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Super-pressure balloons are currently under development by the NASA Balloon Pro-
gram Office for use in stratospheric balloon missions. They are made of thin polyethylene
film forming a sealed envelope that is contained by stiff meridional tendons. The film is
subject to a state of stress whose details depend on the cutting pattern, stiffness of the
film vs. stiffness of the tendons, etc. and the viscoelastic behavior in the film plays an
important role. This paper extends the modeling approach presented by the same authors
at the AIAA Balloon Systems Conference 2007. The current model captures nonlinear
viscoelasticity in a wrinkled, anisotropic membrane, and the analysis has been successfully
applied to several balloon designs. Because the effects of wrinkling on the stress history are
modeled correctly, the behavior of the balloon can be simulated with high fidelity, starting
from pressures as low as 5-20 Pa. The creep strains at selected points of a 4 m diameter
balloon were measured using photogrammetry and the results were compared to results
from the numerical model. At a pressure of 700 Pa the balloon had a maximum stress of
6.0 MPa in the meridional direction (2.5 MPa hoop stress) and meridional strains of up to
6.4% (-2.7% hoop strain). A detailed model of gore seams and tendon attachments provides
insight into the asymmetry of the strain distribution that results from the actual asym-
metry of the gore seams. This also allows the numerical replication of an experimentally
observed pressure-dependent rotation of the end-fittings.

I. Introduction

Super-pressure balloons are currently under development by the NASA Balloon Program Office for use
in stratospheric balloon missions. They are made of thin polyethylene film forming a sealed envelope that
is contained by a series of meridional tendons. The film is subject to a state of stress whose details depend
on the cutting pattern, stiffness of the film vs. stiffness of the tendons, etc. Viscoelastic effects, which
are significant in the film, play an important role in the stress distribution and shape of these balloons.
Experiments on small scale ground models have shown that wrinkles are present over a wide range of
pressures. With increasing pressures and/or after some time under pressurization these wrinkles eventually
disappear.

The complex behaviour of these balloons is being studied in more and more detail and numerical models
of increasing sophistication are currently under development and are also being validated experimentally.
This in turn requires that both time-dependent material behavior and wrinkling behavior be included in
the models. An algorithm has been developed for anisotropic material behavior that implements a biaxial
viscoelastic model recently derived by Rand11, 12 and also allows wrinkling effects to be considered. This
algorithm has been implemented as a user-defined material (UMAT) in Abaqus.
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In this paper the modeling approach that was presented by Gerngross and Pellegrino5 at the AIAA
Balloon Systems Conference 2007 has been further developed. The current model is capable of modeling
nonlinear viscoelasticity in a wrinkled, anisotropic membrane, and the analysis has been successfully applied
to several balloon designs. Because the effects of wrinkling on the stress history are modeled correctly, the
behavior of the balloon can be simulated with high fidelity, starting from pressures as low as 5-20 Pa. In
order to demonstrate the accuracy of the implemented algorithm, the creep strains at selected points of a
4 m diameter balloon were measured using photogrammetry. High accuracy creep measurements at different
pressure levels were carried out on a balloon manufactured by Aerostar. The experimental results are then
compared to results from the numerical model. Lastly a more detailed model of the physical configuration
of gore seams and tendon attachments is created and its results provide insight into the asymmetry of the
strain distribution that results from the actual asymmetry of the gore seams. This also allows the numerical
replication of an experimentally observed swirl in the end-fitting region.

II. Background

II.A. Material

The polyethylene film that is currently used for NASA Super-Pressure Balloons is called StratoFilm 420.
It is produced as a three layer co-extrusion of a Linear Low Density Polyethylene (LLDPE) called Dowlex
2056G. The three layers have the thickness proportions 20/60/20 with the outer layers containing an ultra
violet inhibitor (UVI) to protect the inner layer from radiation damage.11, 12 The nominal film thickness is
38 micron and measurements after production by L. Young have shown a range between 32.5 - 39.8 micron.
In a typical extrusion process a tube of polyethylene is being pulled out of a die (the direction of pulling is
called the machine direction MD) and simultaneously stretched in the transverse direction (TD). A measure
of how much a film is stretched in the transverse direction is the bubble-to-die diameter called blow-up-ratio
(BUR). StratoFilm SF420 has a BUR of 2 to achieve a nearly balanced film with similar properties in MD
and TD.14 However, the extrusion process still results in somewhat orthotropic material properties. The
material properties of StratoFilm SF420 are described in the following by a nonlinear viscoelastic material
model.

The small scale balloon model used for the experimental verification presented in Section IV was made
of SF430 film, the same material as SF420 but without the UV-filter additive in the outer layers.

II.B. Viscoelastic Model

II.B.1. Creep Law

A general introduction to the field of nonlinear viscoelasticity is provided in textbooks.8, 18 In refer-
ence 3 we have presented an attempt to model the time-dependent material behavior of LLDPE using
the creep/relaxation models available in the implicit finite-element software Abaqus/Standard. Additionally
the Schapery15 nonlinear viscoelastic constitutive material model has been implemented as a user defined
material (UMAT) for use in Abaqus/Standard and verified by means of cylindrical balloon structures.3, 4

This alternative approach is quite accurate and will be used in the following sections.
Schapery’s material model15 is based on the thermodynamics of irreversible processes, where the transient

material behavior is defined by a master creep function. Nonlinearities can be considered by including
factors that are functions of stress and temperature. Further, horizontal shift factors enable coverage of wide
temperature/stress ranges. Schapery also gave a general multiaxial formulation with the nonlinear function
being an arbitrary function of stress. Since the Poisson’s ratio has only a weak time-dependence a single
time-dependent function is sufficient to characterize all elements of the linear viscoelastic creep compliance
matrix.16

Rand and co-workers13, 14 further simplified this relationship by assuming that the time-dependence in
any material direction is linearly related to that observed in the machine direction:

