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ATTITUDE MANEUVER DESIGN FOR PLANAR SPACE SOLAR
POWER SATELLITES

Michael A. Marshall*, Ashish Goel†, and Sergio Pellegrino‡

This paper investigates the attitude dynamics of a planar space solar power satellite (SSPS) by
formulating the power-optimal guidance problem as a nonlinear trajectory optimization prob-
lem. The power-optimal guidance problem determines the orientation of an SSPS throughout
its orbit that maximizes the amount of power transmitted to Earth. This transmitted power
is a function of the relative geometry between the SSPS, the Sun, and the receiving station.
Hence, it is inherently coupled to the attitude of the SSPS, i.e., the orientation that maxi-
mizes power transmission changes as the relative geometry changes. We first approximate
the discretized trajectory optimization problem as a quadratic program (QP). We then solve
the QP to obtain attitude trajectory designs for various orbits. These solutions highlight how
maximizing transmitted power typically requires large slew maneuvers. Ultimately, by quan-
tifying control and propellant requirements for various orbits, we emphasize how maneuver
dynamics play an important role in SSPS design.

INTRODUCTION

Space solar power is the concept of collecting solar power in space and wirelessly transmitting it to Earth.
Compared to terrestrial solar power, space solar has several benefits. For one, it decouples solar power
collection from terrestrial weather and diurnal and seasonal cycles, meaning a space solar power system can
potentially provide clean, renewable base load power to the electrical grid without the need for expensive
energy storage solutions (e.g. batteries). Additionally, space solar has the capability to beam power to
virtually any location on Earth at any time, irrespective of latitude or weather condition, making it an attractive
technology for powering resource-deprived regions.

While the science fiction author Isaac Asimov presented the original idea for space solar in 1941,1 another
two decades passed before P. E. Glaser proposed the first realistic concept for a space solar power satel-
lite (SSPS).2 In the years since, researchers have proposed a variety of SSPS concepts,3–6 all of which are
effectively variations of the original concept proposed by Glaser. These “classical” concepts feature large,
monolithic spacecraft with large photovoltaic (PV) arrays that convert solar power to direct current (DC)
power, DC to radio frequency (RF) converters, and one or more antennas for beaming RF energy to Earth.
They also typically include either mechanically steerable solar arrays or antennas that decouple the problems
of antenna steering and sun pointing.

However, reducing mass is imperative for realizing an economically viable space solar power system.7 In
other words, economic viability requires ultralight structures. Innovative new structural concepts character-
ized by extremely low areal mass densities (on the order of 1 kg/m2 or less) are driving the development
of ultralight, planar SSPS concepts.8 These concepts replace large, monolithic spacecraft with clusters of

*Graduate Research Assistant, Graduate Aerospace Laboratories, 1200 E. California Blvd., Mail Code 105-50, Pasadena, CA 91125.
mmarshall@caltech.edu

†Postdoctoral Researcher, Jet Propulsion Laboratory, 4800 Oak Grove Dr., Pasadena, CA 91109. ashish.goel@jpl.nasa.gov
‡Joyce and Kent Kresa Professor of Aerospace and Civil Engineering; Jet Propulsion Laboratory Senior Research Scientist; Co-Director,
Space-Based Solar Power Project, Graduate Aerospace Laboratories, 1200 E. California Blvd., Mail Code 105-50, Pasadena, CA 91125.
sergiop@caltech.edu

1

mailto:mmarshall@caltech.edu
mailto:ashish.goel@jpl.nasa.gov
mailto:sergiop@caltech.edu


smaller spacecraft and replace complicated mechanical systems with lightweight, planar elements that inte-
grate PV surfaces, DC-to-RF converters, and microwave patch antennas, like those described in Jaffe and
McSpadden (2013)9 and Gdoutos et al. (2018).10

Planarity is a design decision that simplifies the structural architecture and facilitates efficient packaging
of the SSPS.8 As a consequence of planarity, the problems of orienting the PV surface towards the Sun and
directing the RF beam towards a receiving station on Earth are intrinsically coupled, i.e., reorienting the PV
surface reorients the RF surface and vice versa. This is a critical difference between classical and planar
SSPS architectures. Due to this PV-RF surface coupling, maximizing power transfer requires demanding
slew maneuvers.11 The combination of attitude agility and structural flexibility leads to coupling between the
spacecraft’s attitude and structural dynamics. Not surprisingly, attitude maneuver dynamics are key struc-
tural design drivers for a planar SSPS. Thus, quantifying attitude maneuver dynamics is important for future
studies of modal excitation and inertial loading on the structure. Additionally, important system level con-
siderations, including attitude control system (ACS) sizing and ACS propellant consumption, are linked to
attitude maneuver dynamics.

The baseline SSPS design considered in this paper consists of two primary layers. The top layer is com-
posed of PV cells that convert solar radiation to DC electrical power. The DC electrical power is then fed
into integrated circuits (ICs) that convert DC electrical power to RF power. The bottom layer consists of tiny
patch antennas that radiate RF power towards Earth. The patch antennas are synchronized to operate as a
steerable phased array. Throughout this paper, this baseline module design is referred to as single-sided PV,
single-sided RF (PV1RF1).
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Figure 1: Baseline SSPS Design and Dual-Sided Variations

Several “dual-sided” variations of this baseline design have also been proposed. Dual-sided refers to an
SSPS with at least two PV surfaces or two RF surfaces. A dual-sided SSPS is constructed by adding either
a layer of PV-transparent antennas or RF-transparent PV cells to the top or bottom layers of the baseline
design. Throughout this paper, we refer to a module with two PV surfaces and one RF surface as dual-sided
PV, single-sided RF (PV2RF1). Similarly, modules with one PV surface and two RF surfaces or two PV
surfaces and two RF surfaces are referred to as single-sided PV, dual-sided RF (PV1RF2) or dual-sided PV,
dual-sided RF (PV2RF2), respectively. Note that for any dual-sided SSPS, only a single PV surface and a
single RF surface operate at any given time. These four SSPS designs are depicted in Figure 1 where β and
φ denote the sun and squint angles, i.e., the orientations of the top PV surface relative to the Sun and the
bottom RF surface relative to the receiving station. Dual-sided operations can increase transmitted power by
upwards of 50%. However, maximizing power transmission during dual-sided operations requires large slew
maneuvers.11 Due to practical considerations, we focus on the PV2RF1 architecture in this paper, but we also
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briefly study the PV1RF1 architecture for comparison.

