ABSTRACT: A design methodology for collapsible rib-tensioned surface (CRTS) reflectors is presented. Offset configurations are explicitly addressed. For a reflector with aperture of 10 m diameter and focal length of 7.8 m, a root-mean-square surface accuracy of about 2 mm is achievable; this result scales linearly with the diameter. The design of a 1.5 m diameter prototype is presented, and the accuracy and deployment behaviour of a physical model are measured experimentally.

INTRODUCTION

A new concept for multi-purpose deployable membrane reflectors known as Collapsible Rib-Tensioned Surface (CRTS) reflector has been proposed by the European Space Agency [1]. These reflectors consist of three main parts. A central expandable hub, a number of thin-walled foldable ribs connected radially to the hub, and a precision shaped membrane that is supported and tensioned by the ribs. A photograph of a small-scale prototype is shown in Fig. 1. During deployment the hub is retracted to its largest radius configuration, so that the ribs can deploy the membrane without having to prestress it as well. After the membrane has been fully deployed, the hub is expanded, thus pushing the ribs radially outwards by a small amount. This has the effect of applying a state of prestress to the membrane, which sets it into its intended shape.

The shape of the reflector is required to be as close as possible to a perfect paraboloid. The accuracy of this approximation is related to the deviation of the surface from the best-fit paraboloid, and is usually measured in terms of an overall root-mean-square error, \(\delta_{rms} \) [2]. This value depends on both the number of ribs and the shape of the membrane between adjacent ribs. Non axi-symmetric configurations (offset) are of greatest interest for communication satellites.

This paper presents a methodology for the design of offset CRTS reflectors to meet a set of specified requirements; symmetric reflectors are covered as a special case. After briefly describing the geometry of offset reflectors, a procedure is given for determining the prestress distribution, the shape and corresponding accuracy of a particular design. In particular, a method is presented for prestressing the membrane without applying out-of-plane forces on the ribs, which is the major difficulty of offset reflector design. Then, the design of a 1.5 m diameter reflector is presented, and the surface accuracy and deployment behaviour of a physical prototype are measured experimentally.

OFFSET REFLECTORS

The standard way of defining the geometry of an offset reflector is to consider the intersection of a paraboloid
with the required focal length, known as parent paraboloid, with a circular cylinder of diameter D, whose axis is parallel to the axis of the paraboloid [2]. Fig. 2 shows a three-dimensional view of an offset reflector with its parent paraboloid. To help visualize the shape of the reflector a series of ellipses have been drawn; these lines are obtained by intersecting the paraboloid with a series of co-axial circular cylinders. The outermost cylinder, defining the edge of the reflector, has radius $R_a = D/2$.

With reference to Fig. 3, consider an offset reflector with focal length F, offset Y_0 from the centre of the parent paraboloid to the centre of the aperture, and distance A from the focal axis of the parent paraboloid to the near side of the edge of the reflector. Figure 4(a) shows the intersections between the co-axial cylinders described above and the tangent plane X_LY_L. This standard configuration is unsuitable for CRTS reflectors, because it leads to poor prestress distributions in the membrane. Lai and Pellegrino [3] have shown that the best configuration from the viewpoint of the prestress distribution, and hence of efficient structural design, is a configuration such that its projection onto the tangent plane is a circle, see Fig. 4(b).

GENERAL DESIGN METHODOLOGY

The conceptual design of a CRTS reflector requires one consider three theoretical surfaces, as follows.

1. The reference surface is the locally cylindrical surface defined by the parabolic ribs of the reflector. This surface is the best possible shape that can be achieved with a given number of ribs; to achieve it, we have to prestress the membrane purely in the hoop direction.

2. The equilibrium surface is any shape of the reflector in which an acceptable prestress distribution is in equilibrium. For any given prestress distribution, we can compute a corresponding equilibrium surface. If biaxial prestress is required, the equilibrium surface has to be locally doubly-curved; however if uniaxial prestress is acceptable, then the equilibrium surface coincides with the reference surface.

3. Finally, the actual surface is the expected shape of the reflector, which can be compared with measurements from the real structure. It is obtained by projecting the equilibrium surface onto flat pieces of membrane,
Geometry

<table>
<thead>
<tr>
<th>Geometry</th>
<th>No. of ribs</th>
<th>$\delta_{rms} \text{ [mm]}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symmetric</td>
<td>6</td>
<td>39.6</td>
</tr>
<tr>
<td>Configuration</td>
<td>12</td>
<td>9.6</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>2.4</td>
</tr>
<tr>
<td>Offset</td>
<td>6</td>
<td>45.9</td>
</tr>
<tr>
<td>Configuration</td>
<td>12</td>
<td>12.5</td>
</tr>
<tr>
<td>$(A = 1 \text{ m})$</td>
<td>24</td>
<td>3.3</td>
</tr>
</tbody>
</table>

Table 1: Typical surface errors of reflectors with $D = 10 \text{ m}$ and $F = 7.8 \text{ m}$.

which of course introduces some errors, and by computing the prestressed shape of the structure made by joining these pieces and pushing outwards the ribs.