εti = gt0S
0
ijD0σ

t
j + gt1

∫ t

0

SijΔD(ψt−ψτ )
d(gτ2σ

τ
j )

dτ
dτ (1)

where i, j = 1, 2 correspond to normal strain/stress components in the machine and transverse directions of
the film, respectively, and i, j = 6 corresponds to the engineering shear strain/stress. Also, the reduced time

2 of 37

American Institute of Aeronautics and Astronautics



is

ψt =
∫ t

0

dτ

aσ(T, σ)aT (T )
(2)

The first term in Equation (1) represents the elastic response of the material, provided by the instanta-
neous elastic compliance D0, while the second term describes the transient response, defined by the transient
compliance function, ΔD. The other parameters are nonlinearity functions and horizontal shift factors for
the master curve. S0

ij and Sij are coefficient matrices enabling the multiaxial formulation. Since the mate-
rial response in any direction is based on the properties in the machine direction, one assumes S0

11 = 1 and
S11 = 1 . Anisotropic behavior is accounted for by adjusting the remaining coefficients.

II.B.2. Material Parameters

The transient compliance ΔD is given at a reference temperature of 293.16 K, assuming an instantaneous
compliance D0 = 3e−4 [1/MPa], Figure 1. It can be described by a sum of exponentials called a Prony Series∑
Di

[
1 − exp

(
− t
τi

)]
with the components Di [1/MPa] and τi [s] as in Table 1.
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Figure 1: Transient creep compliance ΔD(ψ)

i Di [1/MPa] τi [s]
1 1.8764e-4 1.6548e-16
2 2.9249e-5 4.8697e-15
3 5.8224e-5 1.4330e-13
4 8.7542e-5 4.2170e-12
5 1.1561e-4 1.2409e-10
6 1.4159e-4 3.6517e-9
7 1.6989e-4 1.0746e-7
8 2.0924e-4 3.1623e-6
9 2.7274e-4 9.3057e-5
10 3.7796e-4 2.7384e-3
11 5.4670e-4 8.0582e-2
12 8.0581e-4 2.3714
13 1.1844e-3 69.783
14 1.7204e-3 2053.5
15 2.6285e-3 60430

Table 1: Prony series for SF42011

The temperature shift factor aT was originally obtained for both machine and transverse direction.
However, the temperature dependence in transverse direction was found to be virtually identical to that in
the machine direction and hence both directions can be described by:

log aT = (T − 293.16)[7.33e−4(T − 273.16)− 0.179133] T > 233.16

log aT = 3.1068− 0.2350275(T − 273.16) T < 233.16
(3)

The coefficients Sij for the biaxial model are based on the master curve in the machine direction, hence
S11=1. The ratio between machine and transverse compliance results in the following temperature dependent
S22

S22 = 1.122 + 6.5895e−4 T − 6.609e−6 T 2 (4)

The remaining biaxial coefficients were determined to be constants:

S12 = S21 S66

-0.58 4.45
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Since the instantaneous portion of the strain is very small at any stress level, Rand argued that the nonlin-
earity of the elastic response is negligible, hence g0 was set to unity. The remaining parameters, g1 and g2,
control the non-linearity in the transient portion of the strain, however only one parameter can be determined
uniquely from the experimental data and hence only g2 was used and g1 was set to unity. The parameters
g2 and aσ were defined as follows

g2 = 1 + 0.1875 (σeff − σ0) (5)

log aσ = −0.126 (σeff − σ0) (6)

where the temperature dependent σ0 (in MPa) determines the onset of nonlinearity:

σ0 = 69.527− 0.430944 T + 6.7962e−4 T 2 (7)

The effective stress σeff allows the nonlinear effects to remain scalar functions of a single stress:

σeff =
√
σ2

1 + 2A12σ1σ2 +A22σ2
2 +A66σ2

12 (8)

The constant coefficients Aij that allow for different influence of individual stress components on the effective
stress were defined as follows:

A12 A22 A66

-0.4 1.44 0.8

II.C. Wrinkling Model

Thin membranes cannot carry compressive stresses and consequently wrinkles or slack regions will form. Most
balloon structures develop wrinkles, at least during pressurization and especially near any end fittings and
tendons. Experimental observations have shown that wrinkles appear even in a flat facet balloon structure.1

In order to allow for experimental validation of numerical models it is important to consider the effects of
wrinkling in thin anisotropic film.

In the following we present a method to predict the correct stresses and displacements in a partially
wrinkled anisotropic membrane. Our aim is not to model the exact shape of the wrinkles but rather the
average surface. Also the following is limited to flat membranes with in-plane loading. For a wrinkled state
we make the following assumptions: the bending stresses in the membrane are negligible, the stress across
a wrinkle is zero and there is a uniaxial stress along the wrinkle. A solution is obtained in four steps, as
follows, for each integration point of every element:

Step 1 Decide if the element is wrinkled (at this particular point) using an appropriate wrinkling
criterion;

Step 2 If it is wrinkled determine the wrinkle direction;
Step 3 Compute the state of stress carrying out a correction that removes any compressive stresses;
Step 4 Update the elasticity matrix considering that stresses cannot be carried across wrinkles.

More details are provided next.
Step 1: A combined stress-strain criterion based on principal strains and estimated principal stresses,

denoted by the superscript p, was found to be best to determine if an element is wrinkled or not. Three
different states are considered:

principal stress σp22 > 0 taut
principal strain εp11 ≤ 0 slack
otherwise (σp22 ≤ 0 and εp11 > 0) wrinkled

Step 2: Kang and Im7 have presented a scheme where the orientation and the magnitude of the uniaxial
tension is obtained from an invariant relationship between the normal strain component in the direction of
the local uniaxial tension and the engineering shear strain. They showed that for a membrane subject to a
uniaxial state of stress, denoted by the superscript u, in the direction x the following two relationships are
satisfied

γyxy =
C22C61 − C21C62

C26C62 − C22C66
· εyx (9)
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εyy =
C12C66 − C26C61

C26C62 − C22C66
· εyx (10)

Cij are the components of the stress-strain relations in a coordinate system x, y where x is parallel to the
direction of the wrinkles and y is orthogonal to x. The convention for i, j was explained in Section II.B.1.

