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Carbon Fibre Reinforced Plastic Tape Springs

J.C.H. Yee∗, Ö. Soykasap†, and S. Pellegrino‡

University of Cambridge, Cambridge, CB2 1PZ, UK

A tape spring is a thin-walled, straight strip of material with curved cross-section.
Metallic tape springs have been used for many years, but the current trend is towards tape
springs made of carbon fibre reinforced plastic (CFRP), for their tailorable properties,
low mass and low coefficient of thermal expansion. The moment-rotation behaviour of
a tape spring can be described as linear-elastic for small rotations and constant-moment
for large rotations. Simple analytical expressions for fully characterizing this response,
for a general tape spring made of CFRP, are presented in the paper and the accuracy of
these expressions is assessed by means of detailed, non-linear finite-element analysis.

Introduction
A tape spring is a thin-walled, straight strip of ma-

terial with curved cross-section such as, for example,
a length of steel tape measure. Metallic tape springs,
typically made of beryllium-copper or high-strength
steel, have been used for many years as components
of deployable spacecraft structures [1], but the cur-
rent trend towards simpler, cheaper and more reliable
deployable structures is pushing towards tape springs
made of carbon fibre reinforced plastic (CFRP), which
will potentially offer tailorable performance, low mass,
and low coefficient of thermal expansion, as well as in-
tegral construction with other parts of a deployable
structure. An example of tape springs that are man-
ufactured as an integral part of a CFRP deployable
boom has recently been investigated. [2]

A tape spring can be folded either in the same, or
equal sense, or in the opposite sense. Here equal sense
indicates that the bent tape spring has the same con-
vexity as the straight one, see Fig. 1(a); in this case
the edges of the tape spring are subject to compressive
stresses. Conversely, opposite-sense indicates that the
bent tape spring has opposite convexity to the bent
one, Fig. 1(b), in which case the edges of the tape
spring are subject to tensile stresses.

When an initially straight tape spring is subject
to gradually increasing equal and opposite end rota-
tions, initially it takes a uniform longitudinally curved
shape. Its moment-rotation relationship is linear for
sufficiently small rotations. If the tape spring is sub-
ject to opposite-sense bending, as the end rotations are
increased the tape spring suddenly snaps and forms
an elastic fold that is approximately straight in the
transverse direction and has approximately uniform
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Fig. 1 Two ways of folding a tape spring: (a) equal-
sense bending and (b) opposite sense bending.

longitudinal curvature, Fig. 1(b). Then, if the rota-
tions are further increased, the arc-length of the fold
increases while its curvature remains constant.

If, however, the tape spring is subject to equal-sense
bending, it deforms by gradually twisting over two
adjacent, but separate regions whose lengths grow un-
til the two folds merge into a single, localised fold,
Fig. 1(a). Once this single fold has formed, further
increasing the end rotation results —again— only in
an increase of the arc-length of the fold region.

Important characteristics of this behaviour are that:
(i) the elastic folds for both senses of bending have a
longitudinal radius of curvature that is independent
of the end rotations imposed on the ends of the tape
spring; (ii) the peak stresses and strains in a folded
tape spring are largely independent of the end rota-
tions imposed on the ends; (iii) upon unfolding a tape
spring snaps back into the straight configuration, this
is most noticeable for a tape spring that has been bent
in the opposite sense. This last characteristic makes
tape springs ideal as self-latching components in de-
ployable structures.

This paper is concerned with the design of tape
springs constructed from a small number of CFRP lay-
ers. In particular, it focuses on tape springs made from
woven prepregs, i.e. each layer is made from a thin
carbon-fibre fabric. A methodology for the design such
tape springs is established; this involves simple analyt-
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ical expressions for preliminary design, whose validity
is verified by means of detailed finite-element simula-
tions.