For each of these surfaces, we can compute the equation of the best-fit paraboloid and hence the corresponding δ_{rms}. Typical results for a symmetric reflector $(A = 0)$ and an offset reflector with offset $A = 1 \text{ m}$ are listed in Table 1. Simple scaling arguments can be used to show that the root-mean-square error, δ_{rms}, scales linearly with the aperture D of the reflector, and the forces applied to the ribs and to the edge cords also scale linearly with D if the level of prestress is kept the same.

Given the aperture diameter, focal length, and target δ_{rms}, as well as the maximum permissible ratio between the highest and lowest principal stress in the membrane, the key stages of the design process are as follows.

1. Preliminary determination of required number of ribs, based on a purely geometric computation (reference surface).
2. Computation of an equilibrium surface which is sufficiently accurate, in tension everywhere, and such that the ratio between maximum and minimum stress is acceptable.
3. Computation of the cutting pattern.
4. Verification that the shape and prestress distribution in a membrane made from a series of linear-elastic gores cut according to the pattern computed above satisfies all the stated requirements.
5. Computation of the unstressed profile of the ribs.

The computations required to implement this design methodology are described in detail in [4].

Prestressing an Offset Reflector

The key difference between symmetric and offset reflectors is that an offset reflector has only one plane of symmetry, Y_LZ_L, hence half of the whole surface needs to be considered in the analysis. In the case of axisymmetric configurations only one gore needs to be analysed, as all gores have identical shape and prestress.

A significant challenge at this point is to obtain an initial prestress distribution that is approximately in equilibrium, so that the subsequent form-finding analysis will produce only minor distortions of the surface. Also, because adjacent gores of the membrane are stressed differently, it must be ensured that any loads applied to the ribs lie within their plane of curvature. This is best done by determining a series of interface equilibrium conditions from which we can obtain initial prestress distributions that satisfy equilibrium in the local, X_LY_L, plane without applying any out-of-plane loads on the ribs.

Consider a general state of prestress of the membrane where each gore is subject to uniform stress and the principal stress directions in gore i are aligned with the local x_i, y_i axes of the gore, Fig. 5. Let t_{x_i} and t_{y_i} be the values of the principal stress components multiplied by the thickness of the membrane. The components of t_{x_1} and t_{y_1} in the local plane are required to be in equilibrium. This can be achieved either by varying t_{x_1}, t_{y_1} with i, or by keeping them constant while varying the shape of the gores. The two-dimensional equilibrium of a shell of general shape can be analysed by considering the projection of the shell onto the plane in which equilibrium is to be considered [5]. Hence, consider, for example, the projection onto the X_LY_L plane of an offset reflector with eight ribs, shown in Fig. 5. From the centre of the ellipse, O, consider the lines OH, OJ, etc. perpendicular to the edge lines D_1D_2, D_2D_3, etc. Next, consider the free body consisting of OD_2H and OD_2J, on either side of OD_2, Fig. 8. Similar free bodies can be considered for a general rib, OD_1. By assuming that the ribs apply no external forces to these free bodies one can set up a system of equilibrium equations.
relating the prestress components in neighboring ribs. Thus, for any given two values, all other values can be worked out.

There is a problem with this approach: it is difficult to produce an acceptable distribution of prestress because the “hoop” and “radial” components of prestress interact through the equilibrium equations at the various interfaces, which often produces unacceptably high, or low stresses in the gores that are furthest away from the gore whose prestress has been specified.

An alternative approach, that has been found to work better, is to assume that each rib is able to carry small longitudinal tractions and hence that equilibrium at each gore-gore interface needs to be enforced only in the direction orthogonal to the rib. To avoid that the hoop stresses be equilibrated by radial stresses, it is required that the x_i components be in equilibrium in the direction orthogonal to the ribs, and it is separately required that the y_i components be independently in equilibrium in the same direction. This gives

$$\overline{OH} t_{x_1} \cos \gamma_1 - \overline{OJ} t_{x_2} \cos \gamma_2 = 0$$

$$D_2 H t_{y_1} \sin \gamma_1 - D_2 J t_{y_2} \sin \gamma_2 = 0$$

(1)

With this approach the prestress components in one gore are prescribed and the components in all the other gores are computed from equations equivalent to (1).