Kang and Im found that Equation 9 is invariant with respect to the amplitude of the wrinkles and is
also valid for both wrinkled states and (unwrinkled) uniaxial tension. Equation 10 holds only for a natural
uniaxial stress, without wrinkling.

Step 3: Once the wrinkling direction is known, the stress across the wrinkles is set to zero.
Step 4: A modified elasticity matrix is created following an approach analogous to the variable Poisson’s

ratio approach by Miller and Hedgepeth.9, 10 The stress-strain relations are modified by setting the stiffness
in the wrinkling direction equal to zero and compressive stresses are thus eliminated.

III. Modeling Time-dependent Material Behavior in a Wrinkled Element

III.A. Abaqus Interface

In a nonlinear analysis the solution is found by specifying the loading as a function of time and incrementing
time to follow the nonlinear response. Therefore, Abaqus breaks the simulation into a number of time
increments and finds the approximate equilibrium configuration at the end of each time increment. Using
the Newton method, it often takes Abaqus several iterations to determine an acceptable solution to each
time increment.

At the beginning of each time increment the Abaqus interface for the UMAT subroutine passes the current
time increment Δt and the corresponding strain increment Δεi. The strain increment has been determined
by Abaqus based on the tangent stiffness matrix at the end of the previous time increment. Provided the
material orientation has been set in the model definition, the strain components are in the local orientation.

At the end of the current time increment Abaqus requires an update of the stresses σtj and the Jacobian
matrix. For the first increment of the analysis Abaqus passes to the UMAT subroutine only a zero strain
increment, in which case only the Jacobian is required. Since the strain components were provided in the
local coordinate system and the stress components are also returned in the local system the Jacobian is
defined as the local tangent stiffness matrix ∂σtj/∂ε

t
i.

In addition Abaqus provides to the UMAT subroutine an array for solution-dependent state variables.
These are passed at the beginning of the increment and need to be returned with updated values at the end.
This array is used to store the stress component history and the corresponding reduced time, as will be seen
below.

from Abaqus:
Δtime and Δstrain
old stress
from Storage:
stress history
old reduced time

user
coding

to Abaqus:
current stress
Jacobian matrix
into storage:
strain residual
stress history

Figure 2: Abaqus interface for user-defined material behavior

III.B. Algorithm

Figure 3 shows the algorithm implemented in the UMAT subroutine for time-dependent anisotropic material
behavior in an membrane that may also be wrinkled. This algorithm has been implemented in Abaqus, but
would be equally suitable for any displacement based finite element software, where strain components are
used as the independent state variables.2, 5

Every time UMAT is called, it starts with an estimation of the biaxial trial stresses σt,trialj based on
the nonlinearity parameters at the end of the previous time increment. The principal strains and estimated
principal stresses are used with a combined stress-strain criterion (Section II.C) to determine if the element
is wrinkled or not. If the element is found to be taut the biaxial stresses are found in a single iteration,
Subsection III.C. If the element is wrinkled, Subsection III.D describes the procedure. If the element is slack
all stresses are set to zero and a zero elasticity matrix is returned, Section III.E.
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input variables, from Abaqus: time t and strain increments εt,Abaqus
i

from storage: stress history, old reduced time

estimate biaxial stresses σt,trial
j : use current strains and old nonlinearity parameters

principal stress and strain

taut wrinkle
criterion

slack

wrinkled

update nonlinearity

parameters and reduced time

biaxial strains based on

current biaxial trial stresses

biaxial strain residual

tangent stiffness matrix

biaxial stress correction

error < tolerance
no

yes

determine wrinkle orientation:
use biaxial constants Sij

zero stresses

Jacobian matrix
= 0

rotate coordinate system
into wrinkling orientation

estimate uniaxial stress

update nonlinearity parameters

and reduced time

strain based on

uniaxial trial stress

strain residual

uniaxial stress correction

error < tolerance

yes

no

create modified tangent stiffness matrix

rotate coordinate system into material orientation

update stress history

output variables, to Abaqus: biaxial stresses, Jacobian matrix

into storage: stress history, reduced time

Figure 3: Algorithm for wrinkling in nonlinear viscoelastic membranes
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Once the correct stresses are determined, the stress history is updated and the stresses at the end of the
current time increment and the Jacobian matrix are returned to Abaqus. The stress history and the current
reduced time increment are written into memory.

III.C. Taut Membrane

If the membrane element is found to be taut, the biaxial stresses at the end of the current time increment are
found by integration. A numerical integration method was presented by Haj-Ali and Muliana6 for a three-
dimensional, isotropic material. Based on the integration method proposed in this reference, an iterative
algorithm has been developed for anisotropic material behavior that implements the biaxial model of Rand
and co-workers.13, 14 A schematic overview of the iterative algorithm is depicted in the left column of Figure 3.

With the initial stress guess that had been used to test for wrinkling an iterative loop is entered to
determine the stresses σtj at the end of the time increment. This requires the iterative evaluation of Schapery’s
constitutive model, Equation 1, rewritten in incremental form as follows:

εti =

{
gt0S

0
ijD0 + gt1g

t
2Sij

N∑
n=1

Dn

[
1 − 1 − exp(−λnΔψt)

λnΔψt

]}
σtj

− gt1Sij

N∑
n=1

Dn

[
exp(−λnΔψt)qt−Δt

j,n − gt−Δt
2

1 − exp(−λnΔψt)
λnΔψt

σt−Δt
j

]
(11)

Here the heredity integrals qt−Δt
j,n are computed at the end of the previous time increment. The full set of

equations has been presented in reference 4 and 2. During this iteration, the strains εti due to the current
trial stresses σtj are compared to the strains εt,Abaqusi computed by Abaqus before calling the UMAT.