The paper is presented in six sections. Following
the present Introduction, the section Material Proper-
ties establishes the bending strain limits for thin plates
made of woven CFRP, for different matrix materials.
The section Behaviour of Tape Springs presents an-
alytical expressions for the opposite-sense maximum
moment that can be applied to a tape spring, and for
the uniform moments associated with its folded con-
figuration. The radius of curvature of the elastic fold
and the corresponding peak fibre strains are also es-
timated. The section Tape Spring Design compares
different tape spring designs, including single-ply tri-
axial prepregs and non-symmetric lay-ups, and also
considers the effect of varying the angle subtended by
the cross-section of the tape spring. The section Fi-
nite Element Simulations uses detailed simulations of
a number of tape springs to validate the simple ana-
lytical estimates. A Discussion concludes the paper.

Material Properties
The tape springs considered in this paper are made

of plain-weave T300 carbon fibre combined with differ-
ent epoxy resin systems, namely 913, 914, M36, and
LTM45, and also with a thermoplastic matrix, PEI;
they have a fibre content between 48% and 60%. A
triaxial weave T300 carbon fibre, SK802, with the 913
epoxy resin system is also considered. These fabrics
are made from bundles (tows) of either 1000 or 3000
filaments, hence they will be denoted as T300-1K or
T300-3K, respectively.

Plain weave fabric, see Figure 2, consists of a set of
parallel, longitudinal (warp) tows and a set of trans-
verse tows (fill) at 90◦ that pass alternately under and
over the longitudinal tows. This is the most common
weave style, and this material is the the most readily
available. Its symmetrical and balanced properties,
coupled with good stability and reasonable porosity,
make it suitable for tape spring manufacture.

Fig. 2 Plain-weave style (source: SP Systems,
2002).

A schematic cross-section of a plain weave laminate
is shown in Figure 3, where h and L are the amplitude
of the wave formed by the centreline of the fibres and
its wave length. Images of the cross-section of biaxial

L

Fibres in longitudinal directionFibres in transverse direction

h

Fig. 3 Basic definitions of laminate microstruc-
ture.

1 mm

(a)

(b)

transverse fibres

longitudinal fibres

Fig. 4 Microstructure of (a) one-ply T300/913 and
(b) two-ply T300/913 laminates.

1 mm

(a)

(b)

Fig. 5 Microstructure of (a) one-ply SK802/913
and (b) two-ply SK802/913 laminates.

and triaxial-weave laminates, obtained with an optical
microscope, are shown in Figure 4 and Figure 5.

Yee and Pellegrino [3] have shown that these lami-
nates are able to survive larger bending strains than
the ultimate failure strains that are measured from
standard coupon tests in pure tension or compression.
The reason is that the standard model for laminates,
classical lamination theory (CLT), [4] assumes the fi-
bres and the matrix to be uniformly distributed in each
lamina, but it is clear from Figures 4 and 5 that thin
laminates made from fabrics in fact consist of bun-
dles of fibres that are typically much thinner than the
overall thickness of the laminate. Therefore, classical
lamination theory needs to be used with great care
in the present case (if is not altogether abandoned, in
favour of a detailed micromechanical model).

The most direct approach is to model these lami-
nates with CLT, but to determine maximum equiv-
alent surface strains from bending tests. Details on

2 of 9

American Institute of Aeronautics and Astronautics Paper 2004-1819



Table 1 Maximum bending strains in fibre dirce-
tion

Laminate Type one-ply two-ply 3-ply
[0◦, 90◦] ε (%) ε (%) ε (%)
T300-1K/PEI 2.56±0.09 2.39±0.03 1.70±0.17
T300-1K/M36 1.86±0.05 1.92±0.04 1.73±0.13
T300-1K/913 2.47±0.03 1.64±0.05 -
T300-3K/913 2.74±0.05 1.89±0.09 -
T300-3K/914 2.77±0.02 2.19±0.11 -
T300-1K/LTM45 [5] 3.01 1.93 1.82