Various authors have studied attitude dynamics and control of classical SSPS concepts.6, 12–15 However,
aside from two notable exceptions, attitude dynamics and control for planar SSPS concepts are largely un-
explored in the literature. In particular, Goel et al. (2017)16 presents a preliminary study of the attitude
dynamics of both PV1RF1 and PV1RF2 SSPSs in geostationary Earth orbit (GEO). Likewise, Goel et al.
(2017)17 investigates the attitude dynamics of a PV1RF2 SSPS in the context of formation flying in GEO. To
that end, this paper complements the existing literature by investigating the attitude dynamics of an SSPS in
both GEO and a representative medium Earth orbit (MEO). To our knowledge, this is the first investigation
of the attitude dynamics of a PV2RF1 SSPS and of any planar SSPS in MEO. Moreover, whereas Goel et
al. (2017)16 and Goel et al. (2017)17 consider the concentrated PV system from Gdoutos et al. (2018),10 this
work investigates the attitude dynamics of an SSPS with a planar, non-concentrated PV system. Additionally,
a key goal of the current work is to provide tools for quantifying the inertial loads on the spacecraft due to
attitude maneuvers. These loads are critical for future studies of flexible spacecraft.

This paper is divided into four sections. In the first section, we summarize the power-optimal guidance
problem for a planar SSPS from Marshall et al. (2018).11 The second section starts from the power-optimal
guidance problem to formulate the problem of attitude maneuvering for optimum power transfer as a trajec-
tory optimization problem. The third section presents the results of case studies for a 25 m ˆ 25 m SSPS
concept in both GEO and a 20,184 km MEO. The final section then discusses future research directions and
the ramifications of this work on SSPS design.

REVIEW OF POWER-OPTIMAL GUIDANCE PROBLEM
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Figure 2: SSPS-Sun-receiving station geometry. While the figure depicts a single-sided PV, single-sided
RF SSPS, it is equally applicable for any SSPS design.

In this section, we summarize the power-optimal guidance problem from Marshall et al. (2018)11 for a
planar SSPS in a circular, equatorial orbit transmitting to an equatorial receiving station. We leverage the
power-optimal guidance framework to formulate the attitude maneuver design problem.
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The power-optimal guidance problem defines the orientation of an SSPS that maximizes power transfer to
the receiving station. Maximizing power transfer maximizes the cumulative energy delivered to the electrical
grid. The total transmitted power strongly depends on the geometry of the SSPS relative to the Sun and Earth
receiving station and is characterized by the sun angle (β), squint angle (φ), Earth Rotation Angle, or ERA
(θ), and satellite elevation angle (δ), as depicted in Figure 2. The sun and squint angles define the orientations
of the SSPS with respect to the Sun and receiving station, respectively. The ERA describes the position of
the receiving station on Earth’s surface in inertial space and the elevation angle describes the position of the
SSPS relative to the receiving station. These four angles are geometrically related by

β ` φ “ δ ` θ ´
π

2
(1)

where δ “ δpνq and
θ “ ωC pt´ t0q ` θ0 (2)

ωC is the rotation rate of Earth about its spin axis. Eq. (1) couples the attitude and orbit dynamics of the
SSPS. Finally, for a circular orbit with mean motion n,

ν “ n pt´ t0q ` ν0 (3)

We assume that θ0 “ ν0 “ 0, i.e., that both the SSPS and receiving station start at local noon at time t “ 0.
Note that in GEO, n “ ωC and δ “ 900, from which it follows that ν “ θ and β ` φ “ θ.

In this work, we adopt the assumptions discussed in Section II of Marshall et al (2018),11 i.e., we assume
that Earth’s motion about the Sun is negligible for short time scales (e.g. a sidereal day), incident sunlight is
collimated, the SSPS only rotates about the normal to the orbit plane, etc. Likewise, we neglect the Earth’s
tilt about its spin axis and orbit perturbations like solar radiation pressure. Under these assumptions, βptq
fully describes the orientation of the SSPS.

Transmitted Power

The total power density per unit aperture area transmitted by the SSPS is

Wtpβ, φq “WSFηPVηDC-RF PVpβqRFpφqAFpφq (4)

where WSF “ 1361 W/m2 is the incident solar flux, ηPV is the optical-to-electrical power conversion effi-
ciency of the PV cells, ηDC-RF is the DC-to-RF conversion efficiency of the system, PVpβq is the efficiency
of the PV cells as a function of sun angle, RFpφq is the efficiency of a single antenna in the phased array
as a function of squint angle, and AFpφq is the phased array factor. Eq. (4) neglects the losses due to any
impedance mismatch between the RF source and antenna. Wt “ 0 in eclipse and when the Earth blocks
the SSPS’s view of the receiving station. It follows from Eq. (4) that the orientation that maximizes power
collection is not necessarily the same as the orientation that maximizes power transfer.

We assume planar (non-concentrated) PV surfaces with a PV efficiency function that follows a cosine law
with a minimum acceptance angle of 5°, i.e., for local sun angles that exceed the minimum acceptance angle,
the PV efficiency function is PVpβq “ |cospβq|.

Likewise, we assume the RF layer consists of near-isotropic patch antennas with the RF efficiency func-
tion depicted in Figure 3. This RF efficiency function results from electromagnetic simulations of the
patch antennas described in Gdoutos et al.10 Finally, we approximate the array factor by a cosine loss, i.e.
AFpφq “ |cospφq|. PVpβq, RFpφq, and AFpφq are all symmetric, periodic, positive semidefinite functions
with fundamental periods of 180°, meaning Wt is also periodic with the same fundamental period.