If required, the stresses and the nonlinearity parameters are corrected and the loop is repeated. Alter-
natively, if the strain error residual is below a specified tolerance (set to tol = 10−7) UMAT exits the loop.
Finally, the stress history for each of the n Prony terms and j stress components needs to be updated at the
end of each time increment using

qtj,n = exp(−λnΔψt)qt−Δt
j,n +

1 − exp(−λnΔψt)
λnΔψt

(gt2σ
t − gt−Δt

2 σt−Δt
j ) (12)

III.D. Wrinkled Membrane

If the membrane element is found to be wrinkled, the algorithm follows the center column in Figure 3. First
the direction of the wrinkles in an orthotropic material needs to be found, Subsection III.D.1. Then the
coordinate system is rotated to align it with the wrinkles and the correct uniaxial stress state is found with
an iteration similar to that in Section III.C. Next, a modified effective elasticity matrix is computed that
describes the corrected, uniaxial state of stress and keeps the stress across the wrinkles independent of any
strain changes, Subsection III.D.3. Finally, the coordinate system is rotated back to the material orientation
and the stress history is updated.

III.D.1. Wrinkle Direction

An iterative algorithm has been developed to look for a solution of Equation 9 and then check if it solves
also Equation 10.

Starting with the principal stress directions that were used to test for wrinkling, the coordinate system
is rotated by the corresponding angle α. The shear strain γuxy from Equation 9 is compared to the shear
strain passed by Abaqus to the UMAT, γxy.

Figure 4(a) shows typical values of γuxy and γxy plotted over α. If the difference is more than some
tolerance (set to tol = εp11 ·0.001) then Equation 9 is evaluated for a new trial angle αn. The first correction is
α2 = α1+1o. Thereafter αn+1 is determined using a Newton-Raphson scheme where a line through γuxy(αn−1)
and γuxy(αn) is used to calculate the next estimate. This method was found to yield quick convergence in
most cases (typically within 3-5 iterations). In a few cases however the Newton-Raphson solution converges
to a local minimum as in Figure 4(b). If convergence isn’t achieved after n = 10 iterations, the range of
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(b) Non-wrinkled element: εy is always larger than εu
y

Figure 5: Typical variation of εuy and εy with α

αn ± 45◦ is swept in 10◦ increments. This allows the intersection of γuxy and γxy to be narrowed down to a
smaller range of α and then the Newton-Raphson scheme is started again.

In Figure 4 it can be seen that there is more than one value of α for which γuxy = γxy. For each of
these values the actual transverse strain εy is compared to εuy , calculated from Equation 10. If wrinkling
has occurred, then εuy > εy for that particular α. If instead εuy < εy the wrong intersection has been found
and the search for α is repeated by starting from a value 90◦ different from the current solution. The εy
check for a wrinkled element is illustrated in Figure 5. The two vertical dashed lines in each plot mark the
possible value of α determined from Figure 4. If an element was falsely determined to be wrinkled, εy is
always larger than εuy , Figure 4(b).

Once wrinkling occurs, there exists only one solution for α that satisfies the conditions for both γuxy
and εuy .

7 For this particular angle α the strain component εx and the shear strain component γxy are the
actual material response to a uniaxial stress. The transverse strain component εy from simple coordinate
transformation is not the actual material strain but includes the over-contraction due to wrinkling. The
implications of this difference are discussed in the next subsection.

III.D.2. Uniaxial Viscoelastic Stress

Once the wrinkling direction is known, the coordinate system is rotated with the x-direction parallel to the
direction of the wrinkles. Then the uniaxial stress is determined in an iterative procedure similar to the taut
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case, Section III.C. Since the transverse and shear stresses are already known to be zero, it is sufficient to
do the stress iteration for the x-direction. However, the stress history and any stresses from the previous
increment still need to be considered biaxially.

Note that wrinkling has no impact on the assumptions from viscoelasticity; i.e. over the current time
increment all nonlinearity coefficients are assumed to remain constant and the two terms g2σ and λψτ are
assumed to change linearly. It is also assumed that the direction of the uniaxial stress does not change during
the current time increment.

III.D.3. Effective Elasticity Matrix

The stress-strain relationship is desired in the form

Δσi = Cij Δεj (13)

where Cij is the effective elasticity matrix. For an orthotropic nonlinear viscoelastic material the components
of Cij are obtained from the derivatives ∂σi

∂εj
, which can be computed once the correct uniaxial stress has

been found. If the coordinate system is rotated such that the x-direction is aligned with the direction of the
wrinkles, Equation 13 can be written as⎧⎪⎨

⎪⎩
Δσx
Δσy
Δτxy

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣ C11 C12 C16

C21 C22 C26

C61 C62 C66

⎤
⎥⎦ ·

⎧⎪⎨
⎪⎩

Δεx
Δεy
Δγxy

⎫⎪⎬
⎪⎭ (14)

As explained in Section III.D.1, in this particular coordinate system the strains εx and γxy are actual
material strains whereas εy is not. Consequently any change of εy must not affect the resulting stresses
(unless the element becomes taut again). Also, the stress is uniaxial in the x-direction and the transverse
stress is zero and remains independent of any strain changes

Δσy = C21 Δεx + C22 Δεy + C26 Δγxy = 0 (15)

Therefore, for the change of the material’s actual transverse strain Δεy we can write

Δεy = −C21

C22
Δεx − C26

C22
Δγxy (16)

By eliminating Δεy in Equation 14 the expressions for Δσx and Δτxy can be rewritten as:

Δσx =
[
C11 − C2

21

C22

]
Δεx +

[
C16 − C12C26

C22

]
Δγxy (17)

Δτxy =
[
C61 − C62C21

C22

]
Δεx +

[
C66 − C2

26

C22

]
Δγxy (18)

The remaining entries of the effective elasticity matrix are zero, because of the additional requirement of
keeping σy independent of any strain changes. In conclusion,

Cij =

⎡
⎢⎣ C11 − C2

21
C22

0 C16 − C12C26
C22

0 0 0
C61 − C62C21

C22
0 C66 − C2

26
C22

⎤
⎥⎦ (19)

For an orthotropic material the individual components of the above matrix can be derived from a standard
coordinate transformation.