Laminate Type one-ply two-ply 3-ply
[±45◦] ε (%) ε (%) ε (%)
T300-1K/PEI 2.46±0.06 1.65±0.02 1.48±0.09
T300-1K/M36 2.02±0.12 1.70±0.05 1.42±0.03
T300-1K/913 1.97±0.04 1.24±0.03 -
T300-3K/913 2.29±0.02 1.77±0.03 -
T300-3K/914 2.64±0.03 1.79±0.04 -
T300-1K/LTM45 [5] 2.65 1.78 1.62

Laminate Type one-ply two-ply
[0◦, ±60◦] ε (%) ε (%)
SK802/913 2.37±0.04 2.41±0.04

these tests can be found in Reference [3].
A summary of the maximum bending strains mea-

sured for the aforementioned composite materials is
given in Table 1. For a [0◦, 90◦] laminate, T300-
1K/LTM45 can tolerate the largest strain for one-
ply and 3-ply laminates, whilst T300-1K/PEI leads
in the two-ply category. On the other hand, for
[±45◦] laminates, T300-1K/LTM45 has the greatest
strains in all cases. Although one can observe that
the maximum bending strain in plain-weave laminates
decreases when the number of plies increases, this
does not happen in the case of triaxial-weave lami-
nates, where there is an insignificant difference be-
tween the maximum strains obtained from one- and
two-ply specimens.

Behaviour of Tape Springs
Figure 6 shows details of a tape spring. The tape

spring has initial tape radius R, initial subtended angle
θ, and thickness t. The longitudinal fold radius will be
denoted by r.

A schematic moment-rotation relationship for a tape
spring is shown in Figure 7. Starting from the un-
loaded, straight configuration, for opposite sense bend-
ing the tape behaves linearly up to a maximum mo-
ment, Mmax

+ , or for equal sense bending down to a
minimum moment, M∗

−. For rotations beyond those
that correspond to these extreme values, the tape be-
haves as a constant moment spring, carrying M∗

+ for
opposite sense bending or M∗

− for equal sense bending.

Initial Behaviour

An analytical expression for the relationship be-
tween opposite-sense moment and curvature of a tape
spring made of isotropic material was first obtained
by Wuest [6]. Wuest considered a tape spring loaded
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Fig. 6 Tape spring: (a) before folding, (b) ply
lay-up definition, (c) equal sense folding.
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Fig. 7 Schematic moment-rotation relationship for
a tape spring.

by end moments Mx that impose a uniform lon-
gitudinal curvature κx = 1/r, and determined the
moment-curvature relationship for a slightly distorted
axi-symmetric cylindrical shell. Wuest’s relationship
is extended here to include the effects of orthotropic
material properties.

The constitutive equations for a thin plate, in terms
of stress and strain resultants are




N
. . .
M


 =




A
... B

. . . . . .

B
... D







ε0

. . .
κ


 (1)

The off-diagonal terms in the matrix A will be ne-
glected for simplicity, and it will be assumed that the
matrix B vanishes.

The bending moments per unit length for the cur-
vature changes κx, κy, and κxy = 0 are

Mx = D11κx +D12κy (2)

My = D12κx +D22κy (3)

The curvature changes in the deformed configuration
of the tape are

κx =
1
r

(4)
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κy =
1
R

− d2w

dy2 (5)

where w is the out-of-plane deflection of the deformed
tape, in the z-direction. Substituting Eqs. 4 and 5 into
Eqs. 2 and 3

Mx = D11
1
r

+D12

(
1
R

− d2w

dy2

)
(6)

My = D12
1
r

+D22

(
1
R

− d2w

dy2

)
(7)

Next, consider the differential equation of equilib-
rium

d2My

dy2 − Nx

r
= 0 (8)

where Nx is the normal force per unit length, and

Nx =
−A11w

r
(9)

Substituting Eqs. 8 and 9 into Eq. 7 yields a fourth
order ordinary differential equation

d4w

dy4 + 4n4 w

r4
= 0 (10)

where n = 4
√
A11/(4D22r2). The solution of Eq. 10 is

obtained by using hyperbolic functions multiplied by
trigonometric functions, as follows

w = c1 cosh
ny

r
cos

ny

r
+ c2 sinh

ny

r
sin

ny

r
(11)

where c1 and c2 are constants to be determined by the
use of the following boundary conditions. The shear
force Sy and the bending moment My are equal to zero
along the edges of the tape

