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Abstract

A data-driven computational framework combining Bayesian machine learn-

ing for imperfection-sensitive quantities of interest, uncertainty quantification

and multi-objective optimization is developed for the analysis and design of

structures. The framework is used to design ultra-thin carbon fiber deployable

shells subjected to two bending conditions. Significant increases in the ultimate

buckling loads are shown to be possible, with potential gains on the order of

100% as compared to a previously proposed design. The key to this result is the

existence of a large load reserve capability after the initial bifurcation point and

well into the post-buckling range that can be effectively explored by the data-

driven approach. The computational strategy here presented is general and can

be applied to different problems in structural and materials design, with the

potential of finding relevant designs within high-dimensional spaces.
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1. Introduction1

The recent resurgence of interest in buckling of slender structures (Hu and2

Burgueño, 2015; Reis, 2015) can be largely explained by the advent of new3

manufacturing techniques (Kalpakjian et al., 2014) for complex shapes, as well4

as improved modeling capabilities (Benson et al., 2010; Bai et al., 2015) that5

leverage the extensive theoretical understanding of buckling (Hutchinson and6

Koiter, 1970; Bažant and Cedolin, 2010). These developments have spawned7

a myriad of creative solutions for a wide range of applications such as energy8

harvesters (Chen et al., 2010; Wang et al., 2014), sensors (Elvin et al., 2006;9

Kiyono et al., 2012), dampers and absorbers (Dong and Lakes, 2013; Kim et al.,10

2013), actuators (Loukaides et al., 2014; Lazarus and Reis, 2015), morphing11

structures (Diaconu et al., 2008; Daynes et al., 2014), and deployable structures12

(Pellegrino, 2014; Mallikarachchi and Pellegrino, 2014), all of which exploit the13

geometrically non-linear behavior of thin shell structures.14

These structures are designed to capture the benefits of the first bifurcation15

point (initial buckling). In these cases, post-buckling is mostly viewed as a16

sudden behavior that leads to large configuration changes, often occurring as17

a form of snap-through or to a lesser extent snap-back. Hence, post-buckling18

behavior and subsequent bifurcations are not usually a design target (Hu and19

Burgueño, 2015).20

However, there are structures where the post-buckling behavior assumes21

particular importance. Thin-walled structures provide some of the most rel-22

evant examples, as can be seen in studies showing the effects of cutouts in23

composite shells (Tafreshi, 2002) or of nonuniform wall thickness in steel shells24

(Aghajari et al., 2006), as well as investigations on functionally graded carbon25

nanotube-reinforced shells undergoing thermal post-buckling (Shen, 2012) and26

functionally graded shallow plates (Woo et al., 2005). Recently, Leclerc et al.27

(2017) noted that an ultra-thin composite Triangular Rollable And Collapsible28

(TRAC) boom is able to carry significantly increased loads well into the post-29

buckling regime. The article here presented focuses on designing TRAC booms30
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to improve their buckling and post-buckling behavior through a data-driven31

computational framework.32

In data-driven approaches (Bisagni and Lanzi, 2002; Yvonnet and He, 2007;33

Ning and Pellegrino, 2015; Bessa et al., 2017) a new model or design is found34

by collecting enough data about the response of the structure or material under35

multiple input conditions. In principle, data can be collected by experimental36

testing, analytical or computational predictions. Yet, in most engineering appli-37

cations experimental characterization of previously untested designs is too time-38

consuming to gather enough data in a timely manner, and most applications39

are too complex to be predicted by probabilistic analytical models (Elishakoff,40

2014). Hence, computational predictions are often the only viable resource to41

explore the design space and generate enough data to use machine learning42

and/or optimization.43

Multiple authors have been exploring the use of data-driven approaches for44

different scientific and engineering applications. Notable examples exist in com-45

puter science with artificial intelligence algorithms that master the game of GO46

(Silver et al., 2016), materials science with data mining of first principle calcula-47

tions leading to discoveries of new material compounds (Curtarolo et al., 2003;48

Fischer et al., 2006; Saal et al., 2013; Gautier et al., 2015), fluid mechanics in49

the characterization of flows with high Reynolds numbers (Ling and Temple-50

ton, 2015), and different solid mechanics applications (Bisagni and Lanzi, 2002;51

Yvonnet and He, 2007; Bessa et al., 2017).52

This article extends a recently developed data-driven framework for mate-53

rials and structures (Bessa et al., 2017) to the design of optimized structures54

with uncertain response. The proposed approach is illustrated for the design of55

TRAC booms, in order to increase their ultimate buckling limit, but it can be56

applied to any other structure or material. The extended framework includes57

two significant contributions: 1) machine learning for noisy observations with58

uncertainty quantification; and 2) introducing a multi-objective optimization59

step after the machine learning procedure to determine optimal designs. The60

first extension is crucial for the design and analysis of imperfection-sensitive61
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structures (with noisy or uncertain response). The second extension is relevant62

when the goal is not just establishing the relationship between input design63

descriptors and output performance of the structure (or material), but also to64

find the set of input descriptors that leads to an optimal response within given65

constraints.66

The paper is laid out as follows. Section 2 presents the ultra-thin composite67

TRAC boom structure to which the data-driven framework is applied. Section68

3 discusses the data-driven framework for noiseless applications in 3.1, and for69

noisy applications with multi-objective optimization goals in 3.2. Concluding70

remarks are included in Section 4. Details on the structural imperfections of71

TRAC booms are provided in Appendix A, and a discussion of discontinuous72

Pareto frontiers is given in Appendix B.73

2. Behavior of ultra-thin TRAC booms74

Figure 1 shows a schematic of a TRAC boom, partially wrapped on a spool.75

This type of structure was initially developed by Murphey and Banik (2011)76

and can be viewed as two tape springs bonded along one edge and thus forming77

a flat region (web) with twice the thickness of the flanges. In the packaged78

configuration, the TRAC boom is flattened (flat cross-section) and wrapped79

around a spool of radius R. The deployed geometry is then fully characterized80

by the TRAC boom length L and its cross-section parameters: web height h81

(thickness 2t), flange radius r, angle θ, and thickness t.82

Figure 2 shows the predictions obtained from nonlinear finite element anal-83

yses using the arc length method to determine the post-buckling response of84

an ultra-thin composite TRAC boom manufactured by Leclerc et al. (2017).85

The structure was subjected to two separate boundary conditions: (a) bending86

moment around X leading to compression at the outer edge of the web; and87

(b) bending moment around Y. The same nominal geometric parameters re-88

ported by Leclerc et al. (2017) are used herein: total length L = 504 mm, and89

cross-section parameters r = 10.6 mm, θ = 105o, and h = 8 mm. The material90
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Figure 1: Schematic of the TRAC boom architecture (modified from Murphey and