In a displacement based finite element algorithm using the Newton-Raphson method the next strain
increment would be provided together with a stress estimation based on Equation 19. Since the angle of the
wrinkles for Equation 19 was chosen based on a particular ratio εx/γxy, the change of shear stress Δτxy is
zero only if the ratio of Δεx over Δγxy remains the same. Otherwise a small shear stress component Δτxy
appears and causes a small rotation of the wrinkle orientation compared to the previous increment.
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III.E. Slack Membranes

If an element is found to be slack the stresses are set to zero and a zero effective elasticity matrix is returned
to Abaqus. The stress history is updated with zero stresses for the duration of the current time increment
(viscoelastic recovery).

IV. Creep Strain Measurements

IV.A. Balloon Structure

Preliminary experiments on two and four meter diameter balloon models had shown that time-dependent
strain measurements should be carried out on a pristine and undamaged structure, without any pre-existing
plastic deformation. Aerostar International, a subsidiary of Raven Industries, provided a new balloon made
of 0.038 mm thick SF430 film. The balloon was a 48-lobe pumpkin balloon with nominally 4 meter diameter
(height 2.396 m). The lobes had constant radius design (lobe radius 157 mm, lobe angle at equator 112◦).17

Figure 6: 4 m diameter test balloon, 48 lobes, constant radius design

The lobe cutting pattern in Table 2 defines the half gore width and its boundary becomes the seam
edge (www.aerostar.com/aerospace.htm). The total length of the center line, l = 5242.56 mm, includes the
end-fitting radius of 138 mm. The total side length of the cutting pattern is 5282 mm. Figure 7 shows a plot
of the cutting pattern (blue line) in comparison to the tendon distance of a ”flat lobe” balloon where the
lobes span across meridional lines lying on an isotensoid. Figure 8(a) shows a cross-section of a seal assembly
with the two adjacent gores spread out at the bottom of the figure. The schematic diagram in Figure 8(b)
shows the individual film layers with dimensions in millimeters. The layers labeled ©1 and ©2 are two adjacent
gores. Their overlap region is labeled ©4 . The two layers labeled ©5 are part of the tendon assembly and come
preassembled with the tendon. Label ©3 marks a protective layer placed on top of the lay-up for welding.

The gore tips are sealed by the apex and base fittings, Figure 9. Each end-fitting consists of one ring
(inside the balloon), a circular plate (outside the balloon) with a diameter of 276 mm and another ring
(outside the balloon) with 48 pins (at r = 126 mm) for individual attachment of the tendons by so-called
Brummel splices. In this knotting technique the end of the rope is braided into itself after forming a loop
around one of the pins. In order to allow the tendon attachment to the end-fitting, they are detached from
the gore seals about 320 mm before reaching the end-fitting. The end-fittings also provide gas inlets and a
mounting suspension.

Smith and Cathey17 have reported that measurements during manufacturing had shown difficulties in
accurately achieving the small gore width towards the top and bottom apex. Concerns about material failure
due to local stress concentrations were dealt with by reinforcing this area with a tape collar.
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Figure 7: Cutting pattern of 4 m balloon with half gore width (blue) vs. half tendon distance of a smooth
isotensoid (red)

Table 2: Gore cutting pattern including end-fitting, half width w measured to blue lines in Figure 7 and 8(b)

l [mm] w [mm] l [mm] w [mm] l [mm] w [mm]
0.00 0.00 1932.43 130.81 3761.23 100.97

103.63 6.73 2237.23 146.30 4066.03 79.50
408.43 26.80 2542.03 154.05 4370.83 58.17
713.23 47.37 2618.23 154.81 4675.63 37.47

1018.03 68.33 2846.83 151.51 4980.43 17.15
1322.83 89.79 3151.63 139.57 5138.93 6.73
1627.63 111.00 3456.43 121.67 5242.56 0.00

(a) Seam cross-section
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(b) Schematic seam cross-section, dimensions in millime-
ters

Figure 8: Seam close-up view with various film layers
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Figure 9: End-fitting

IV.B. Experimental Technique

Accurate experimental measurements on membrane structures require the use of non-contact techniques. An
accurate non-contact method for strain and shape measurements has been developed based on photogram-
metry,2 which allows the measurement of points in three-dimensional space. The method requires an object
to be photographed from different directions. Points of interest (targets) are then marked on these photos
and interrelated. To provide a measure of accuracy and error minimization each of these targets needs to
be seen on at least three photos. For higher accuracy it is advisable to use a set of four or more photos.
Photo processing was done with the commercial photogrammetry software PhotoModeler 6.1. The three-
dimensional coordinates of sets of target points, at several time steps, were analysed using Matlab scripts to
determine the overall shape of the balloon and the strain variation in selected regions of the balloon surface.

IV.B.1. Camera Setup

For time-dependent measurements all photos in a set need to be taken within a few seconds. This degree
of synchronization is adequate for the slow movement of the targets due to viscoelasticity. Olympus SP-
350 digital cameras (8.0 Mpixel resolution) were connect via USB ports to a personal computer. Olympus
publishes a Software Developer Kit (SDK) for the SP-350 camera model to support USB control, and a
camera controller shareware based on SDK V3.4 is distributed by Pine Tree Computing LLC.

Local creep strain measurements were done with four cameras mounted in front of the target area,
Figure 10. Similarly, balloon shape measurements were done with a set of six cameras viewing over half of
the balloon’s surface.