Sy =
dMy

dy
= 0 for y = ±s

2
(12)

My = 0 for y = ±s

2
(13)

where s = 2R sin(θ/2). The constants c1 and c2 are

c1,2 = ∓ r2

2n2

(
1
R

+ β
1
r

)
cosh ns

2r sin ns
2r ∓ sinh ns

2r cos ns
2r

cosh ns
2r sinh ns

2r + cos ns
2r sin ns

2r
(14)

where β = D12/D22.
The end moment, Me, is then obtained by integrat-

ing moments about the y-axis

Me =
∫ s/2

−s/2
(Mx +Nxw)dy (15)

Thus,

Me = sD11

[
1
r + β

R − β
(

1
R + β

r

)
F1

+
(
1 + βR

r

)2
r

R2F2

] (16)

where
F1 = 2

λ
cosh λ−cos λ
sinh λ+sin λ

F2 = F1
4 − sin λ sin λ

(sinh λ+sin λ)2

λ = ns
r

The maximum moment, Mmax
+ , is obtained by maxi-

mizing Me with respect to r.

Folded Tape Spring

Analytical predictions that characterise the fold re-
gion in a tape spring can be obtained by observing
that the fold region is approximately cylindrical, i.e.
the transverse radius of curvature in the fold region is
zero. The following analysis is more general than the
analysis in the previous section, as it applies also to
non-symmetric laminates.

Equation 1 can be converted to the mixed form




ε0

. . .
M


 =



A∗ ... B∗

. . . . . .

C∗ ... D∗







N
. . .
κ


 (17)

where
[A∗] = [A]−1

[B∗] = −[A]−1[B]
[C∗] = [B][A]−1

[D∗] = [D] − [B][A]−1[B]

Assuming that the in-plane stress resultants are neg-
ligible, i.e. N = 0, we obtain the mid-plane strains ε0

and bending moments as follows

ε0 = B∗κ (18)

M = D∗κ (19)

The folded tape undergoes curvature changes, in the
longitudinal and transverse directions, given by

(∆κx,∆κy) = (∓1
r
,

1
R

) (20)

where the positive and negative signs in the first term
correspond to equal and opposite sense bending, re-
spectively. The corresponding bending moments can
then be obtained from the curvature changes

Mx = D∗
11κx +D∗

12κy (21)

My = D∗
12κx +D∗

22κy (22)

The total bending strain energy over the area of the
fold region, Rrψθ, is

U =
Rψθ

2
[

∆κx ∆κy

] [
Mx

My

]
(23)

Substituting Eqs. 20 to 22 into Eq. 23, and minimiz-
ing the total bending energy with respect to r yields
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the following expression for the radius of the fold re-
gion

r =

√
D∗

11

D∗
22
R (24)

The steady-state moments for equal and opposite
sense bending of a tape spring are thus obtained by
substituting Eqs. 24 and 20 into Eq. 21, and multi-
plying by the arc length of the tape, Rθ

M∗
+ = (

√
D∗

11D
∗
22 +D∗

12)θ (25)

M∗
− = (−√

D∗
11D

∗
22 +D∗

12)θ (26)

The longitudinal and transverse strains in the fold
region are then obtained from CLT

εx = ε0x + zκx

εy = ε0y + zκy

(27)

where, substituting Eqs. 18 and 20 into Eq. 27,

εx = ∓B∗
11

r
+
B∗

12

R
∓ z

r

εy = ∓B∗
12

r
+
B∗

22

R
+
z

R

(28)

Here, the positive and negative signs in the first and
third terms on the left hand side of the equation for
εx and in the first term on the left hand side of the
equation for εy correspond to equal and opposite sense
bending, respectively.