Within the scope of this paper, WSF , ηPV , and ηDC´RF are constants. As a result, we can define a
normalized transmitted power density that only depends on the geometry in Figure 2, as follows:

ηpβ, φq “
Wtpβ, φq

WSFηPVηDC-RF
“ PVpβqRFpφqAFpφq (5)
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Figure 3: RF Efficiency Function for a Near-Isotropic Patch Antenna

η is hereafter referred to as the geometric efficiency. Maximizing η maximizes Wt and vice versa. Finally,
substituting Eq. (1) into Eq. (5) allows the geometric efficiency to be rewritten as

ηpβq “ PVpβqRF
´

δ ` θ ´ β ´
π

2

¯

AF
´

δ ` θ ´ β ´
π

2

¯

(6)

where δ and θ are known from the orbit. As a result, η is effectively a single-variable function of β. For any
pδ, θq, we can use Eq. (6) to determine the orientation that maximizes transmitted power.

Pointing Constraints

Let nPV denote the outward normal vector from a planar PV surface. If s denotes the sun vector, then the
surface collects power so long as

nPV ¨ s “ cospβq ą 0 (7)

Similarly, for a planar RF surface with outward normal vector nRF radiating towards a receiving station in
direction r, the surface transmits power so long as

nRF ¨ r “ cospφq ą 0 (8)

Eqs. (7) and (8) result in the following pointing constraints for single-sided PV and single-sided RF surfaces:

´ 900 ă β ă 900 (9)

´ 900 ă φ ă 900 (10)

where φ is related to β through Eq. (1). Because attitude is modulo 360°, i.e., a rotation of β by an integer
multiple of 360° physically results in the same attitude, and Wt “ 0 if either β or φ are integer multiples of
90°, there are no pointing constraints for a dual-sided surface.

Table 1: SSPS Pointing Constraints

Design Sun Angle Squint Angle

Single-Sided PV, Single-Sided RF ´900 ă β ă 900 ´900 ă φ ă 900

Dual-Sided PV, Single-Sided RF ´8 ă β ă 8 ´900 ă φ ă 900

Single-Sided PV, Dual-Sided RF ´900 ă β ă 900 ´8 ă φ ă 8

Dual-Sided PV, Dual-Sided RF ´8 ă β ă 8 ´8 ă φ ă 8
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Table 1 summarizes the resulting pointing constraints for the four SSPS designs from Figure 1.* In all
cases, we enforce squint angle limits by mapping squint angles to sun angles using Eq. (1). Note that Wt “ 0
if it is impossible to satisfy the pointing constraints for some particular orbit geometry.

Power-Optimal Guidance Problem

The power-optimal guidance problem maximizes power (and energy) transmission to the receiving station
subject to appropriate pointing constraints. We can formulate the power-optimal guidance problem as follows:

Problem 1:

max
βptq

ż tf

0

ηpβptqq dt subject to:
"

|βptq| ă βmax

|φptq| ă φmax

where tf is the final simulation time, typically taken to be either the orbit period or the length of a sidereal day,
and βmax and φmax are pointing constraints from Table 1. We denote solutions to the power-optimal guidance
problem by β˚ptq. β˚ptq is a purely kinematic solution that maximizes transmitted power independent of a
spacecraft’s dynamics. The corresponding geometric efficiency is η˚ptq. Marshall et al. (2018)11 details
several known solutions for geostationary, medium, and low Earth orbits. These solutions provide reference
trajectories for the attitude maneuver design problem.

ATTITUDE MANEUVERING FOR OPTIMUM POWER TRANSFER

To Sun

l

Thrusters

Thrusters

β

Figure 4: Idealized, Rigid SSPS with Tip-Mounted Attitude Control Thrusters

To study the problem of attitude maneuvering for optimum power transfer, we extend the power-optimal
guidance problem (Problem 1) to account for attitude dynamics and control constraints. Within this paper,
we consider an idealized, rigid SSPS with tip-mounted electrically-powered thrusters for attitude control,
as depicted in Figure 4. The thrusters are bidirectional; two thrusters are fired simultaneously in opposite
directions to form a couple. We intentionally neglect disturbances like gravity gradient torques because we
are interested in guidance and dynamics, not attitude control. Hence, the attitude dynamics for our single
degree-of-freedom SSPS are described by :βptq “ uptq where uptq is the angular acceleration imparted by
the thrusters and we have assumed that any mass property changes due to ACS propellant consumption are
negligible. Note that this formulation of the dynamics is independent of the spacecraft’s length scale and mass
properties. Additionally, we enforce periodicity constraints on attitude and angular velocity so that system
performance does not change from day to day.

Ultimately, we choose an objective function that maximizes power transmission and minimizes propellant
consumption. The resulting optimization problem is

Problem 2:

min
uptq

ż tf

0

”

λ |uptq|´ ηpβpuptqqq
ı

dt subject to:

$

&

%

:βptq “ uptq βptf q “ βp0q ` 2kπ
9βptf q “ 9βp0q |uptq| ď umax

|βptq| ă βmax |φptq| ă φmax

*PV cell and antenna requirements may impose additional restrictions on sun and squint angles. However, as is done in Marshall et
al. (2018),11 we choose to account for any reduced sun and squint angle ranges through the transmitted power function, not the pointing
constraints.
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where λ determines the relative weighting of power-optimality and fuel-optimality and k is an integer that
determines the number of complete rotations of the SSPS during the interval r0, tf s. For example, based on
the solutions to the power-optimal guidance problem from Marshall et al. (2018)11 for an SSPS in GEO,
k “ 1 for PV2RF1 and k “ 0 for PV1RF1. The term |uptq| minimizes propellant consumption because we
assume attitude control is achieved with individual thrusters rigidly mounted to the spacecraft’s body axes.18

Likewise, the term´ηpβpuptqqqmaximizes power transmission. When λ “ 0, the solution is power-optimal,
i.e., power is maximized independent of thrust or propellant consumption considerations. Similarly, when
λ “ 8, the solution is fuel-optimal, i.e., propellant consumption is minimized independent of any power
considerations.
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Figure 5: Angular Acceleration Required for a 90°, Rest-to-Rest Slew Maneuver

The power-optimal guidance solutions for a dual-sided SSPS include large impulsive slew maneuvers.
With the given PV and RF efficiency functions, the instantaneous angle change during these maneuvers is
approximately 90°.11 Because an impulsive slew requires an infinite angular acceleration, this is a singular
optimal control problem. To remove these singularities, we impose a finite control constraint, umax. We
determine umax by considering a 90°, bang-bang, rest-to-rest slew maneuver with constant maximum angular
acceleration. Figure 5 depicts the relationship between umax and the slew time for these maneuvers. In this
paper, we base the control input constraint on a 10 minute slew. This corresponds to umax “ 10´3 °/s2.