Figure 10: Four cameras for close-up creep strain measurement and LED light attached to a plate
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IV.B.2. Targets

PhotoModeler provides coded targets that allow unique ID numbers to be assigned to each target. A 12
bit code in the form of ring sections around a circular target allows for 161 unique targets. While the
coding increases the size of a target it also reduces processing time considerably. Coded targets are marked,
recognized and referenced automatically by the software.

(a) Local measurement spot with 16
targets

(b) Targets for meridional measurement together
with two reference targets (attached to a beam)

Figure 11: Targets distribution

For the strain measurements, three different lobes of the balloon were equipped with targets at the
equator and at one quarter of the meridional length. These targets covered a 40 × 80 mm rectangular region
with 15 targets at the equator, and a 60 × 60 mm square region with 16 targets at a quarter, with a nominal
target distance of 20 mm, Figure 11(a).

For the meridional shape measurements, five lobe centerlines were equipped with targets nominally
100 mm apart, Figure 11(b). The centerline was defined in this context as the meridional line halfway
between two tendons and was terminated with targets on the top and base end-fittings at r=105 mm.

Shape measurements along the balloon equator were done with targets on 24 lobes around half the
circumference of the balloon. The equator target positions were defined by measuring a constant arc-length
along the tendons from the top end-fitting, after pressurizing the balloon. One target on each lobe was then
attached half way between pairs of adjacent tendons. In addition PhotoModeler required targets distributed
over the balloon surface for processing; hence on each lobe another two targets were attached 60 cm above
and below the equator targets.

Two additional targets (not attached to the surface) were positioned at a distance of 44.59 mm and
891 mm, respectively, and were included in at least 3 photographs to provide a reference length for pho-
togrammetry processing.

IV.B.3. Experimental Setup

The top end-fitting of the balloon was supported by a rope going over a set of two pulleys attached to the
ceiling and was initially free to rotate and translate. The bottom end-fitting was equipped with a Sensor
Technics pressure transducer (Model CTEM70025GY7) with a maximum pressure of 2500 Pa. An air line
was attached to the top end-fitting to minimize any additional loading on the balloon due to the weight of
the air line hose.

Rigid-body movements of the balloon during the tests were minimized by attaching three balloon seams
to strings running over pulleys attached to vertical poles and carrying 50 g weights. Two of the strings
restrained translational degrees of freedom and one restrained rotation, Figure 12. The counterweights were
chosen to be sufficiently small to prevent visible deformation of the balloon and any measurements were
carried out away from the string attachments.
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For the strain measurements the four cameras were mounted on an adjustable platform that kept the
cameras close to the surface at all pressures. For the balloon shape measurements six cameras were mounted
in fixed positions at distances of 1-3 m from the balloon. With this arrangement it was possible to cover
about half the balloon circumference either horizontally (equator shape) or vertically (meridional shape).

Figure 12: Experimental setup for local creep strain measurements; left circle: cameras mounted on a
trolley-winch assembly, right circle: string with counterweight going over pulley

IV.B.4. Experimental Procedure

At the beginning of each test the balloon was filled with air to a pressure of 15-20 Pa. The pressure was held
constant for 10-60 min, depending on how much time was required for preparations, and a reference set of
photos was taken. Then, the differential pressure was increased in four steps to 120, 250, 500 and 700 Pa.
Each pressure level was held nominally for 30 minutes, Figure 13. Temperature and loading were monitored
throughout the experiment.

Under loading the movement of the coded targets was recorded by taking sets of photos, initially at
intervals of five seconds to capture enough detail of the deformation. Gradually over the duration of a
pressure-hold period these intervals were increased up to 60 seconds, but whenever the nominal pressure was
about to be changed the smaller intervals were resumed. The laboratory temperature was monitored with a
digital thermometer and was found to be fairly constant with a variation of less than 0.3◦C over the duration
of each xperiment.
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Figure 13: Record of pressure vs. time during balloon experiments
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IV.B.5. Processing of Experimental Data

After the photos had been processed with the photogrammetry software, the coordinates of the targets in a
random sequence, called a point-cloud, were known at each time step, including the initial reference.

All distances were computed using the actual arc length on the balloon surface rather than the direct
distance. Due to the distribution of the targets for creep strain measurements it would have been easy to
estimate the local radius of curvature of a circle defined by three points that were aligned on the initial
flat gore. However, in practice these targets were never perfectly aligned and hence the resulting radius of
curvature would not be accurate. Therefore a more general analysis was carried out, as follows.

It was assumed that any surface can be represented locally by a general second-order polynomial

z = a1 + a2x+ a3y + a4xy + a5x
2 + a6y

2 (20)

where the coefficients ai were fitted by least squares to the point-cloud in the global coordinate system.
Then the coordinates were transformed into a local system with the origin at the center target and the
z-axis aligned with the surface normal. In this local coordinate system a new polynomial was fitted to the
point-cloud

z = b1x
2 + 2b2xy + b3y

2 (21)

and the principal curvatures were determined. Two assumptions were made for the principal curvatures:
firstly, they are aligned with the meridional and hoop directions of the balloon, and secondly they do not
change over the small area of the targets. Hence, the surface section in Figure 14 is a circular arc and the
radius of curvature r is either of the principal radii.

The unique ID numbers of the coded targets were then used to identify pairs of adjacent targets that are
”aligned” in the meridional or hoop direction. The length s of a circular section between two targets is

s = 2r arcsin
ξ

2r
(22)

where 1/r is the principal curvature in the meridional or hoop direction and ξ is the direct distance between
two adjacent targets, Figure 14.

The time-dependent strains between these pairs of targets were computed from the initial reference
distance and the time-dependent distance.