Although in this approach it is assumed that each rib will be subject to a distribution of longitudinal tractions, in practice these forces would be carried by a narrow strip of membrane in the vicinity of the rib. They cannot be transmitted to the rib because the membrane can slide relative to the rib; they are fully connected only at the tip. Finally, the edge cord pre-tensions are determined by prescribing the central sag of one gore, e.g. $s_1 = D/15$. It is then assumed that (i) each cord has a symmetric shape, and so the tangent in the middle of cord i is parallel to x_i, and (ii) each rib can carry only axial forces, and hence the tip forces at the points of attachment with the cords are purely in the direction of the rib. Simple equilibrium considerations lead to relationships between the tension in the middle of cord i, T_i, the sag of cord i, s_i, and the sag of cord $i + 1$, s_{i+1}, etc. from which all cord pre-tensions can be calculated.

The above considerations illustrate the potential complexity of determining an initial prestress distribution for an offset membrane reflector. If, however, we are prepared to let the shape of the gores vary, the process can be much simplified. Thus, for the “circular configuration” shown in Fig. 4(b), which is again symmetric, the above equilibrium conditions are satisfied by any symmetric distribution of prestress.
Natural Frequencies of Vibration

A careful study of the natural frequencies of prestressed membrane structures has been carried out. First, finite-element models of flat membranes with regular shapes were compared to standard, analytical solutions \([6]\). Then, having shown that the finite element models are accurate for these simple structures, the same methodology was extended to CRTS reflectors. The first few natural frequencies of reflectors of different diameters and numbers of ribs were obtained, and were found to be relatively insensitive to prestress level and hub size. The fundamental natural frequency of a 10 m diameter reflector was found to be well above 1 Hz. Further details can be found in \([7]\).

DESIGN OF PROTOTYPE

A complete design of a 1.5 m diameter offset circular CRTS reflector with focal length of 0.9 m was developed and implemented as a complete structural demonstrator, which was then tested. The properties of this reflector are defined in Table 2 and a front view is shown in Fig. 7.

<table>
<thead>
<tr>
<th>Diameter ((D))</th>
<th>1.5 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focal length ((F))</td>
<td>0.9 m</td>
</tr>
<tr>
<td>(F/D)</td>
<td>0.6</td>
</tr>
<tr>
<td>Offset ((A))</td>
<td>0.35 m</td>
</tr>
<tr>
<td>Hub diameter</td>
<td>0.15 m</td>
</tr>
<tr>
<td>Number of ribs</td>
<td>12</td>
</tr>
<tr>
<td>Hoop prestress (t_x)</td>
<td>40 N/m</td>
</tr>
<tr>
<td>Meridional prestress (t_y)</td>
<td>0.1 N/m</td>
</tr>
<tr>
<td>Edge cord sag ((s))</td>
<td>(D/100)</td>
</tr>
</tbody>
</table>

Table 2: Properties of prototype.

It is often argued that to avoid the formation of wrinkles, thin membranes need to be subjected to equi-biaxial states of prestress. However, the formation of large wrinkles requires either stretching of the membrane (which Kevlar-reinforced Kapton will not do by any significant amount) or the boundary supports to be non-smooth. Hence it was decided that an essentially uniaxial distribution of prestress, in the hoop direction, would be acceptable. This approach has a number of advantages: (i) the reflector surface can be made from flat, in-plane stiff gores; (ii) the accuracy of the reflector can be easily predicted, as its shape coincides with the reference surface; (iii) the calculation of the cutting patterns for the gores and the analysis of the elastic deformation of the ribs can be done quite accurately by considering simple two-dimensional models.
A hub mechanism design was designed, in which each rib is mounted on a linear bearing and is pulled outwards by a single steel cable that applies a prestressing force, Fig. 8. The ratios between the rib forces, related to the number of ribs, diameter, offset and focal length of the reflector, are controlled by varying the diameter of the pulleys supporting this cable. The whole system is driven by a single electric motor. The complete mechanism has a mass of ≈ 6 kg and contains a large number of moving parts. Possible changes to make it lighter would be mounting the ribs on springs perpendicular to the plane of the hub, thus removing all the linear bearings, and using a thermally activated shape-memory wire (Nitinol) instead of the steel cable, electric motor, gears and disk.

Rib Design

The ribs are similar to a steel tape measure but have a small longitudinal curvature as well, see Figure 9. The thickness, t, and transverse radius of curvature R are uniform. They are usually made of either Copper Beryllium (CuBe) or spring steel; CuBe was selected because it can be heat-treated at lower temperature.

There are two important parameters that need to be considered in deciding the dimensions of the ribs. They are (i) the maximum bending moment that can be applied by the membrane without buckling the rib, and (ii) the yield limit that governs the folding of the rib when the reflector is packaged.