Banik (2011)).

is a composite laminate with stacking sequence [0o, 90o]S and nominal post-91

cure thickness of t = 71 µm, where the four composite plies are stacked from a92

17GSM unidirectional tape supplied by North Thin Ply Technology (T800 fibers93

and ThinPreg 120EPHTg-402 epoxy resin). The orthotropic elastic properties94

of each ply are considered as E1 = 128.0 GPa, E2 = 6.5 GPa, ν12 = 0.35,95

G12 = G13 = G23 = 7.5 GPa.96

The dashed lines in Figure 2 show the responses predicted for the idealized97

geometry, where a negligibly small imperfection based on the first buckling mode98

was seeded to numerically resolve the first bifurcation point. Details about the99

six imperfect cases shown in the figure are discussed later in Appendix A. The100

focus at this point should be on noting that due to the ultra-thin nature of101

the structure the first bifurcation point occurs prematurely for both loading102

conditions, but is followed by a further, significant increase in the applied mo-103

ment until the ultimate buckling limit of the structure is reached. Here the104

ultimate buckling limit is defined as the analytical maximum in the moment-105

angle response of the structure. Due to the complexity and stochasticity of the106

buckling and post-buckling behavior of the TRAC boom, the particular geom-107

etry considered in Figure 2 is likely not optimal for given quantities of interest,108

e.g. maximizing both buckling limits. Since closed form solutions to find such109

optimal geometries do not exist, the viable alternative is to use a data-driven110

approach applicable to stochastic responses.111
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Figure 2: Responses predicted for a TRAC boom with h = 8 mm and θ = 105o, and

considering the first 6 imperfection points shown in Figure A.1.
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3. Data-driven computational framework112

The data-driven framework conjugates the following steps: 1) Design of113

Experiments1 (DoE); 2) computational analyses; 3) machine learning; and 4)114

multi-objective optimization. The following subsections discuss the application115

of the framework to the design of TRAC booms, for two different cases. A sim-116

plified case where the machine learning process does not need to be probabilistic,117

and where the obtained design charts may be easily interpreted without an op-118

timization step. This case represents an application of the previously developed119

framework (Bessa et al., 2017) without the proposed extensions. The other case120

illustrates the need for a Bayesian machine learning process including uncer-121

tainty quantification, as well as the advantage of introducing an optimization122

step to find particular designs after machine learning. Each step is summa-123

rized in Figure 3 and explained in the following sections for each of the above124

mentioned cases.125

3.1. A design case without uncertainty nor optimization: initial buckling of ide-126

alized TRAC booms127

This first case focuses on finding the combination of cross-sectional param-128

eters h and θ that maximize the initial buckling moments of the TRAC boom129

considering idealized geometries, i.e. without imperfections. For this first ex-130

ample only the first bifurcation point occuring at the end of the linear elastic131

regime is of interest – recall Figure 2 and observe the first kink in the dashed132

line for each boundary condition applied.133

In this investigation the length L = 504mm and thickness t = 71 µm are kept134

constant, and the same composite material described previously with stacking135

sequence [0o, 90o]S is considered. The volume (mass) of the structure is also kept136

1The term “Design of Experiments” (DoE) is extensively used in the literature (Morris and

Mitchell, 1995) and refers to finding an optimal sampling of the design space without a priori

knowledge of the regions of interest. Note that “experiments” does not only refer to physical

experiments but also to “computational experiments”.
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Figure 3: Data-driven framework applied to structural modeling and design (modi-

fied from Bessa et al. (2017)).

constant for all TRAC booms, in order to establish a fair comparison between137

different geometries. This volume constraint introduces a relationship between138

the radius of the flanges r and the two independent parameters considered in139

this study, h and θ:140

r =
V − 2thL

2θtL
(1)

with V ≈ 1963 mm3, t = 71 µm, and L = 504 mm, while the two design141

descriptors θ (in radians, above) and h assume different values for different142

cross-sections.143

An additional constraint is introduced due to the need of flattening the boom144
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for packaging. This causes a transverse strain εflat (Murphey et al., 2017):145

εflat =
t

2r
(2)

that typically needs to be below 1% to avoid failure of the composite material.146

The strain caused by wrapping the flattened structure around a spool could147

also be included as a constraint, but this strain is usually not the limiting factor148

since the radius of the spool R used to wrap the boom is large.149

The first step (DoE) in the data-driven framework is the sampling of the150

design space without a priori knowledge of the relationship between the input151

variables and the output quantities of interest. Different methods can be used152

for the DoE, with two common options being the Sobol sequence (Sobol, 1967,153

1976) and the Latin Hypercube sampling (McKay et al., 1979). According to154

previous investigations (Bessa et al., 2017), the Sobol sequence is used herein.155

For this study the bounds for the input design variables h and θ are defined as:156

h = [2, 16] mm , θ = [10o, 315o] (3)

The Sobol sequence DoE method produces a nonuniform space-filling design157

where different hyperplane projections do not lead to coincident points – prop-158

erties that have been shown to facilitate the machine learning process (Simpson159

et al., 2001). Figure 4 presents the 1, 000 DoE points obtained from a random160

Sobol sequence of the two design descriptors.161

The subsequent step in the data-driven framework after the DoE is the com-162

putational analysis of each DoE point. Note that variations in the geometry163

of the structure are expected to lead to competing effects for the two bound-164

ary conditions applied. For example adding/removing material in the web has165

significant impact on the bending stiffness and buckling of the structure for166

bending around X, but less impact for bending around Y because the web is in167

the neutral plane in this case. However, this influence is less intuitive when con-168

sidering structures with constant volume, because the material that is added169

in the web needs to be respectively removed in the flanges, which alters the170
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Figure 4: Design of Experiments to determine the influence of the TRAC boom ge-

ometries on the initial buckling behavior of the ultra-thin composite struc-

ture. The solid red circles correspond to the first 20 points of the Sobol

sequence and are labeled with the corresponding sequence number. The

black dots correspond to the remaining 880 points, and the last 100 points

are shown as blue circumferential markers.