A

s
B

ξ

r

α

Figure 14: Circular arc through two adjacent targets

The balloon shape measurements were processed as follows. For the lobe shape measurements the target
numbers for each lobe were manually selected from the point-cloud. A plane was defined by the two end-
fitting targets and the target closest to the equator. The coordinates of these target points were transformed
such that the line between the targets on the end-fittings lay on the plane and was parallel to the balloon axis.
Since the balloon axis lies at the intersection of these planes, the in-plane coordinates describe the profile of
the meridian that was marked half-way between the tendons. Since the meridional curves run between the top
and the bottom end-fittings, the end-fitting distance determines the balloon height at different pressures. For
the measurement of the equator the target numbers along the equator were selected manually to extract the
equatorial coordinates from the point-cloud. First a plane was fitted to the three-dimensional coordinates of
this set of points by a least squares fit. Then, the coordinates were transformed into a cylindrical coordinate
system with the z-direction perpendicular to the fitted plane (and parallel to the balloon axis). The balloon
center was then determined by finding the center of the best-fit circle to the set of equatorial points. The
results give insight into radial and out-of-plane deviations from this circle.
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IV.B.6. Accuracy of Strain Measurements

The total accuracy of the creep strain measurement is affected by two factors; the photogrammetry method
and the strain calculation that is based on the local representation of the surface by a quadratic polynomial.

The accuracy of the photogrammetry method is influenced by camera positions, resolution, calibration,
target distribution and how well the targets are marked in the photographs. The resulting precision describes
the spread of a measured target coordinate and can be used as an estimate for accuracy if gross and systematic
errors are neglected. The precision values provided by Photomodeler for an individual target are equal to two
standard deviations, assuming a normal Gaussian probability curve (68%). The precision of photogrammetry
projects depends highly on the resolution and the size of the measured object.

For local creep strain measurements where each photograph had a field of view of up to 150 mm, the
precision of each target was typically in the order of 0.01 mm with a worst case limit of 0.04 mm. The photos
for balloon shape measurements covered areas up to 5 m wide and hence precision values were considerably
worse. Considering the size of the whole balloon though (4 m diameter, 2.396 m height), the measurements
had a precision typically of 1.2 to 2.5 mm.

To assess the accuracy of the strain calculation method, a set of nine targets, 20 mm apart on a sphere
with radius r were generated in Matlab with

r2 = (x− x0)2 + (y − y0)2 + (z − z0)2 (23)

where x0, y0, z0 are the coordinates of the center of the sphere. Three different radii of the sphere were
considered (see Table 3). The arc length S between two adjacent targets was then determined using the
analysis method presented above. Comparing this value to the exact arc-length revealed small deviations
ΔS that would result in a strain calculation error Δε, Table 3.

Table 3: Strain calculation error between two targets (20 mm apart) on locally spherical surface

radius [mm] ΔS [mm] error Δε [%]

150 2.44×10−4 0.0012
157 2.02×10−4 0.0010
440 3.21×10−6 1.6×10−5

It was found that the arc length variation ΔS due to the polynomial fit is very small in comparison
to the typical and worst-case precision of the target coordinates obtained from photogrammetry (0.01 and
0.04 mm). Hence it can be concluded that the strain measurement accuracy is determined by the error in
the photogrammetry measurements. Since the target distance is 20 mm the strain measurement error can
then be stated as typically 0.05% (worst 0.2%).

V. Symmetric Finite Element Model of a Lobe

V.A. Abaqus Model Description

The balloon described in Section IV.A had n = 48 lobes and took an approximately 48-fold symmetric shape
when it was pressurized. Since the cutting pattern of each gore has mirror symmetry across the centerline,
by neglecting the details of the seams and hence assuming that the tendons run along the edges of the cutting
pattern, only half of a lobe needs to be analysed.

V.A.1. Mesh and Element Types

The balloon lobes become very narrow towards the end-fittings and sometimes adjacent lobes come into
contact in the equator area. Hence, meshes with large numbers of elements (up to 36000) were used to
represent the lobe. Because the user-defined subroutine has to be called at each integration point, lower
order elements were preferred for their lower computational cost. It was found that the generally smooth
surface of a lobe can be well represented with linear elements (M3D3, one integration point); in areas with
locally higher surface curvature the mesh was further refined. Triangular elements were found convenient
for creating unstructured meshes that are divided in multiple domains with different mesh resolutions. The
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element properties were defined with ∗membrane section and the material directions with ∗orientation. A
constant thickness of 38 μm and the Poisson’s ratio of 0.5 (incompressibility) were assigned. The material’s
machine direction was oriented along the length of the gore (meridional) and the material’s transverse
direction with the hoop direction.

The balloon has a more curved and highly wrinkled lobe shape along the tendons and at low pressure (p <
150 Pa). A finer mesh is also required in the equator area in order to model contact between different lobes.
The surface was subdivided into 4 domains with different resolution; two end-fitting areas (328 mm long)
with element side lengths of 2-4.5 mm (each 756 elements), and a narrow strip (3-33 mm wide, 2150 mm
long) along the tendon, centered at the equator with 2-3 mm sidelength (17206 elements). The remaining
area was meshed with a finer resolution (minimum 2 mm) towards the tendons and a coarser resolution
towards the gore center (maximum l = 30 mm at the center of the gore at the equator), resulting in 17821
elements. The mesh was generated in Abaqus CAE and had a total of 19234 nodes and 36539 elements.

The tendons were modeled with (T3D2) two-node truss elements connected to the nodes along the
boundary of the membrane mesh. The element’s cross-section was defined with ∗solid section.

V.A.2. Boundary Conditions and Constraints

One half of a single lobe was modeled with its centerline lying in the xz-plane. The 48-fold symmetry
of the balloon was then enforced by constraining the edge nodes of the cutting pattern to remain within
the symmetry planes, Figure 15. This constraint was formulated with ∗equation where any displacement
component in the y-direction equals the corresponding x-component times tan π

n . However, the ∗equation
constraint needs to be part of the model definition and cannot be modified during the simulation. In order
to allow activation of the constraint at a later stage (see Section V.A.4) an additional set of dummy nodes
was introduced, one for each node along the edge of the cutting pattern, and the constraint written as

−Δytendon + Δxtendon tan
π

2
+ Δydummy = 0 (24)

where the subscript tendon denotes nodes along the cutting pattern edge and the subscript dummy denotes
the dummy nodes. If ydummy in Equation 24 is unconstrained, xtendon and ytendon can move independently.
The centerline nodes were simply confined to the xz-plane.