We can easily modify Problem 2 to account for additional considerations or attitude control system ar-
chitectures. For example, we can impose angular velocity constraints or formulate the attitude dynamics to
include flexibility effects. Alternatively, we can study a momentum-based attitude control system by mini-
mizing the square of the control input and adding constraints on both angular jerk19 and angular momentum.

Due to its objective function, Problem 2 is a nonlinear, non-convex optimization problem with linear
equality and inequality constraints. Rather than solving it directly, e.g. using nonlinear programming, we
instead use a quadratic approximation of the objective function to formulate the problem as a quadratic
program (QP). To convert Problem 2 into a QP, we first discretize the dynamics and pack both the dynamics
and periodicity constraints into matrix equalities. We subsequently discretize and approximate the objective
function to rewrite Problem 2 in a form solvable as a QP.

Discrete Dynamics and Periodicity Constraints

In state-space form, the continuous-time dynamics are
«

9βptq
:βptq

ff

loooomoooon

9xptq

“

„

0 1
0 0



loooomoooon

A

„

βptq
9βptq



looomooon

xptq

`

„

0
1



loomoon

B

uptq (11)

where xptq is the state vector, uptq is the angular acceleration imparted by the thrusters, A is the dynamics
matrix, and B is the control influence matrix. Using a zero-order hold (ZOH) parameterization of the control
input, we transform Eq. (11) from continuous-time to discrete-time to obtain

9xptq “ Axptq `Buptq Ñ xi`1 “ Adxi `Bdui (12)
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where i “ 0, 1, . . . , N ´ 1 denotes the i-th time step, N is the total number of time steps, and ∆t “
tf
N´1 is

the length of each time step. Ad and Bd are given by

Ad “ eA∆t “

„

1 ∆t
0 1



(13)

Bd “

˜

ż ∆t

0

eAp∆t´τqdτ

¸

B “

„

∆t2{2
∆t



(14)

However, for linear time-invariant dynamics, the state at time step i is simply a linear combination of the
initial state x0 and the control inputs applied at each previous time step, i.e.,

x1 “ Adx0 `Bdu0

x2 “ Adx1 `Bdu1 “ A2
dx0 `AdBdu0 `Bdu1

...

xN´1 “ AN´1
d x0 `AN´2

d Bdu0 `AN´3
d Bdu1 ` . . .`BduN´2

We can compactly express each of these equations in matrix form, as follows:

xi “ Ai
dx0 `

“

Ai´1
d Bd Ai´2

d Bd . . . AdBd Bd 02ˆ1 . . . 02ˆ1

‰

looooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooon

Gi

U (15)

where 02ˆ1 denotes the 2ˆ 1 null vector and U “
“

u0 u1 . . . uN´2

‰T
. Equivalently,

xi “
“

Gi Ai
d

‰

loooooomoooooon

G̃i

„

U
x0



loomoon

Ũ

(16)

Eq. (15) is convenient for incorporating periodic boundary conditions into the optimal control problem,
i.e., we can express the discretized periodic boundary conditions βN´1 “ β0 ` 2kπ, 9βN´1 “ 9β0 as

”

GN´1

`

AN´1
d ´ I2

˘

ı

loooooooooooooooomoooooooooooooooon

C

Ũ “

„

2kπ
0



looomooon

d

(17)

Likewise, Eq. (16) is useful for compactly representing the orientation of the SSPS at time step i, i.e., βi “
G̃ip1, :qŨ where the notation G̃ip1, :q denotes the first row and all of the columns of G̃i. As a result, we can
represent the attitude at all N time steps in matrix form by

»

—

—

—

–

β0

β1

...
βN´1

fi

ffi

ffi

ffi

fl

looooomooooon

f

“

»

—

—

—

—

–

G̃0p1, :q

G̃1p1, :q
...

G̃N´1p1, :q

fi

ffi

ffi

ffi

ffi

fl

looooooooomooooooooon

E

Ũ (18)

Discretization and Approximation of Problem 2

Discretizing the objective function from Problem 2 under a ZOH parameterization of the control input
yields

ż tf

0

”

λ |uptq|´ ηpβpuptqqq
ı

dt «

˜

λ
N´2
ÿ

i“0

|ui|´
N´1
ÿ

i“0

ηpβiq

¸

∆t (19)
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Figure 6: Quadratic Approximation of the Geometric Efficiency at Various Points in GEO

We use a quadratic approximation of the geometric efficiency, i.e.,

ηpβiq « ηpβ˚i q ` η
1pβ˚i q pβi ´ β

˚
i q `

1

2
η2pβ˚i q pβi ´ β

˚
i q

2 (20)

where β˚i “ β˚ptiq is a solution to the power-optimal guidance problem (Problem 1) and p¨q1 “ d{dβ.
Assuming ηpβq is smooth and continuous in the vicinity of β˚i , then because β˚i is a maximizer of ηpβq,
η1pβ˚i q “ 0 and η2pβ˚i q ď 0. Thus, we can write Eq. (20) as

ηpβiq « ηpβ˚i q ´
1

2
|η2pβ˚i q| pβi ´ β˚i q

2 (21)

where η2pβ˚i q ď 0 implies η2pβ˚i q “ ´|η2pβ˚i q|. Figure 6 compares the quadratic approximation of the
geometric efficiency, Eq. (21), with the exact geometric efficiency, Eq. (6), at various points in GEO. We only
plot the geometric efficiency function for ν P r00, 900s because the geometric efficiency in GEO (δ “ 900)
is antisymmetric about the sun vector (θ “ 00) and the approximation depends on the SSPS architecture
(PV2RF2 versus PV1RF1) for ν P p900, 1800s. For βi P β˚i ˘100, the relative errors between the approximate
and exact geometric efficiencies never exceed 0.2% for PV2RF1 and 2% for PV1RF1. Because the errors with
the quadratic approximation increase as |βi ´ β˚i | increases, we only consider optimal attitude maneuvers that
are close to β˚ptq.