bending stiffness and local curvature of the structure. Recall that the actual171

influence of r, θ and h is not trivial to predict analytically due to the fact that172

the structures are ultra-thin, leading to highly localized buckling modes instead173

of global modes.174

The following procedure is automated for computationally predicting the175

first bifurcation point of the structures:176

1. Linear bifurcation analysis of the undeformed configuration of the struc-177

ture. This provides an initial prediction for the first bifurcation point and178

buckling modes;179

2. Static analysis under displacement control without stabilization until the180

simulation stops or the previously determined bifurcation point is reached;181

3. Sequential linear bifurcation analyses starting from the last available in-182

crement of the static analysis until reaching an increment where the bi-183
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furcation point can be predicted, i.e. an increment where the structure is184

not on the post-buckling regime but where it is close to the bifurcation185

point.186

The outlined procedure was implemented such that it could be performed187

automatically and in parallel for different input DoE points. The output quan-188

tities of interest obtained from the simulations, e.g. moments and angles at the189

two ends, are stored in a database that is then used for the machine learning190

process.191

The machine learning process for this subsection is simplified because the192

quantities of interest have negligible noise (no geometric imperfections). In193

this article small databases are appropriate for all the applications considered,194

favoring the use of the Gaussian process method (Krige, 1951; Matheron, 1963)195

as opposed to methods such as artificial neural networks (Rosenblatt, 1958;196

Widrow and Hoff, 1960; Hopfield, 1982; Rumelhart et al., 1986). This was197

shown in (Bessa et al., 2017) with a comparison of the data-driven framework198

for higher dimensional design spaces using both Gaussian process (also known as199

kriging) and neural networks. Gaussian process regression is discussed in detail200

in Section 3.2.1 where the less common case of noisy observations is included.201

The interested reader can consult the work of Rasmussen and Williams (2005)202

for additional details. If interested in artificial neural networks, the reader is203

referred to Demuth et al. (2014).204

Construction of design charts for the quantities of interest is then a trivial205

outcome of the machine learning process. Figure 5 shows the variation of the206

first bifurcation point of the perfect structures with different cross-sections. The207

figure also includes contour lines of the bending stiffness, radius of the flanges,208

and the transverse strain εflat caused by flattening the structure for packaging –209

see equation (2). The score based on the mean squared error of the predictions210

of the last 100 points of the Sobol sequence (see Figure 4) is evidently very211

high (above 0.99) because this is a simple regression problem (low-dimensional),212

unlike previously considered cases (Bessa et al., 2017). In fact, the score is still213
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Figure 5: Design charts obtained for the variation of the initial buckling moments in

X and Y as a function of two cross-section parameters (h and θ).
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above 0.98 when considering 300 DoE points for the learning task instead of214

900.215

Observing Figure 5 one can identify that the maximum buckling moment216

does not occur for regions with maximum bending stiffness for both boundary217

conditions. This behavior occurs due to the presence of local buckling modes.218

From the figure it is also clear that constraining the flattening strain below 1%219

does not significantly limit the design space. Interestingly, there is a common220

region of the design space that maximizes the initial buckling moment for both221

loading conditions at large flange angles and small web heights, despite the222

bending stiffness along X being low at that region.223

Figure 6 shows the buckling modes corresponding to 4 DoE points shown224

in Figure 4. Focusing first on the modes obtained by bending the structures225

around the X axis (top row of the figure), one can see that DoE point 9 (Figure226

6b), and DoE point 14 (Figure 6c) show localized buckling modes, as opposed to227

the more global modes seen around the top of the web for the other geometries.228

The buckling behavior is improved in point 9 by localizing the deformation at229

the ends of the structure, while for point 14 it is improved by localizing it in the230

center after a more compliant behavior in this bending condition. Focusing now231

on the modes obtained by bending the structure around the Y axis (bottom row232

of the figure), one can see that only point 14 (Figure 6g) shows the localization233

of deformation at the ends of the structure, justifying the fact that only this234

geometry is in the region of the design chart with a higher buckling moment in235

Y. Therefore, DoE point 14 corresponds to the best design of the 4 geometries236

shown in Figure 6, and is within the optimal region found in the design charts.237

In general, one can conclude that designs with large flange angles and small238

web heights are the most effective when aiming to increase both initial buckling239

loads for constant mass of the structure. If the design goal is different, then the240

design charts can be used to optimize the structure for other applications, e.g.241

maximum bending stiffness achieved for a desired minimum buckling strength.242
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Figure 6: First buckling mode observed for different geometries subjected to two

loading conditions: bending around X (top row); and bending around Y

(bottom row). From left to right the geometries shown correspond to DoE

points 1, 9, 14 and 19 shown in Figure 4. The modes are scaled such that

the maximum displacement component is 5 mm for all cases.
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3.2. A design case with uncertainty and optimization: imperfection-sensitive243

TRAC boom ultimate buckling244

The previous approach of designing idealized structures for maximizing the245

first bifurcation point included three important simplifications: 1) each compu-246

tational analysis was relatively inexpensive, allowing the generation of a suffi-247

ciently large database; 2) the observations were noiseless, facilitating the ma-248

chine learning process; and 3) there was no need for including an optimization249

algorithm after the machine learning process due to the low-dimensionality of250

the problem and the obvious position of the optimum in the design charts.251

Nonetheless, there are problems where these simplifications are not possible.252

This subsection discusses the design of imperfect ultra-thin TRAC booms tar-253

geting improved ultimate buckling moments for the two loading conditions con-254

sidered above.255

Ultimate buckling of ultra-thin carbon fiber TRAC booms occurs after post-256

buckling, as shown in Figure 2. The computational analyses required in this257

case have a higher computational cost (each simulation requires approximately258

4 CPU-hours). This limits the exploration of the design space – see Remark 1.259

Remark 1. Data-driven approaches are limited by the generation of a suffi-260

ciently large database through efficient computational analyses – Box 2 in Figure261

3. Most engineering applications require costly computational analyses to gener-262

ate each data point. Therefore, new reduced order models (Ladevèze et al., 2010;263

