 b1,4 c1,4 d1,4
a2,4 b2,4 c2,4 d2,4
a3,4 b3,4 c3,4 d3,4






∆θA0

∆θB0

∆θC0

∆θD0


 =




0
0
0
0
0
0




(21)

The rank of the matrix in Equation 21 equals 3, which
implies that the equation has a single infinity of so-
lutions. This also indicates that the linkage has an
internal mechanism. By solving Equation 21 we can
find sets of ∆θ ′s �= 0 which describe infinitesimal,
zero-strain motions of the linkage.

Corrector Step

A finite, yet small motion of the linkage where each
hinge angle is changed by an amount proportional to
the infinitesimal mechanism computed above is likely
to induce small errors.
Let C̄ be a configuration obtained from the predic-

tor step, i.e. by imposing a small, and yet finite change
of angles to the initial configuration. We wish to com-
pute a configuration C1, near C̄, where all errors have
been removed. Hence, we need to compute ∆C ′, the
configuration change from C̄ to C1.
In configuration C1 we will have

T1 TA1 T3 TB1 T1 TC1 T3 TD1 = I (22)

Although we do not know C1, we do know C̄. In
this configuration the closure equation is not satisfied,
hence we can compute an error matrix E from

T1 TĀ T3 TB̄ T1 TC̄ T3 TD̄ = I + E (23)

Expanding the hinge angles in configuration C1 in
term of C̄, we have

θA1 = θĀ +∆θ′A, θB1 = θB̄ +∆θ′B , . . .

Now, writing the closure equation in configuration
C1, substituting a Taylor expansion for each hinge an-
gle, and then manipulating the equations as above we
obtain

T1TĀT3TB̄T1TC̄T3TD̄

+(T1UĀT3TB̄T1TC̄T3TD̄) ∆θ′A
+(T1TĀT3UB̄T1TC̄T3TD̄) ∆θ′B
+(T1TĀT3TB̄T1UC̄T3TD̄) ∆θ′C
+(T1TĀT3TB̄T1TC̄T3UD̄) ∆θ′D = I (24)

From Equation 23, the first term in Equation 24 is
equal to I + E. Hence substituting Equation 23 into
Equation 24, we obtain

+(T1UĀT3TB̄T1TC̄T3TD̄) ∆θ′A
+(T1TĀT3UB̄T1TC̄T3TD̄) ∆θ′B
+(T1TĀT3TB̄T1UC̄T3TD̄) ∆θ′C

+(T1TĀT3TB̄T1TC̄T3UD̄) ∆θ′D = −E (25)

which can be written in form

P ∆θ′A +Q∆θ′B +R∆θ′C + S∆θ′D = −E (26)

where P = T1UĀT3TB̄T1TC̄T3TD̄, . . . etc. The error
matrix E on the right hand side has the structure




e1,4

F e2,4
e3,4

0 0 0 0




We decompose F into its symmetric and skew-
symmetric components, i.e. (F + FT )/2, (F − FT )/2,
and consider only the skew-symmetric part, whose
coefficients are denoted by ē1,2, ē1,3 and ē2,3. This
transformed equation can be treated in the same way
as Equation 21, thus rearranging it into 6 scalar equa-
tions



p1,2 q1,2 r1,2 s1,2
p1,3 q1,3 r1,3 s1,3
p2,3 q2,3 r2,3 s2,3
p1,4 q1,4 r1,4 s1,4
p2,4 q2,4 r2,4 s2,4
p3,4 q3,4 r3,4 s3,4






∆θ′A
∆θ′B
∆θ′C
∆θ′D


 = −




ē1,2
ē1,3
ē2,3
e1,4
e2,4
e3,4




(27)

The least squares solution of Equation 27 is used to
determine the minimal correcting angles ∆θ′ due to
the errors in configuration C̄

∆θ′ = −
r∑

i=1

wi u
T
i

vi,i
e (28)

where F = UVWT is the singular value decomposition
of the 6× 4 coefficient matrix in Equation 27 and r is
the number of non-zero singular values. Also, wi is the
ith column of matrix W ; ui is the ith column of U ; vi,i
is the i, i term in matrix V ; −e is the vector on the
right hand side of Equation 27.
The predictor-corrector stages of the algorithm pre-

sented above are repeated until the hinges hit their
physical stops, at which point the linkage is fully de-
ployed.

Results
Using the above numerical solution method for the

closure equation, we have analysed the deployment
behaviour of the 4-rod linkage (Bennett linkage) but
this time without assuming symmetric behaviour. Fig-
ure 13 shows a plot of the hinge angles variation during
deployment; note that θB = θD at all stages, hence
confirming that the structure remains symmetric at all
stages. Also note that the behaviour predicted by the
numerical scheme is identical to the analytical results
shown in Figure 12. Figure 14 shows six snapshots
from the deployment sequence.
The same solution method, applied to the 6-rod link-

age also predicts that the structure remains symmetric
at all stages, see Figure 15 and Figure 16.
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Fig. 13 Variation of hinge angles during deploy-
ment of 4-rod linkage.
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Fig. 15 Variation of hinge angles during deploy-
ment of 6-rod linkage.
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Fig. 16 Deployment sequence of 6-rod linkage.
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Discussion
The formulation presented in this paper provides

considerable insight into the kinematic behaviour of
closed-loop linkages, from which issues important for
design, such as sensitivity to imperfections, can be
analysed. It also becomes possible to design assem-
blies with special properties, e.g. frames with some
particular dimensions.
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