Using Eq. (21), the objective functions becomes

ż tf

0

”

λ |uptq|´ ηpβpuptqqq
ı

dt «

˜

λ
N´2
ÿ

i“0

|ui|`
1

2

N´1
ÿ

i“0

|η2pβ˚i q| pβi ´ β˚i q
2
´

N´1
ÿ

i“0

ηpβ˚i q

¸

∆t (22)

By defining

W “
1

2
diag

!

|η2pβ˚0 q|, |η2pβ˚1 q|, . . . , |η2pβ˚N´1q|
)

, (23)

using Eq. (18), and noting that both
řN´1
i“0 ηpβ˚i q and ∆t in Eq. (22) are constants, we arrive at the following

discrete, approximate form of Problem 2:
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Problem 3:

min
Ũ

"

λ ||U||1 `
∣∣∣∣∣∣W1{2

´

EŨ´ f˚
¯
∣∣∣∣∣∣2

2

*

subject to:

$

’

’

&

’

’

%

CŨ “ d
|ui| ď umax, i “ 0, . . . , N ´ 2
|βi| ă βmax, i “ 0, . . . , N ´ 2
|φi| ă φmax, i “ 0, . . . , N ´ 2

where rf˚si “ β˚i and the notation ||¨||p denotes the lp-norm of a vector. This is a regularized least squares
problem with linear equality and inequality constraints that is readily solvable as a QP.

Intuitively, the l2-norm in Problem 3 minimizes the Euclidean distance (subject to various weights) be-
tween the attitude trajectories corresponding to Ũ and β˚ptq. Hence, in practice, we can ignore the pointing
constraints on β and φ in Problem 3 so long as we verify that they are satisfied a posteriori. While this
approach works for the GEO and MEO examples in this paper, it is not guaranteed to work in general.

For implementation in CVX,20, 21 we replace the quadratic form in Problem 3, i.e., the squared l2-norm,
with an unsquared l2-norm because quadratic forms are known to cause numerical difficulties in CVX’s
underlying solvers.22 With these modifications, we arrive at the following equivalent optimization problem:

Problem 4:

min
Ũ

!

µ ||U||1 `
∣∣∣∣∣∣W1{2

´

EŨ´ f˚
¯
∣∣∣∣∣∣

2

)

subject to:
"

CŨ “ d
|ui| ď umax, i “ 0, . . . , N ´ 2

where µ ‰ λ is also a relative weighting between power-optimality and fuel-optimality. While Problem 3
and Problem 4 are equivalent in the sense that they both trace out the same optimal tradeoff curves, they do
not in general produce the same solutions for Ũ when λ “ µ. Solutions to Problem 4 are power-optimal if
µ “ 0 and fuel-optimal if µ “ 8.

Since we are interested in the tradeoff between power-optimality and fuel-optimality, we are not concerned
with the exact values of either λ or µ. Instead, we solve Problem 4 using CVX and the SDPT323, 24 solver and
sweep over a range of values for µ P r0,8q to generate the results in this paper. For each µ, we substitute the
corresponding EŨ˚ into Eq. (6) to compute the optimum geometric efficiencies. Note that because the orbit
and attitude dynamics evolve on very different time scales, we normalize the attitude dynamics by the orbit
period before solving Problem 4. Subsequent values of µ reference this normalized problem.

However, in practice, Problem 4 is ill-conditioned for small values of µ. In particular, if we define the
condition number25 for some matrix M as

κpMq ”
σmaxpMq

σminpMq
(24)

where σmax and σmin denote the maximum and minimum singular values of M, respectively, we find that
κ
`

W1{2E
˘

„ 1012 or greater. Hence, we only obtain sensible solutions without significant numerical
instabilities with a non-negligible l1-norm regularization term. Moreover, because ETWE is not full rank,
and thus, not positive definite, we have no guarantee of finding a unique global minimizer of Problem 4.

SIMULATION RESULTS

In this section, we present simulation results for a 25 m ˆ 25 m SSPS in GEO and a 20,184 km circular
MEO over the course of a sidereal day (tf = 86,164 s). The corresponding orbit periods are TGEO “ tf and
TMEO “ tf {2. Our simulations use N = 3,315 time steps which gives ∆t “ 26 s.

Moreover, we assume the SSPS has a uniform areal density (ρ) of 1 kg/m2, a total (dry) mass M “ ρl2,
a mass moment of inertia J “ Ml2{12 “ ρl4{12, and electric thrusters with a specific impulse (Isp) of
3000 s. We neglect the mass associated with the thrusters and propellant. Miniaturized electric thrusters with
specific impulses on the order of 3,000 s that could be incorporated into a future SSPS are currently under
development.26, 27
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With these mass properties, each thruster must provide approximately 23 mN of thrust to achieve the
maximum angular acceleration of umax “ 10´3 °/s2 used throughout this paper. This is comparable to the
maximum thrust provided by existing Hall effect thrusters for small spacecraft. For example, less than 1 g
micro-Hall effect thrusters capable of providing on the order of 10 mN of thrust with specific impulses in
excess of 1,000 s have already been demonstrated.26, 27 Multiple co-located tip-mounted thrusters provide a
scalable solution for achieving the higher thrust levels required for a larger SSPS.