Chinesta et al., 2011; Liu et al., 2016) that efficiently and accurately simulate264

such applications are one of the most critical needs in data-driven approaches265

for new designs. However, nonlinear buckling and post-buckling phenomena are266

yet to be demonstrated to be efficiently and accurately predicted by a reduced267

order model, to the authors’ knowledge.268

An additional challenge to apply the data-driven framework is in dealing269

with uncertainty, i.e. when the quantities of interest are stochastic such as270

imperfection-sensitive phenomena. Post-buckling and subsequent ultimate buck-271

ling of a structure are often strongly dependent on the presence of imperfections.272
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This is visible in Figure 2. Furthermore, the imperfection-sensitivity is not usu-273

ally the same for different geometries of the structure. Therefore, characterizing274

the uncertainty for the entire design space involves answering a two-part ques-275

tion: what imperfections and how many imperfect samples per DoE point should276

be considered?277

In particular to the ultra-thin composite TRAC booms considered herein,278

there is currently not enough experimental evidence to devise a strategy to model279

realistic imperfections – see Remark 2. The adopted strategy is then to seed280

geometric imperfections in the form of combinations of buckling modes obtained281

from linear perturbation analysis of the first bifurcation point. This strategy282

has been successfully used by different authors, e.g. Riks (1979); Bisagni (2000);283

Ning and Pellegrino (2015).284

Remark 2. Modeling geometric imperfections can be performed with higher-285

fidelity for problems with additional experimental information. For these cases,286

imperfections can be modeled directly from three-dimensional scans of the geom-287

etry or by finding combinations of frequency and buckling modes until the local288

imperfections are statistically equivalent to the scanned geometries.289

The number of buckling modes used to seed imperfections is estimated by290

the proximity of the first eigenvalues determined from the nonlinear buckling291

analyses of the previous section. The first two eigenvalues were found to be292

similar for a large number of TRAC boom designs, hence the first two buckling293

modes were chosen to seed the imperfections. An estimation of the amplitudes294

of these modes can be extracted from a preliminary experimental investigation295

(Leclerc et al., 2017) of various specimens of a single ultra-thin TRAC boom296

design, reporting deviations from the idealized structure as large as 2 mm with297

clear localized kinks. The amplitude bounds for the first two buckling modes298

were then considered as:299

λ1 = [−30t, 30t] , λ2 = [−30t, 30t] (4)

where t = 71 µm, as previously referred.300
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Specific details of the approach used to quantify the uncertainty of each301

TRAC boom design are included in Appendix A. Based on the initial design302

considered in Figure 2 it was determined that the first 20 imperfection sam-303

pling points highlighted in Figure A.1 would provide a reasonable estimate for304

the uncertainty of each design point. This means that the same combination of305

buckling mode amplitudes were used to generate 20 imperfect TRAC booms per306

nominal design. This does not mean that the same geometric imperfections are307

being seeded because each nominal geometry of the TRAC boom has different308

first and second buckling modes, as seen in the previous section. The statisti-309

cal distribution of the quantities of interest (ultimate buckling moments) was310

approximated as Gaussian – see Appendix A. Hence, the two metrics needed to311

approximate the distribution at each design point are the mean and standard312

deviation of the ultimate buckling moments computed from the 20 imperfect313

TRAC booms for each nominal design.314

Including uncertainty quantification for this example increases 20 times the315

number of simulations needed to subsequently perform the machine learning316

process. Also, each analysis of the post-buckling and ultimate buckling of these317

structures has a considerably higher computational cost when compared to the318

analyses used to determine the first bifurcation points, as referred previously.319

Thus, the bounds of the DoE were shrunk to:320

h = [2, 6] mm , θ = [10o, 315o] (5)

so that the number of DoE points could be reduced to 150, while keeping a321

similar density of points in the same region of the design space that led to a322

good approximation of the response in the previous example. The same method323

was used to perform the DoE as in Figure 4, so no additional figure is shown324

here.325

The database with the quantities of interest is created by conducting the326

respective computational analyses, which consist of the finite element solution327

of an arc length method using a commercial finite element software. A total328
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of 6000 computational analyses were conducted (2 boundary conditions, and 20329

imperfect TRAC booms for each of the 150 DoE points defining the different330

nominal designs). This corresponds to approximately 3 weeks of continuous331

computations in a computer cluster using 48 CPUs on average.332

Subsequently, the machine learning process for these noisy observations is333

required to establish the relationship between the uncertain ultimate buckling334

moment and the input variables defining the nominal geometry of the TRAC335

booms. The specific method used in this article is the Gaussian process regres-336

sion, as alluded in the previous section and detailed next.337

3.2.1. Gaussian process regression with heteroscedastic noise338

Contrary to the noiseless cases discussed in previous illustrations of the data-339

driven framework – see Section 3.1 and previous materials design examples340

(Bessa et al., 2017) – the ultimate buckling moments of the TRAC booms are341

strongly imperfection-sensitive, as seen in Figure 2 and in Appendix A. More-342

over, different nominal designs of TRAC booms are expected to have different343

imperfection sensitivity, as widely reported in the buckling literature, e.g. Ning344

and Pellegrino (2015). In statistics this phenomenon is called heteroscedasticity345

(Goldberg et al., 1998), i.e. input-dependent noise (variance).346

When possible, considering noiseless cases or at least considering indepen-347

dent and identically distributed (i.i.d.) Gaussian noise with constant variance348

is attractive. In these cases the Gaussian process regression has fast implemen-349

tations because the likelihood and marginal likelihood can be integrated ana-350

lytically (Rasmussen and Williams, 2005). However, a general treatment where351

noise is allowed to be heteroscedastic (input-dependent) and/or non-Gaussian352

requires numerical integration of the likelihood and marginal likelihood.353

Gaussian process regression (GPR) with heteroscedasticity was first dis-354

cussed by Goldberg et al. (Goldberg et al., 1998), while GPR with non-Gaussian355

noise was introduced by Neal (1997). Both articles considered a fully Bayesian356

framework using Markov chain Monte Carlo to perform the integration of the357

likelihood and the marginal likelihood. Unfortunately, this approach is computa-358
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tionally demanding, so alternative solutions have been proposed (Snelson et al.,359

2004; Kersting et al., 2007; Titsias and Lázaro-Gredilla, 2011). Snelson et al.360

(2004) proposed a warping scheme for Gaussian processes, Kersting et al. (2007)361

considered the most likely value using a maximum a posteriori (MAP) approach,362

while Titsias and Lázaro-Gredilla (2011) presented a variational approach with363

only twice the computational expense of a standard Gaussian process.364

Here the implementation provided by Pedregosa et al. (2011) is followed,365

where noise is assumed to be i.i.d. Gaussian but allowed to be heteroscedastic.366