Tape Spring Design
This section is concerned with the design of a tape

spring that has a specified moment-rotation response,
defined by Figure 7, while having a sufficient margin
against material failure. The design parameters in-
clude the tape radius R, the subtended angle θ, the
thickness t, and the ply orientation.

Typical material properties for the laminates that
have been considered in this study are given in Table 2.
Note that E1 = E2, because we are dealing with plain
weave and triaxial cloths, and so it follows that all
laminates have equal extensional stiffness A11 = A22
and also equal bending stiffness D11 = D22. Then,
D∗

11 = D∗
22, and so Eq. 24 yields r = R.

Table 2 Material properties

Material E1 = E2 G12 ν12
(GPa) (GPa) -

T300-1K/LTM45 56 3 0.05
T300-3K/913 46 4.5 0.065
SK802/913 30 10 0.5

The initial behavior of the tape spring in opposite
sense bending can be obtained from Eq. 16, and de-
pends on both material properties and the dimensions
of the tape.

Figure 8 shows the effect of varying the subtended
angle for a two-ply laminate, [0◦, 90◦]2 made of T300-
3K/913, while maintaining the arc length of the cross-
section constant and equal to Rθ = 14 mm; the thick-
ness of this laminate is 0.42 mm. The characteristic
tape spring behavior for opposite-sense bending, in-
volving a sudden snap accompanied by the formation
of an elastic fold, requires the moment-curvature re-
lationship to have an up-down-up shape, see [7] for a
full explanation. Note that when the subtended angle
is less than 40◦ for this particular laminate, the tape
spring behaves practically as a flat plate.

0
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M
o

m
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m
m
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Fig. 8 Moment-curvature relationship for different
subtended angles.

A lower bound for the bending stiffness of all of these
constant arc-length strips is obtained by considering
an initially flat strip. The initial stiffness can be easily
estimated by assuming that the cross section of the
tape spring does not change shape. In this case, it
will have a stiffness of EfxIyy, in which Efx is the
flexural modulus along the x-axis and Iyy is the second
moment of area of the cross-section about the neutral
axis. These stiffness bounds are shown in Figure 9
for a tape with a subtended angle of 80◦. Note that
the initial stiffness is tangent to the actual behavior at
κx = 0.

Tables 3 and 4 compare the steady-state moments
of different tape springs designs, made of plain weave
T300-1K/LTM45 and triaxial SK802/913, and all with
a subtended angle θ = 100◦. The analytical estimates
in the tables are listed along with results of a finite
element analysis which will be detailed in the next
section. Note that the two sets of results are in ex-
cellent agreement. Note that changing the ply angle
in these laminates does not affect M∗

+, but affects M∗
−

significantly.
The column εf in these tables lists the maximum

bending strains in the fibre directions, obtained from
the finite element analysis. Also note that in the lami-
nate [±45◦/0◦, 90◦] the ±45◦ ply is on the inner face of
the tape spring; this tape spring has lower strain lev-
els than the alternative configuration [0◦, 90◦/± 45◦],
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Fig. 9 Limits for moment versus curvature for
θ = 80◦.

where the ±45◦ ply is on the outer face of the tape
spring, for bending in both senses.

Table 3 Steady moment M∗
+

Laminate R εf t Eq.25 ABAQUS
(mm) (%) (mm) (Nmm) (Nmm)

*[0, 90]2 20 0.69 0.22 91.3 94.7
*[0, 90/ ± 45] 20 0.66 0.22 91.3 92.8
*[±45/0, 90] 15 0.79 0.22 91.3 85.2
*[±45/0, 90] 17 0.70 0.22 91.3 85.8
*[±45/0, 90] 18 0.67 0.22 91.3 87.1
*[±45/0, 90] 20 0.63 0.22 91.3 92.3
*[±45]2 20 0.61 0.22 91.3 87.8
Triax, 1 ply 20 0.47 0.13 19.2 20.8
Triax, 2 plies 20 0.92 0.26 153.4 151.2