We begin by introducing several useful scaling relationships that allow the results presented herein to be
extended to other SSPS concepts. We subsequently present results for PV2RF1 and PV1RF1 concepts in
GEO and MEO. Note that with the given PV and RF efficiency functions, solutions for a PV2RF2 SSPS are
identical to the PV2RF1 solutions in GEO and the 20,184 km MEO.11

Space Solar Power Satellite Scaling Relationships

The mass flow rate of propellant per thruster is

9mptq “
1

Ispg0

„

ρl3

12
|uptq|



(25)

where g0 “ 9.81 m/s2 is Earth’s standard gravitational acceleration and the bracketed term is the magnitude
of the thrust provided by each thruster. Hence, the total mass of propellant consumed from r0, tf s is

Mp “ 2

ż tf

0

9mptq dt «
ρl3

6Ispg0
p||U||1∆tq (26)

The average transmitted power is

P̄t “
”

WSFηPVηDC-RFη̄
ı

l2 (27)

where the bracketed term is the average transmitted power density11 and η̄ is the average geometric efficiency
defined by

η̄ “
1

tf

ż tf

0

ηptq dt «
1

N

N´1
ÿ

i“0

ηpβiq (28)

We use the average geometric efficiency as a non-dimensional analogue for transmitted power.

We can use Eqs. (26)-(28) to scale the results in this paper for other SSPS concepts.

Geostationary Earth Orbit (GEO)

We first present the Pareto optimal curve for the tradeoff between propellant mass and orbit-averaged
geometric efficiency for a PV2RF1 SSPS in GEO (Figure 7). We obtain the Pareto curve by solving Problem 4
for a range of values for the weight between power-optimality and fuel-optimality, µ. The first and last points
correspond to µ “ 10´9 (the approximate power-optimal solution) and µ “ 8 (the fuel-optimal solution),
respectively. Due to the aforementioned ill-conditioning of Problem 4, we only obtain realistic solutions for
µ ě 10´9. The vertical asymptote is the theoretical maximum orbit-averaged geometric efficiency from the
power-optimal guidance problem (Problem 1).

Figure 7 highlights the expected result, namely that increasing the orbit-averaged geometric efficiency
requires increasingly aggressive slew maneuvers, and hence, more propellant. The fuel-optimal solution
(µ “ 8) corresponds to a constant angular velocity slew with no control input. It achieves approximately
75% of the maximum orbit-averaged geometric efficiency with no propellant consumption. Slowly increasing
the aggressiveness of the slew maneuvers greatly increases the orbit-averaged geometric efficiency. However,
for µ ă 10´6, increasing the aggressiveness of the slew maneuvers (decreasing µ) results in diminishing
returns, i.e., exhausting more propellant negligibly increases the orbit-averaged geometric efficiency. For
example, with µ “ 10´6, the system achieves an 81.4% efficiency with only 2.4 kg of propellant, whereas

11
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Figure 7: Pareto optimal curve depicting the tradeoff between propellant mass for an 11 year mission
and orbit-averaged geometric efficiency for a dual-sided PV, single-sided RF SSPS in GEO. A few
points are marked with the corresponding values of µ.

with µ “ 10´9, it requires 10.6 kg of propellant to achieve a marginally higher efficiency of 81.6%. In both
cases, the propellant mass is small relative to the spacecraft’s total mass, e.g., for µ “ 10´9, the propellant
mass for the 11 year mission is 1.7% of the spacecraft’s total mass.

To gain intuition into the Pareto optimal curve, we next consider the optimal orientations and geometric
efficiencies for various values of µ, as depicted in Figure 8. As previously mentioned, when µ “ 8, we
minimize propellant consumption independent of power considerations and obtain a constant angular veloc-
ity slew maneuver with no control input. This corresponds with the straight line in Figure 8a. As µ decreases
and we begin to weight both power and propellant consumption, we begin to recover increasingly sharp slew
maneuvers in the vicinity of t{T “ 0.25 (ν “ 900) and t{T “ 0.75 (ν “ 2700). Obviously, as the “sharp-
ness” of these maneuvers increases, the maneuver duration decreases. This decrease in maneuver duration
corresponds with an increase in the geometric efficiencies immediately before and after the maneuver, as seen
in Figure 8b.

Physically, the large slew maneuvers in Figure 8a are optimal because they decrease the sun and squint
angles on the active PV and RF surfaces, thereby increasing the system’s overall efficiency. In that sense, the
maneuvers “switch” the active PV or RF surfaces. For PV2RF1, these maneuvers correspond with switches
from the PV 1 to the PV 2 surfaces depicted in Figure 1 and vice versa.

To further reinforce these points, we consider the angular velocities and angular accelerations/control in-
puts corresponding to the optimal orientations from Figure 8a. These angular velocities and accelerations
are plotted in Figures 9a and 9b, respectively. In particular, we see the expected behavior, namely that as
µ decreases, both the angular velocity and acceleration substantially increase until the control input satu-
rates at ˘umax. In the absence of this control input constraint, these maneuvers correspond to a singularity
whereby the maximum angular velocity and acceleration continually increase as µ decreases. Additionally,
Figure 9b depicts the bang-off-bang structure characteristic of fuel-optimal trajectories, i.e., solutions to l1-
norm minimization problems.18 Specifically, the control input trajectory is punctuated by short duration, high
amplitude pulses for attitude corrections. Taken together, these phenomena explain the trends depicted in the
Pareto curve of Figure 7. Moreover, these trends agree with the results presented in Figure 7 of Goel et al.
(2017)17 for the attitude trajectories of a formation of PV1RF2 SSPSs in GEO.

Finally, we can compare the PV2RF1 solutions with the PV1RF1 solutions by examining the optimal
orientations and geometric efficiencies for several representative values of µ, as depicted in Figures 10a and
10b, respectively. We immediately see from Figure 10a that the PV1RF1 solutions do not feature the large
slew maneuvers characteristic of the PV2RF1 solutions. These slew maneuvers are inadmissible with the
PV1RF1 pointing constraints. Instead, the solutions for finite µ are characterized by regions with slowly
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(b) Optimal Geometric Efficiencies

Figure 8: Solutions to Problem 4 for a Dual-Sided PV, Single-Sided RF SSPS in GEO

varying sun angles punctuated by a slow reorientation maneuver. This reorientation maneuver coincides
with a dead zone in the vicinity of ν “ θ “ 1800 where the SSPS can only orient either its PV surface
towards the Sun or its RF surface towards the receiving station, not both. As a consequence, the geometric
efficiencies from Figure 10b are zero over a significant portion of the orbit. This explains why PV1RF1
has a significantly lower orbit-averaged geometric efficiency than PV2RF1. The orbit-averaged geometric
efficiencies and propellant masses corresponding to the curves in Figure 10 are listed in Table 2. Lastly, note
that the special case of µ “ 8 corresponds with a strictly sun-pointing SSPS. In the absence of external
disturbances, this sun-pointing solution does not require any control inputs.