The Gaussian assumption has implications illustrated in Figure A.3 for the367

TRAC boom design problem, since the statistical distribution for the ultimate368

buckling moment around X is not Gaussian if using the Sobol sequence to seed369

imperfections. However, considering the current lack of experimental data for370

this problem and the reported computational limitations arising from the non-371

Gaussian noise treatment, this simplifying assumption is considered henceforth.372

The previously determined database with NDoE = 150 DoE points is given373

by:374

{(x(1),q(1)), ..., (x(I),q(I)), ... , (x(NDoE),q(NDoE))} (6)

or in index notation,375

{(x(1)j , q
(1)
i ), ..., (x

(I)
j , q

(I)
i ), ... , (x

(NDoE)
j , q

(NDoE)
i )} for j = 1, ..., din and i = 1, ..., dout

(7)

where dout corresponds to the number of output quantities of interest q, and din376

is the number of input design variables x. In the TRAC boom design example377

there are din = 2 inputs x1 ≡ θ and x2 ≡ h, and dout = 2 outputs q1 ≡Mf
X and378

q2 ≡Mf
Y corresponding to the ultimate buckling moments obtained for applied379

bending around X and Y, respectively.380

Separate Gaussian processes will be used for each output. This way, the381

notation can be simplified by dropping the index in qi because q can be sepa-382

rately associated to quantity q1 or q2. In the heteroscedastic Gaussian process383
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considered here the noisy observations are approximated as,384

q(I) = f [x(I)] + ε(I) (8)

where f [x(I)] is the unknown function value at x(I) to be approximated by the385

Gaussian process, and ε(I) is the additive i.i.d. Gaussian noise with standard386

deviation σ(I)
ε that also depends on the input point x(I).387

The Gaussian process establishes its foundations by defining a prior that388

depends on the proximity of the data points weighted by a kernel function k389

with noise added to its diagonal,390

cov[q(I), q(J)] = k[x(I),x(J)] +
(
σ(I)
ε

)2
δIJ (9)

that can be arranged as a sum of two matrices,391

cov[q] = K + R (10)

where K is called the kernel matrix or covariance matrix with element (I, J)392

as KIJ = k[x(I),x(J)], and R is the diagonal noise matrix with each term393

including the variance of the quantity of interest q at the respective input point.394

This representation of noise can be viewed as a type of Tikhonov regularization395

(Tikhonov, 1963).396

If one desires to predict the quantity of interest q(∗) at a new input point x(∗),397

then the Gaussian process is written as a multivariate Gaussian distribution:398


 q

q̂(∗)


 ∼ N


0,


K k∗

kT∗ k[x(∗),x(∗)]




 (11)

where kT = {k(x(1),x(∗)), ...,x(NDoE),x∗)} is the vector of kernel functions399

evaluated at all the pairs composed by the NDoE training points and the new400

point x(∗).401

The predicted mean and variance of the quantity of interest q(∗) at the new402
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point is then written as:403

mean[q̂(∗)] = kT
∗ (K + R)

−1
q (12)

cov[q̂(∗)] = k[x(∗),x(∗)]− kT
∗ (K + R)

−1
k∗ (13)

In this article the kernel function k is chosen to be the squared exponential404

not just due to its ubiquitous use in the literature (Goldberg et al., 1998; Neal,405

1997; Rasmussen and Williams, 2005; Bessa et al., 2017) but also due to the406

fact that the Tikhonov regularization is directly related to the variance at the407

input values used for training. The squared exponential kernel function is then408

written as:409

k[x(I),x(J)] = η2 exp

[
din∑

k=1

− 1

2λ2k
(x

(I)
k − x

(J)
k )2

]
(14)

where η and λk are called hyperparameters to be determined by integration of410

the likelihood and marginal likelihood.411

Under the assumption that the prior is i.i.d Gaussian and heteroscedastic412

the likelihood and marginal likelihood can still be integrated exactly. The exact413

integration of the marginal likelihood leads to the log marginal likelihood:414

log (p[q|X,Ξ]) = −1

2
qT (K + R)

−1
q− 1

2
log |K + R| − NDoE

2
log(2π) (15)

where X is the matrix with all the input points x(I), and Ξ is the vector with415

all the hyperparameters considered in the Gaussian process.416

Finally, finding the values of the hyperparameters is achieved by maximizing417

the log marginal likelihood. In this article that maximization is performed using418

the Limited Broyden-Fletcher-Goldfarb-Shanno algorithm for Bound constraints419

(L-BFGS-B) (Zhu et al., 1997).420

The predicted mean and standard variation of the ultimate buckling mo-421

ments obtained when bending the TRAC booms around X or Y are shown in422

Figure 7. Note that even though the GPR was conducted for the bounds given423
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Figure 7: Distribution of mean and standard deviation of the ultimate buckling mo-

ments obtained by bending the structure around X and Y.

in equation (5), the bounds of the figure were shrunk for two reasons: 1) self-424

contact was not included in the simulations, so the TRAC booms with very425

large flange angles could suffer from artificial inter-penetration of surfaces; and426

2) uncertainty typically increases close to the boundaries of the design space427

due to the decrease in point density in those regions, so by excluding the region428

close to the boundaries one is certain that there are no artificial increases of429

uncertainty. In general shrinking the bounds is not necessary, but the authors430

wanted to reinforce that the increase in uncertainty for high angles and high431

web heights seen in Figure 7d is not explained by boundary effects.432
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3.2.2. Optimization433

Machine learning allows the creation of a non-parametric model that can434

be used for regression as shown in the previous sections. These non-parametric435

relationships between inputs and outputs can be the end goal for several ap-436

plications, such as finding the constitutive behavior of heterogeneous materials437