Figure 10 shows a typical relationship between the bending moment, M, and the end rotation, θ, for a short length of rib [8]. Note that its behaviour is different for different signs of the bending moment. In the bottom-left part of the diagram, a negative bending moment applies compressive stresses to the longitudinal edges of the tape spring. In the right-hand part a positive bending moment is applied, and hence the edge stresses are tensile. Therefore, the buckling moment is much higher for positive moment, i.e. $M_{\max}^+ >> |M_{\max}^-|$.

Note that for both positive and negative bending, M becomes constant when $|\theta|$ is sufficiently large (typically around 10°). In this range the deformation of the rib is localized in a short, longitudinally curved region and when $|\theta|$ is further increased all that happens is that the length of this curved region increases. In effect, during deployment this region behaves like a constant moment elastic hinge.

TESTING OF PROTOTYPE

Shape Accuracy

The surface accuracy of the demonstrator was measured with computer controlled electronic theodolites and
the RMS error was found to be 2.0 mm; this value is actually lower than the predicted value of 2.3 mm.

Folding and Deployment

Following [9] the demonstrator was packaged by wrapping the ribs together with the membrane around a perspex tube attached to the hub. First, each rib was folded upwards towards the perspex tube. Then, the membrane between the ribs was pulled out. At this point, the packaging scheme in [9] would require that all ribs be twisted around the hub until they are fully packaged, but friction between the membrane and the cylinder did not allow this. Three people were required to carry out the packaging, two holding the ribs folded while the third went around the package, gradually bending and twisting one rib at a time towards its final configuration. When the packaged configuration had been finally achieved, an elastic band was put around the structure to hold it folded.

The top-left photograph in Figure 11 shows the final, packaged configuration. It can be seen that the ribs were not packaged very tightly, especially at the bottom. The height of the package is about 300 mm and its diameter at the bottom is about 450 mm, as the ribs come out about 75 mm on each side. This was the best that could be achieved; it was found that the perspex cylinder does not support well the bent and twisted ribs, and three ribs became damaged. It is believed that a folding machine could simplify this process considerably.

Figure 11 shows selected frames from the deployment sequence. The time interval between the first 12 frames is 100 ms, increasing to 134 ms for the last four. During the first 400 ms the ribs unwrap, leaving a single fold in each rib, near the hub. Then, between frames 500 ms and 1334 ms, the ribs deploy as cantilever beams connected by hinges to the hub. After 1334 ms all the folds have disappeared and the ribs reach their fully deployed configuration. The remaining frames show a slow oscillation of the structure. In this case, deployment was completed successfully, but the deployment of the twelve ribs was less well coupled than observed in [8] on a smaller model. This was probably due to the damage mentioned above.

This test confirmed a conclusion already reached in [8], that an advantage of this packaging scheme is that the membrane provides a useful coupling between the motion of the ribs. The correct deployed configuration is always reached, regardless of the orientation of the reflector with respect to gravity.

DISCUSSION

When CRTS reflectors were first proposed, concerns had been expressed over the applicability of this concept to offset configurations. Hence, the key aim of the present study was to investigate the feasibility of offset reflectors, and to develop an appropriate design methodology for them. This aim has been fully achieved.

A special offset configuration has been identified, called a “circular configuration”, which makes it possible to practically eliminate any out-of-plane loading on the ribs. This configuration is obtained by intersecting the parent paraboloid with a circular cylinder whose axis is parallel to the local axis Z_L. It has the special feature that the tips of the ribs are not co-planar but, instead, their projections onto the local plane $X_L Y_L$ lie on a circle. This greatly simplifies the choice of a suitable initial state of prestress because, as far as two-dimensional equilibrium is concerned, this configuration is “axi-symmetric” and hence adjacent gores are equally stressed. This solution tends to produce the best distributions of prestress. However, because the shape of the reflecting surface does not match the standard illumination pattern for antenna feeds, it is possible that a part of the surface would not be utilised.

The design, manufacture, and testing of a 1.5 m diameter prototype with twelve ribs has been presented, to validate the design methodology developed in this study. The expected root-mean-square surface error of the demonstrator was 2.3 mm and measurements of the actual shape obtained are in excellent agreement. Deployment tests carried out on this structure have confirmed that reliable deployment behaviour is achieved if the reflector is packaged by wrapping the ribs around the hub.

ACKNOWLEDGMENTS

The research summarized in this paper was carried out under contract from the European Space Agency.
thank the Project Manager, W.J. Rits, for advice and encouragement, and Drs C.Y. Lai and Z. You for carrying out much of the work. The Kevlar-reinforced Kapton foil for the prototype was kindly provided by Contraves.

REFERENCES