In the end, the PV1RF1 attitude dynamics are primarily driven by the orbit geometry that defines the dead
zone, as opposed to the singularity that defines the PV2RF1 dynamics. As a result, the PV1RF1 dynamics
evolve on longer time scales and require smaller control inputs than the PV2RF1 dynamics. For example,
with µ “ 10´6, the maximum control inputs for PV2RF1 and PV1RF1 are comparable: 10´3 °/s2 versus
0.8 ˆ 10´3 °/s2. However, the maximum angular velocities are approximately 0.10 °/s for PV2RF1 and
0.02 °/s for PV1RF1. While the maximum control inputs are comparable because the PV1RF1 solutions also
exhibit bang-off-bang behavior, the PV1RF1 SSPS only needs to accelerate for very short durations to achieve
the angular velocity necessary to complete the slow reorientation maneuver. This leads to a lower maximum
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Figure 9: Angular Velocities and Accelerations for a Dual-Sided PV, Single-Sided RF SSPS in GEO
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Figure 10: Solutions to Problem 4 for a Single-Sided PV, Single-Sided RF SSPS in GEO

angular velocity for PV1RF1 compared to PV2RF1. Thus, dynamics are a much smaller consideration for
PV1RF1 than PV2RF1.

Medium Earth Orbit (MEO)

Figure 11 depicts the Pareto optimal curve for the tradeoff between propellant mass and day-averaged ge-
ometric efficiency for a PV2RF1 SSPS in a 20,184 km MEO. Again, because Problem 4 is ill-conditioned,
we only obtain realistic solutions for µ ě 10´9. The vertical asymptote represents the theoretical maximum
day-averaged geometric efficiency from the power-optimal guidance problem (Problem 1). While qualita-
tively similar, the day-averaged efficiency in MEO decreases by over 50% compared to the efficiency in GEO
without substantially changing the required propellant mass.

Interestingly, the minimum efficiency occurs at µ „ 10´3, not the expected limiting case of µ “ 8.
With µ „ 10´3, the l1- and l2-norms in Problem 4 are of the same order of magnitude, meaning µ „ 10´3

corresponds to the transition between solutions that weight power-optimality more than fuel-optimality and
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Table 2: Orbit-averaged geometric efficiencies and propellant masses for representative single-sided
PV, single-sided RF solutions in GEO. Propellant masses are for an 11 year mission.

µ η̄ [%] Mp [kg]

10´6 49.6 0.31
10´4 49.4 0.17
8 30.6 0
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Figure 11: Pareto optimal curve depicting the tradeoff between propellant mass for an 11 year mission
and day-averaged geometric efficiency for a dual-sided PV, single-sided RF SSPS in MEO. A few points
are marked with the corresponding values of µ.

vice versa. Ultimately, while the µ “ 8 case is an exact (albeit numerical) solution, we hypothesize that the
quadratic approximation of the objective function is a poor assumption in this transition region. Hence, while
the point at µ “ 8 is accurate, the behavior elsewhere in the vicinity of µ „ 10´3 may not be.
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Figure 12: Elevation Angles for Two Orbits in MEO

To better understand the efficiency decrease in MEO, we consider the elevation angle profile for two orbits
given by Figure 12. When the elevation angles are undefined, the Earth blocks the SSPS’s view of the receiv-
ing station. Assuming a minimum elevation angle of 5°, then the SSPS transmits to the receiving station for
approximately 40% of each day. Hence, we can attribute the decrease in efficiency to the finite time the SSPS
has access to the receiving station. While this study is limited in scope to a single spacecraft transmitting to a
single receiving station, intermittent access in MEO motivates future studies of SSPS constellations. A con-
stellation of several spacecraft in MEO should be capable of providing persistent coverage to multiple points
on Earth, thereby increasing overall system efficiency at the cost of higher total propellant consumption.
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Figure 13: Solutions to Problem 4 for a Dual-Sided PV, Single-Sided RF SSPS in MEO

Figure 13 then plots the optimal orientations and geometric efficiencies for MEO for various values of µ.
There are two important observations from Figure 13. First, Figure 13b indicates that the geometric efficiency
is zero when the Earth blocks the SSPS’s view of the receiving station, as expected. Figure 13a then shows
that the SSPS uses the time between receiving station passes to reorient itself for the next pass. Second,
because the optimal orientations in MEO feature comparable slew maneuvers to GEO, MEO and GEO have
similar propellant requirements.
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Figure 14: Solutions to Problem 4 for a Single-Sided PV, Single-Sided RF SSPS in MEO

As final points of comparison, we again consider the optimal PV1RF1 orientations and geometric efficien-
cies for several representative values of µ, as depicted in Figures 14a and 14b, respectively. Like in GEO,
these solutions are characterized by slowly varying sun angles and the absence of large slew maneuvers. The
only real difference in MEO is that the slow reorientation maneuver now occurs in the large gap between
receiving station passes. As a result, both the day-averaged geometric efficiencies and propellant masses for
PV1RF1 are lower in MEO than in GEO. The day-averaged geometric efficiencies and propellant masses for
the PV1RF1 solutions in Figure 14 are listed in Table 3.

16



Table 3: Orbit-averaged geometric efficiencies and propellant masses for representative single-sided
PV, single-sided RF solutions in MEO. Propellant masses are for an 11 year mission.

µ η̄ [%] Mp [kg]

10´4 22.0 0.10
10´3 22.0 0.09
8 13.4 0

DISCUSSION AND FUTURE WORK

We can use the Pareto curves in Figures 7 and 11 to design the attitude maneuvers for a PV2RF1 SSPS.
Because the Pareto curves are parameterized by µ, we simply need to find the value of µ corresponding to
some parameter of interest, e.g. propellant mass or maximum angular velocity, to fully specify the attitude
maneuvers.