*T300-1K/LTM45

Table 4 Steady moment M∗
−

Laminate R εf t Eq.26 ABAQUS
(mm) (%) (mm) (Nmm) (Nmm)

*[0, 90]2 20 0.88 0.22 82.6 81.1
*[0, 90/ ± 45] 20 0.64 0.22 24.0 26.3
*[±45/0, 90] 15 0.62 0.22 24.0 23.7
*[±45/0, 90] 17 0.58 0.22 24.0 23.7
*[±45/0, 90] 18 0.57 0.22 24.0 24.2
*[±45/0, 90] 20 0.52 0.22 24.0 26.3
*[±45]2 20 0.44 0.22 9.3 11.2
Triax, 1 ply 20 0.60 0.13 6.4 7.6
Triax, 2 plies 20 0.94 0.26 51.1 52.2

*T300-1K/LTM45

Table 5 shows a comparison of maximum moments
Mmax

+ of different tape springs made of plain weave
T300-3K/913. The analytical estimates in the table,
obtained by maximizing Eq. 16, are listed along with
results of a finite elements analysis. When compared
to the analytical approach, the finite element results
are always higher. This is because Eq. 16 assumes an
infinitely long tape, and so neglects the effects of the
boundary conditions imposed on the ends of the tape,
whereas the finite element model assumes a tape of
finite length and some rigidity at the ends is required
to apply the end moments.

Table 5 Maximum moment Mmax
+

Laminate R θ t Analytical ABAQUS
(mm) (deg) (mm) (Nmm) (Nmm)

*[±45] 20 70 0.21 44 65
*[±45] 20 100 0.21 92 122
*[±45]2 20 70 0.42 260 403
*[±45]2 20 100 0.42 440 790

*T300-3K/913

Effect of Subtended Angle

A sensitivity study has been carried out on tape
springs made of T300-3K/913, with the geometry de-
fined in Table 6. In all cases, a total rotation of 180◦

of one end of the tape spring with respect to the other
end was imposed. The characteristic tape-spring be-
haviour, in which the strains localise in a uniformly
curved region, requires that the angle θ subtended by
the cross-section be sufficiently large to trigger this
type of behaviour. The critical angle depends on the
interaction between out-of-plane bending and in-plane
stretching of the laminate, as well as on the degree of
anisotropy of the tape spring.

By varying the subtended angle, we can find a value
above which r becomes independent of θ. The max-
imum strain along the fibres is compared in Table 7
with analytical estimates from Equation 28.

The variation of the radius of curvature at the centre
of the tape spring, and the peak tensile and compres-
sive strains are presented in Table 8. For one-ply
[±45◦] and two-ply [±45◦]2 , the transverse radius
r gradually tends towards the value given by Equa-
tion 24. The corresponding strains, however, exceed
the analytical strains when the tape spring is subjected
to opposite-sense bending. This is due to edge effects
which have not been addressed in this paper.

Table 6 Geometry of tape springs

Tape spring length, L 150 mm
Transverse radius, R 20 mm
Subtended angle, θ variable (deg)
Thickness, t
one-ply [±45◦] 0.205 mm
two-ply [±45◦]2 0.415 mm

Table 7 Analytical predictions of maximum strains
(%) in one-ply [±45◦] tape spring

Bending Mode Location εx εy εf

Equal-sense +t/2 -0.51 0.51 0.0
−t/2 0.51 -0.51 0.0

Opposite-sense +t/2 0.51 0.51 0.51
−t/2 -0.51 -0.51 -0.51

Finite Element Simulations
Detailed simulations of the folding of a single tape

spring were carried out with the ABAQUS [8] package.
Both one-ply and two-ply tape springs were analysed,
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Table 8 Fold radii and maximum strains

Laminate Bending θ r, FE εf , FE
Mode (deg) (mm) (%)

one-ply Opposite 70 23.8 -0.52, 0.51
[±45◦] sense 80 23.2 -0.53, 0.52

90 22.8 -0.54, 0.53
100 22.6 -0.55, 0.53
110 22.3 -0.56, 0.53
120 22.1 -0.57, 0.53