(Yvonnet and He, 2007; Bessa et al., 2017), or even when looking for global438

optima in low dimensional data where the maxima or minima are in obvious439

locations, as seen in Section 3.1. However, in other applications the goal is not440

creating a model relating inputs and outputs, but finding non-obvious optima441

for the quantities of interest. In these cases, optimization algorithms need to be442

considered.443

A myriad of optimization strategies is available in the literature. Typically444

they can be classified as derivative-based or derivative-free optimization meth-445

ods. Derivative-based methods usually have faster convergence, see e.g. Zhu446

et al. (1997); Gill et al. (2005). Derivative-free methods are mainly reserved for447

applications where direct access to the derivatives of the quantities of interest448

does not exist or when the derivatives are just too time-consuming to compute449

(Zitzler and Thiele, 1999; Zitzler et al., 2000; Konak et al., 2006).450

Optimization of the ultimate buckling moments of TRAC booms is an ex-451

ample where derivatives are unavailable (the derivatives are only available after452

machine learning). The TRAC boom problem also includes additional com-453

plications: each computational analysis is expensive, and the observations are454

noisy. Under these conditions direct derivative-free optimization is therefore455

prohibitively expensive, and surrogate-based modeling becomes particularly ad-456

vantageous. In the latter approach a machine learning model is developed from457

a limited number of computational analysis of the process of interest and a458

subsequent optimization step is conducted. The interested reader on surrogate-459

based analysis and optimization is referred to the following literature reviews460

and respective references (Queipo et al., 2005; Forrester and Keane, 2009).461

Including machine learning in the data-driven approach to optimization pro-462
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vides a framework for uncertainty quantification, facilitates optimization of463

noisy observations, allows clear data visualization and sensitivity analyses, as464

well as quick evaluation of any response and respective derivatives within the465

bounded design space. One of the most important advantages is also the possi-466

bility of performing various optimizations for different applications of the same467

structure or material. For example, one may be interested in maximizing the468

TRAC boom ultimate buckling moments for a given application, but for other469

cases one may be interested in maximizing the initial and post-buckling stiff-470

nesses, or the toughness, among other possibilities. This can be achieved by471

running multiple optimization problems on the same machine learning model,472

without performing additional computational analysis.473

The challenge in this surrogate-based optimization approach is in keeping474

a balance between exploration and exploitation (Forrester and Keane, 2009).475

Exploration meaning sampling refinement (more DoE points) to improve the476

accuracy of the machine learning model, and exploitation meaning the fast eval-477

uation of the surrogate model to find its global optimum, at the expense that478

the true global optimum of the physical process may not necessarily coincide479

with the surrogate.480

Optimization applied to the the previously determined GPR model shown481

in Figure 7 can be done by a large class of optimization algorithms. For exam-482

ple, the L-BFGS-B algorithm used previously for finding the maximum of the483

log marginal likelihood function could be easily applied here. Nevertheless, in484

order to establish a fair comparison between the surrogate-based optimization485

and the results one would obtain by directly performing the optimization task486

without machine learning, derivative-free optimization algorithms are consid-487

ered instead.488

Evolutionary multi-objective optimization algorithms have been a major re-489

search area in the past two decades, as can be observed from multiple com-490

prehensive reviews (Zitzler and Thiele, 1999; Zitzler et al., 2000; Konak et al.,491

2006). Recently the topic of many-objective optimization (Ishibuchi et al., 2008)492

is gaining particular attention in the literature in an attempt to solve problems493
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where more than four objectives are simultaneously being optimized (dealing494

with issues related to visualization of the Pareto frontier, convergence, curse of495

dimensionality, etc.).496

In this article, the authors focused on simultaneously maximizing the two497

imperfection-sensitive ultimate buckling moments of TRAC booms. Within the498

possible evolutionary algorithms adequate to perform this task, the authors se-499

lected four state-of-the-art algorithms as implemented by Izzo (2012) and initial-500

ized with the recommended default parameters: the Strength Pareto Evolution-501

ary Algorithm 2 (SPEA-2) by Zitzler et al. (2001), the Non-dominated Sorting502

Genetic Algorithm II (NSGA-II) by Deb et al. (2002), the Non-dominated Sort-503

ing Particle Swarm Optimizer for Multi-objective Optimization (NSPSO) by Li504

(2003), and the more recent S Metric Selection Evolutionary Multi-objective505

Optimization Algorithm (SMS-EMOA) by Beume et al. (2007) that is appro-506

priate for many-objective optimization problems (more than 4 objectives) due507

to improved scalability.508

The TRAC boom design problem is low-dimensional and the decision space509

is relatively small, so it is expected that all 4 algorithms should be able to510

determine the Pareto frontier without difficulties. The calculation of the Pareto511

frontier hypervolume (Beume et al., 2009) relative to a reference point located512

at Mf
X = 0 Nm and Mf

Y = 0 Nm was used as convergence metric. Note513

that in this application the hypervolume is in fact an area since there are only514

two objectives (area obtained from the origin of the decision space delimited515

by the Pareto frontier – see Figure 8). By definition, maximizing the Pareto516

frontier leads to its successive growth until full convergence is reached; thus, the517

hypervolume (area) tends to increase as the number of generations increases.518

As an additional note, the efficient calculation of the hypervolume for high-519

dimensional Pareto frontiers is currently still an active area of research (Bader520

and Zitzler, 2011).521

Figure 8a shows the Pareto frontier obtained from the SMS-EMOA with an522

initial population of 20 individuals after 5000 generations. This Pareto frontier523

was computed considering the mean value of the ultimate buckling moments524
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Figure 8: Figure (a) shows the Pareto frontier obtained from SMS-EMOA by max-

imizing the lower bound of the 95% confidence interval of the ultimate

buckling moments in X and Y. The labels refer to the input points lo-

cated in the Pareto frontier (θ, h). Figure (b) presents the hypervolume

variation with increasing number of generations. Markers in (b) represent

the hypervolume every 200 generations, and the hypervolume variation is

calculated by comparing the current value to the initial hypervolume of

0.22745 (Nm)2.
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minus two standard deviations, in order to penalize designs sensitive to imper-525

fections. In other words, the lower bound of the 95% confidence interval of the526

ultimate buckling moments is considered for optimization – see Figure A.3.527

Figure 8b shows the variation of the hypervolume (area) as the number of528

generations increases compared to the hypervolume computed from the initial529

population of individuals. From this figure one can observe that after approxi-530

mately 1000 generations the result has converged, which corresponds to a total531

of 40, 000 function evaluations. This large number of function evaluations would532

be the approximate number of actual computational simulations of the TRAC533

booms2 required to determine the Pareto frontier if the surrogate model was not534

used. Clearly this number of simulations would be infeasable considering the535

computational expense of each simulation, so the need for the machine learning536

step is evident.537

The Pareto frontiers obtained from the other algorithms are similar, so the538

respective figures are not included in this article. The SPEA-2 showed excellent539

performance requiring only 100 generations of an initial population of 20 individ-540

uals, also leading to a uniform distribution of the objective functions values as541

in Figure 8a. This means that “only” 4, 000 function evaluations were needed,542

which is still significantly higher than the 150 DoE points used for machine543

learning. This algorithm was already expected to be more efficient than the544

SMS-EMOA for two-dimensional decision spaces, but its performance degrades545

for higher dimensional ones (Ishibuchi et al., 2008), so the authors preferred to546