Not surprisingly, the attitude maneuvers are critical structural design drivers. For one, many environmental
loads on the structure, like gravity gradients and radiation pressure (e.g. due to solar pressure, microwave
pressure, thermal emission/absorption, or Earth albedo), are functions of attitude. Likewise, the angular
velocity and acceleration characterize the inertial loads on the structure. In particular, the centripetal and
Euler loads are proportional to 9β2 and u “ :β, respectively. As a first approximation for the SSPS’s flexible
dynamics, for example, we can incorporate the attitude maneuvers into a model based on the linear theory of
elastodynamics.28 In other words, we can superpose small elastic displacements on top of the SSPS’s large
overall rigid body motion and solve the corresponding linear elasticity problem in the SSPS’s rotating body
reference frame. An important next step is to use the results in this paper to quantify flexibility effects.

While our results show that a PV2RF1 SSPS in GEO achieves over twice the efficiency with less than half
of the propellant required by its counterpart in MEO, this represents only one facet of a complicated design
space. For example, even though propellant requirements are higher in MEO, this is likely outweighed by the
reduced launch costs of delivering a spacecraft to MEO. Similarly, while the radiation environment in MEO is
harsher than GEO,29 MEO does not have the overcrowding issues normally associated with GEO. Likewise,
a small constellation of satellites in MEO can achieve persistent coverage over multiple locations on Earth,
whereas a spacecraft in GEO only achieves persistent coverage over a single location. The takeaway is that
it is naive to specify the orbit for an SSPS based solely on system efficiency and propellant consumption
considerations. Regardless, in all cases, the ACS propellant mass is small relative to the total mass of the
spacecraft.

Another key design consideration is dual-sided versus single-sided. While the results presented else-
where11, 16, 17 show that dual-sided operations significantly increase overall system efficiency, it is yet to be
seen if this performance boost actually outweighs the technical complexity, mass penalty, and cost associated
with implementing either RF-transparent PV or optically-transparent RF surfaces. Moreover, this efficiency
trade neglects attitude dynamics considerations. Specifically, for an ultralight, planar, dual-sided SSPS, struc-
tural excitation due to attitude maneuvers may have a detrimental effect on system performance. Due to the
absence of large slew maneuvers, a PV1RF1 architecture may remove these attitude dynamics considerations
altogether.

Interestingly, for a PV2RF1 SSPS in both GEO and MEO, the fuel-optimal solutions, i.e., the solutions
that minimize propellant consumption independent of power considerations, achieve approximately 70% or
more of the maximum possible geometric efficiencies without any control inputs. These constant slew rate
maneuvers are potentially advantageous for minimizing excitation of flexible modes. Hence, there may be
interesting structural and system level design trades associated with these maneuvers.

In this paper, we have intentionally limited our scope to circular, equatorial orbits and equatorial receiving
stations. As a result, a logical extension of this work is to treat eccentric and/or inclined orbits and non-
equatorial receiving stations. By doing so, the orbit-attitude coupling relation, Eq. (1), becomes nonlinear,
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making the optimization problem significantly more difficult to solve. While we currently specify the orbit
and solve for the optimal attitude trajectory, a further extension is to reformulate the attitude maneuver design
problem to simultaneously solve for both the optimal orbit and attitude trajectory.

Our analysis also neglects both orbit and attitude disturbances. We can easily accommodate gravitational
orbit perturbations like J2 and third-body effects into the existing attitude maneuver design framework. How-
ever, non-gravitational perturbations like solar pressure are more challenging. Specifically, because solar
pressure depends on attitude, any attempt to model solar pressure effects must account for the coupled orbit
and attitude dynamics of the SSPS. Radiation pressure perturbations are proportional to area-to-mass ratio,
i.e., the inverse of areal density. At the areal densities of 0.1 kg/m2 to 1 kg/m2 envisioned for future ultra-
light SSPS concepts,8 solar pressure is likely a significant perturbation over the lifetime of the spacecraft.30

Ultimately, quantifying the SSPS’s disturbance environment is important for estimating attitude disturbance
rejection and stationkeeping requirements.

Additionally, it would be useful to more thoroughly study the accuracy of the quadratic approximation
scheme. For PV2RF1 in MEO, we have already seen that the quadratic approximation is likely a poor
assumption for values of µ that correspond to the transition between solutions that weight power-optimality
more than fuel-optimality. Solving the original, nonlinear, non-convex optimization problem (Problem 2)
with sequential convex programming17 may provide more accurate solutions for these values of µ. It would
also be valuable to compare our results with results obtained from solving Problem 2 using something like
nonlinear programming or a genetic algorithm.

Finally, the attitude maneuver design problem presented in this paper is only one of the numerous guidance,
navigation, and control challenges associated with flying an SSPS. For example, future work can explore the
ACS actuator and sensor trade spaces or investigate ACS-structure interaction. While this work baselines a
rather conventional ACS with tip-mounted thrusters, novel sensor and actuator concepts, like those based on
large numbers of distributed sensors and actuators, may prove beneficial for addressing some of the challenges
of flying ultralight, flexible spacecraft.

CONCLUSION

This paper formulates and solves the attitude maneuver design problem for a planar SSPS. We first show
how we can approximate the original, nonlinear, non-convex optimization problem governing the attitude ma-
neuvers with a quadratic program. Subsequently, we solve the attitude maneuver design problem for SSPSs
in both GEO and a 20,184 km MEO to study attitude dynamics and to estimate system efficiencies and pro-
pellant masses. The resulting Pareto curves contain all of the information necessary for designing attitude
maneuvers for a planar SSPS. These Pareto curves highlight how a point is ultimately reached where increas-
ing control and hence, propellant consumption, negligibly increases overall system efficiency. Moreover,
they show that fuel-optimal solutions, i.e. the solution where fuel is minimized independent of any power
considerations, achieve approximately 75% of the maximum possible system efficiency without expending
any propellant. Ultimately, these results highlight how attitude dynamics are a critical design driver for planar
SSPS concepts.
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