Equal 70 21.0 -0.35, 0.31
sense 80 20.9 -0.37, 0.34

90 20.8 -0.39, 0.37
100 20.7 -0.41, 0.39
110 20.6 -0.42, 0.41
120 20.7 -0.44, 0.43

two-ply Opposite 70 25.9 -0.99, 0.98
[±45◦]2 sense 80 25.0 -1.01, 1.00

90 24.4 -1.04, 1.02
100 23.8 -1.06, 1.04
110 23.4 -1.08, 1.05
120 23.3 -1.10, 1.06

Equal 70 21.7 -0.56, 0.50
sense 80 21.4 -0.62, 0.56

90 21.2 -0.66, 0.60
100 21.0 -0.70, 0.65
110 20.9 -0.73, 0.68
120 20.8 -0.76, 0.72

and the linear-elastic material properties of Table 2
were assumed.

Element Choice

Thin shell elements were used to model the tape
springs. ABAQUS offers several shell elements, and
preliminary runs were carried out with 4-node quadri-
lateral full integration general purpose elements (S4);
these elements have six degrees of freedom at each
node. 4-node reduced integration shell elements
(S4R5) with five degrees of freedom per node were
also investigated. Eventually, the latter element was
adopted, as it performs well for large rotations with
only small strains. Furthermore, it uses reduced inte-
gration with hourglass control to prevent shear lock-
ing. It is also considered to be computationally eco-
nomical and possesses high accuracy in modelling shell
structures, as long as is not significantly distorted in
plane.

A typical mesh for a tape spring depends on the
subtended angle, θ. The ratio between the transverse
and longitudinal length is 1:10. This is to eliminate
any end effects.

Simulation Techniques

Multiple point constraints (MPC ) were used to de-
fine the boundary conditions. The nodes on either end
of the tape spring were tied to a MPC node, located
at the centroid of the end cross section, through rigid
beam elements. The main reason for locating the MPC
nodes at the centroid is because the structure will be

under pure bending when rotations are applied at the
ends.

A geometrically non-linear (*NLGEOM) incremen-
tal analysis was carried out using the Newton-Raphson
solution method, with automatic stabilization pro-
vided through the STABILIZE function. This solution
option automatically introduces pseudo-inertia and
pseudo-viscous forces at all nodes when an instability
is detected. Instead of continuing with the standard
quasi-static analysis, ABAQUS automatically switches
to a pseudo-dynamic integration of the equations of
motion for the structure, thus avoiding numerical sin-
gularities. The pseudo viscous forces are calculated
based on the model’s response in the first increment
of the analysis step, by assuming that the dissipated
energy is a fraction of the strain energy during the
first step. This fraction is known as damping inten-
sity, which has a default value of 2 × 10−4. To attain
accurate results, it is desirable to set this parameter
to the lowest value where convergence is still achieved.
In most of the analyses presented in this paper the
damping intensity was set to 1 × 10−8.

Results

Figure 10 shows a series of snapshots from the fold-
ing sequence of a one-ply [±45◦] T300/913 tape spring
with R = 20 mm and θ = 90◦. The tape is subjected to
opposite-sense bending under monotonically increas-
ing end rotations of the two MPC nodes.

(a) (b) (c) (d)

θ

ψ

Fig. 10 Folding sequence of tape spring subject to
opposite sense bending.

Figure 11 and Figure 12 show contour plots of the
principal strains, for opposite-sense and equal-sense
bending of this tape spring, respectively. Only the top
surface strains are shown, as the distribution on the
opposite surface is essentially identical but with the
sign reversed. This implies that the mid-plane normal
strains are negligible in this case. Note that both sets
of strains are uniform through the central part of the
tape spring, corresponding to the fold region. This
confirms that this region is uniformly curved.