focus on the most general algorithm.547

The NSGA-II algorithm showed similar convergence to the SPEA-2 but it548

required longer times to compute each generation and had the additional disad-549

vantage that the quantities of interest located in the Pareto frontier were not so550

uniformly distributed. Finally, the NSPSO showed even slower convergence than551

2In fact, since the observations are noisy the number would be higher because the esti-

mation of the standard deviation is needed at each point! Alternatively, one could use fuzzy

optimization algorithms, although they have other limitations not discussed herein.
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the SMS-EMOA and highest nonuniformity than the NSGA-II for the Pareto552

frontier sampling. For this last algorithm a larger initial population (50) was553

needed due to the nonuniformity of the Pareto frontier sampling. Uniformity in554

sampling the Pareto frontier is desirable because it facilitates the hypervolume555

estimation and the identification of possible discontinuities as the one observed556

in Figure 8a.557
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Figure 9: Similar to Figure 8 but considering the mean ultimate buckling moments

as maximization objectives instead of their lower bound estimates. In

figure (b) markers are also placed every 200 generations, and the initial

hypervolume value is 0.27059 (Nm)2.

The four evolutionary algorithms above described require a large number558

of function evaluations which impairs their direct use for optimization in this559

application due to the computational cost of simulating the ultimate buckling560

moments for different TRAC booms. The Pareto frontier obtained when pe-561

nalizing imperfection-sensitive designs (Figure 8a) shows a discontinuity close562

to a 0.20 Nm for the lower bound of the ultimate buckling moment around X.563

This finding provides a reasonable argument to select the TRAC boom geome-564

try with θ = 270o and h = 4.1 mm because a small increase of the lower bound565

of the ultimate buckling moment around X would lead to an undesirably sharp566
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decrease in the lower bound of the ultimate buckling moment around Y.567

Furthermore, different optimization objectives can be defined without addi-568

tional computational analyses, as previously mentioned. For instance, if one is569

not too concerned with imperfection-sensitivity one could simply optimize for570

the mean value of the ultimate buckling moments without taking into account571

the uncertainty of the response. Figure 9 includes the respective results ob-572

tained in this case. As can be seen the optimal values are evidently larger than573

the values in Figure 8, but interestingly the discontinuity in the Pareto frontier574

occurs earlier.575

In the exceptional circumstances provided by considering a low-dimensional576

problem and a relatively small design space, the shape of the decision space577

can be seen without performing optimization and just evaluating a large initial578

population of input points. Appendix B includes the two informative figures for579

optimization considering the lower bounds or the mean values of the ultimate580

buckling moments. Comparing Figures 8a with A.5a, and Figures 9a with A.5b,581

one can clearly understand the occurrence of the discontinuities in the Pareto582

frontiers.583

4. Conclusion584

A data-driven computational framework is proposed for the analysis and de-585

sign of a large class of structures and materials addressing complications such586

as noisy observations through machine learning with uncertainty quantification,587

and multi-objective optimization. The challenging problem of designing ultra-588

thin deployable carbon fiber composite structures for simultaneously improving589

their imperfection-sensitive ultimate buckling moments under two loading con-590

ditions is provided as an illustration of the framework.591

The combination of machine learning for imperfection-sensitivity quantities592

of interest and multi-objective optimization is shown to be critically important593

in order to reach viable solutions with a reasonable effort, due to the compu-594

tational expense involved in analyzing the ultimate buckling of structures. In595
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particular, for TRAC booms, different designs were found by defining a Pareto596

frontier of the mean value of the ultimate buckling moments with large potential597

improvements: 1) possibility of simultaneous increases for the ultimate buckling598

moments larger than 25%; 2) separate increases above 90% and 27%, without599

decreasing the other respective ultimate buckling; and 3) an increase of above600

300% for one of the ultimate buckling moments with a respective decrease of601

28% for the other, which results from exploring the presence of a discontinuity602

in the Pareto frontier.603

Future applications of the framework to multi-physics applications of dif-604

ferent materials and structures are expected to reveal innovative solutions to605

otherwise complex problems. The main limitations of data-driven approaches606

when designing new materials or structures under untested conditions remain to607

be the computational expense of predicting the behavior for each design point,608

as well as the curse of dimensionality occurring when the input design space609

and/or the decision space are high dimensional. Advanced reduced order mod-610

els such as the “self-consistent clustering analysis” (Bessa et al., 2017; Liu et al.,611

2016) are expected to address the former challenge, while further improvements612

in machine learning and optimization algorithms will address the latter.613
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Appendix A. Uncertainty quantification for TRAC boom design617

Computationally generating structural imperfections as combinations of buck-618

ling modes requires the definition of a statistical distribution for the respective619

amplitudes within given bounds – see equation 4. Due to lack of experimental620

data, a statistical distribution of the amplitudes needs to be assumed. Here a621

Sobol sequence (Sobol, 1967, 1976) was used to create 300 sampling points of622
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the imperfection amplitudes that were normalized by the thickness of the TRAC623

booms – see Figure A.1.624
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Figure A.1: Three hundred points from a Sobol sequence used to define the ampli-

tudes of the first two buckling modes that create imperfections on the

different TRAC boom geometries. The amplitude of the first buckling

mode is λ1, while the amplitude of the second is λ2. Both amplitudes

are normalized by the flange thickness t = 71 µm. The figure highlights

the first 20 points by respective labels and solid red circles. (For inter-

pretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

Note that assuming a Sobol sequence to seed imperfection amplitudes may625

not be realistic. In fact, the quasi-uniformity of the distribution shown in Figure626

A.1 implies that higher imperfection amplitudes are increasingly more likely to627

occur than lower ones. In practice when manufacturing the TRAC booms this628

is not expected because different manufacturing processes introduce different629

systematic and random errors that can substantially skew and bias the distri-630

bution of imperfections. Nevertheless, due to the current lack of experimental631

evidence this distribution was assumed henceforth.632

Estimation of uncertainty for the quantities of interest can be achieved by633

predicting the response of each design of the structure for the various sam-634
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pled imperfections. But how many sampling points are needed to estimate the635

uncertainty for each design point?636
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Figure A.2: Mean and standard deviation of the ultimate buckling moments ob-

tained considering different amounts of imperfection sampling points.

These results are for the initial geometry of the TRAC boom with nom-

inal cross-section parameters of h = 8 mm and θ = 105o.

Figures A.2a and A.2b show the variation of the mean and standard devi-637

ation of the ultimate buckling moments of a single design of the TRAC boom638

(h = 8 mm and θ = 105o). The mean and standard deviation computed in these639

figures are obtained for an increasing number of sampling points. Note that the640

design of the TRAC boom used in this analysis coincides with the initial design641

that has the responses shown in Figure 2 for the first 6 imperfection points642

labeled in Figure A.1. Figures A.2a and A.2b demonstrate that both metrics643

(mean and standard deviation) tend to a constant value for a large enough num-644

ber of sampling points. As expected, estimating the standard deviation requires645

more sampling points than estimating the mean – see also Table A.1.646

Observing Figure A.2 and Table A.1 it may seem that there is a need for647

more than 80 sampling points to accurately estimate the standard deviation of648

a single TRAC boom design. This would be true if one were to accurately char-649

acterize only one TRAC boom design, but the data-driven framework discussed650
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Table A.1: Error of the mean and standard deviation of the ultimate buckling mo-

ment obtained for the initial geometry of the TRAC boom (h = 8 mm

and θ = 105o) for different numbers of sampling points.

Number of sampling points

5 10 20 40 80 160

mean(M f
X) error +2.3% +4.7% +2.6% −0.6% −0.7% +0.8%

STDV(M f
X) error −26.7% −26.8% +0.6% +14.3% +3.6% −3.7%

mean(M f
Y ) error −1.0% −0.4% +0.1% +0.1% 0.0% 0.0%

STDV(M f
Y ) error +24.4% −6.0% +5.1% +1.9% −1.2% −0.3%

in this article is used to characterize multiple designs within a Bayesian machine651

learning framework (Gaussian process regression). Gaussian process regression652

provides a global approximation to the quantities of interest, as opposed to a653

local one, which in practice means that each design point only requires a rea-654

sonable estimate of the uncertainty. An intuitive way to understand this is by655

observing that the presence of other design points around each point improves656

the local predictions of uncertainty at every point of the domain.657

As can be seen in Figure A.2 and Table A.1, considering 20 sampling points658

provides reasonable estimates of uncertainty of the initial design. Therefore,659

this amount of sampling points is expected to be reasonable for other design660

points as well.661

An important point should be made about the statistical characterization of662

the TRAC boom ultimate buckling moments. In this article a Gaussian distri-663

bution was used to approximate their statistical distribution due to imperfec-664

tions in each design. As shown in Figure A.3 assuming a Gaussian distribution665

is more reasonable for the ultimate buckling moment obtained when bending666

around Y than around X. The choice of a Gaussian distribution simplifies the667

implementation and lowers significantly the computational cost of the Gaussian668

process regression because the likelihood function is Gaussian (Rasmussen and669
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Figure A.3: Histogram and corresponding Gaussian approximation for the distribu-

tion of the TRAC boom ultimate buckling moments. Same TRAC boom

considered in Figure A.2 and considering 280 imperfection points.

Williams, 2005). Section 3.2 further elaborates this reasoning.670

As a final comment about the statistical distributions of the ultimate buck-671

ling moments, it is noted that a small and yet non-negligible amount of com-672

putational analyses of TRAC booms subjected to bending around Y showed673

convergence issues. This was not observed for bending around X. Figure A.4674

illustrates the convergence issue by plotting the moment–angle response of the675

TRAC boom subjected to bending around Y for two very similar imperfections.676

As can be seen in the figures one of the responses is incomplete because the677

equilibrium path after a second bifurcation point is not resolved, even though678

this does not correspond to the ultimate buckling. Such small imperfection dif-679

ference is unlikely to cause the suggested premature ultimate buckling of the680

TRAC boom (see dashed line in the figure). This has implications on the distri-681

bution seen in Figure A.3b, since it is likely that the minimum ultimate buckling682

moment around Y is closer to 0.25 Nm than 0.15 Nm – see Remark 3.683

Remark 3. The detailed uncertainty analysis summarized herein for both load-684

ing conditions applied to the TRAC booms intends to demonstrate two important685
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Figure A.4: The moment–angle response of a TRAC boom (h = 8mm and θ = 105o)

subjected to bending around Y and considering two similar imperfec-

tions: solid line corresponds to (λ1 ≈ 16.7t , λ2 ≈ −28.4t), while the

dashed line corresponds to (λ1 ≈ 17.4t , λ2 ≈ −28.3t). These results il-

lustrate that some analyses stop prematurely due to convergence issues

for this loading condition.

issues. First, the importance of the statistical distribution assumed for seeding686

the imperfections. This process should be guided by experiments or physical ar-687

guments that justify the distribution of imperfections, which are dependent on688

the manufacturing and testing conditions. Secondly, the relevance of modeling689

errors on the estimation of uncertainty. In fact, the statistical distribution of the690

ultimate buckling moments of the TRAC booms around Y is probably skewed, as691

in Figure A.3a, and certainly the standard deviation should be lower if no con-692

vergence issues were observed. Yet, the standard deviation for bending around693

Y would still be higher than the one for bending around X for this particular694

design.695

Appendix B. Comment on shape of Pareto frontier696

The particular problem of interest in this article is low-dimensional, i.e. it697

only has 2 input variables and two output quantities of interest. Since the698
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machine learning model can be evaluated for any combination of input values699

within the appropriate bounds, then there is the possibility of exhaustively700

evaluating the responses for a large number of different designs without using701

optimization strategies.702
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Figure A.5: Exhaustive exploration of a large number of possible values of the out-

put quantities of interest within the input bounds of h = [2.5, 5.5] mm,

θ = [45o, 270o]. Note that this figure is not generated with any opti-

mization algorithm. Instead, it provides the ultimate buckling moments

of 10, 000 different designs, effectively showing the entire output space

to be optimized.

Figure A.5 shows this exhaustive evaluation of a population of 10, 000 designs703

from which the entire output space can be seen as a collection of the responses704

for those points. This demonstrates why the Pareto frontier has a discontinuity705

aroundMf
X = 0.20 in Figure 8a and aroundMf

X = 0.25 in Figure 9a, where there706

is no combination of points that simultaneously improves both ultimate buckling707

moments. Evidently, Figure A.5 is included here for illustrative purposes. Under708

normal circumstances the results in Figure A.5 are not available, nor necessary.709
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