Figure 13 shows contour plots of the strain dis-
tribution along the +45◦ fibres, for opposite-sense
and equal-sense bending of the tape spring. The
largest strain, of around −0.61% occurs when the tape
spring is subjected to opposite-sense bending. In Fig-
ure 13(a), relatively large tensile strains occur in two
small regions on either side of the fold. There are only
two such regions, instead of four, because we are con-
sidering the strains along one particular set of fibres.
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+0.62%
+0.54%
+0.45%
+0.37%
+0.29%
+0.21%
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-0.12%
-0.20%
-0.28%
-0.37%
-0.45%
-0.53%
-0.61%

(a)

(b)

Fig. 11 Principal strains on surface z = −t/2
of one-ply [±45◦] tape spring under opposite-sense
bending; (a) maximum strain, εx; (b) minimum
strain, εy.

+0.62%
+0.54%
+0.45%
+0.37%
+0.29%
+0.21%
+0.13%
+0.04%
-0.03%
-0.12%
-0.20%
-0.28%
-0.37%
-0.45%
-0.53%
-0.61%

(a)

(b)

Fig. 12 Principal strains on surface z = −t/2 of one-
ply [±45◦] tape spring under equal-sense bending;
(a) maximum strain, εx; (b) minimum strain, εy.

+0.62%
+0.54%
+0.45%
+0.37%
+0.29%
+0.21%
+0.13%
+0.04%
-0.03%
-0.12%
-0.20%
-0.28%
-0.37%
-0.45%
-0.53%
-0.61%

(a)

(b)

Fig. 13 Strains along +45◦ fibres, on surface z =
−t/2 of one-ply [±45◦] tape spring for (a) opposite-
sense bending and (b) equal-sense bending.

In the case of equal-sense bending, Figure 13(b), the
strain in the central part of the fold region is small
and the maximum strains occur in the localised strain
regions on either side of the fold. Note that these
peak strains are about half the maximum strains for
opposite-sense bending, and so need not be considered
in the design of the tape spring.

To conclude, it is interesting to consider the detailed
moment-rotation plot obtained from the ABAQUS
simulation, shown in Figure 14. Note that the tape
spring behaves in an approximately linear-elastic way
for rotations ψ < 20.5◦; at ψ = 20.5◦ a peak mo-
ment of 217 Nmm is reached. The tape spring then
suddenly softens, as its deformation becomes localised
at a fold, reaching a moment of ≈ 50.3 Nmm, which
remains constant over a large range of ψ. If the direc-
tion of ψ is reversed, i.e. the tape spring is subjected to
equal-sense bending, the tape spring response is again
initially approximately linear, but this time the limit
moment is lower, −92 Nmm, at a rotation ψ=−6◦.
Subsequently, the tape spring softens, reaching a mo-

ment of -10 Nmm at ψ=−27◦.
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Fig. 14 Moment-rotation plot for one-ply [±45◦]
T300/913.

Conclusions
The key elements for the design of woven carbon-

fibre-reinforced-plastic tape springs have been estab-
lished in this paper. The main headlines are as follows:

• Because these tape springs are made from one to
three plies of woven carbon fibre, and the car-
bon fibre fabric itself consists of flattened bundles
of between 1000 and 3000 fibres, a homogeneous
plate model of this laminate is only acceptable if
the strain limits along the fibre directions are set
according to the experimentally determined val-
ues in Table 1.

• The maximum opposite-sense bending moment
that can be carried by a tape spring prior to snap-
ping is conservatively estimated by maximising
Eq. 16.

• The (longitudinal) radius of the fold region in a
tape spring whose cross-section subtends a suffi-
ciently large angle is approximately the same for
equal- and opposite-sense folds and can be esti-
mated from Eq. 24.

• The steady-state moments for equal and opposite
sense bending of a folded tape spring are given by
Eqs. 25 and 26, respectively.

• The maximum longitudinal and transverse (prin-
cipal) strains can be estimated from Eq. 28, and
the corresponding strains along the fibres can then
be obtained by a strain transformation.
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