The end-fittings were assumed rigid and modeled through boundary conditions only. Therefore the
boundary nodes along an end-fitting were coupled to a dummy node using ∗kinematic coupling. One
end-fitting was held in place and the other one was allowed to move in the z-direction only.
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Figure 15: End-fitting area with boundary conditions
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The distribution of the coupling and equation constraints is illustrated in Figure 15. The origin of
the coordinate system is at the center of the end-fitting. The angle between the symmetry plane and the
centerline plane is π/n.

The balloon’s symmetry planes may not be penetrated by the balloon film, Figure 16. This can be
prevented by the following contact formulation. The command ∗contact pair identifies a pair of surfaces
(master and slave) that may not intersect. With the ∗surface command the master surface was defined as
a rigid plane coinciding with the symmetry plane and the slave surface was defined by a set of nodes with a
distance of less than 30 mm from the edge of the cutting pattern. The relative motion between the contact
surfaces was defined as frictionless.
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(a) Equator cross-section without contact
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(b) Penetration/contact between membrane surface and symmetry plane

Figure 16: Contact constraint at equator cross-section

V.A.3. Numerical Convergence

Abaqus breaks the simulation into a number of time increments and finds the approximate equilibrium
configuration at the end of each increment using the Newton-Raphson method. For equilibrium the net
force acting at every node must be zero, hence the internal forces I and the external forces P must be in
equilibrium. The nonlinear response to a small load increment ΔP is used together with the tangent stiffness
matrix to compute a displacement correction. Based on the displacement correction the internal forces I are
determined and the difference between P and I gives a force residual

R = P − I (25)

Convergence is achieved when the residual R is less than a defined tolerance (default: 0.5% of time average
force). If the solution hasn’t converged Abaqus performs another iteration with an updated tangent stiffness
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matrix and a new displacement correction. If necessary, Abaqus automatically cuts back the increment size
and makes another attempt. These convergence checks at the end of every increment continuously guarantee
the accuracy of the solution.

Convergence difficulties were observed either due to a geometrical instability (e.g. a sudden out-of-plane
movement of the membrane elements), or due to material ”softening” causing zero stiffness due to wrinkling.
The user-defined subroutine presented in Section III prevents local buckling caused by compressive stresses
in membranes. There are two approaches to help a solution to converge:

1. Artificial damping forces can be introduced with the stabilize parameter;

2. Existing membrane elements can be overlayed with a set of elements that maintain a very small artificial
stiffness.

Artificial Damping Forces
The stabilize parameter introduces artificial forces at nodes that undergo high acceleration during an
increment. These forces are calculated from

Fstabilize = cM∗v (26)

where M∗ is an artificial mass matrix calculated assuming unity density, c is a damping factor, v = Δu/Δt
is the vector of nodal velocities and Δt is the current time increment. These forces introduce an error that
needs to be kept to a minimum. In the present study the value of c was specified in the Abaqus input file
with the parameter Factor. Instead of the default value, c = 2×10−4 1/s, c ranged from 10−33 to 10−20 1/s
with maximum forces of 0.3393 N.

When membranes undergo large out-of-plane displacements artificial damping may inhibit node move-
ments and prevent the membrane structure from taking its actual equilibrium shape. If relatively high
damping forces are required to control the solution, often they can be reduced over several restart steps with
gradually decreasing damping factors. This approach is acceptable for time-independent material behavior,
however in the viscoelastic regime errors due to damping forces would have a direct impact on the results
at a given time and hence should be kept very small values at all times. Hence, in the present study the
stabilize parameter has been used only to help against convergence difficulties observed during the initial
lobe forming when no viscoelastic effects were considered (see Section V.A.4).

Material Softening
In a preliminary study a uniform cylinder model that was wrinkled in the axial direction was investigated
and it was found that material softening caused by zero stiffness in the wrinkling direction can sometimes
lead to convergence difficulties. In the case of balloon lobes this issue was observed especially in heavily
wrinkled areas, where node positions were not well determined. In this case the solver keeps correcting the
solution by introducing infinitesimally small movements without any impact on the strains or stresses.

This behavior can be greatly improved by overlaying the wrinkled membrane with low-stiffness elastic
elements to provide a small artificial stiffness in the wrinkling direction. Adding a small prestress to the
overlayed elements determines the node positions due to very small element stresses that remain always posi-
tive. The overlayed membrane elements were isotropic with Young’s modulus E = 1 MPa. The prestress was
0.05 MPa in meridional and 0.16 MPa in circumferential direction. As a result convergence was considerably
improved. On the downside in a heavily wrinkled area these small forces cause a uniform redistribution of
the membrane that may not be observed in an experiment.

V.A.4. Lobe Forming Process

Since the lobes are made from flat sheets of thin plastic, the material has to stretch in order to produce a lobed
shape with positive Gaussian curvature. In a real balloon the doubly-curved shape is obtained gradually
during inflation of an initially loosely hanging structure with many folds. Numerically, this lobe forming
process was approximated by constraining the lobe boundaries to lie within their meridional symmetry
planes while the membrane forming the lobe is wrinkled or even slack to accommodate possibly superfluous
material. This was done in the following sequence of steps:

1. Initial pressurization with fully constrained boundaries;

2. Movement of the boundary nodes onto balloon symmetry planes;
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3. Release of boundary nodes in the symmetry planes;

4. Decrease pressure to some very low value, e.g. 5 Pa.

The lobe forming process was carried out in a sufficiently short period of time that the material’s response
is still purely elastic. This means the total time required for the above four steps should be less than three
orders of magnitude before the time at which viscoelastic material behavior is defined. Here the lobe forming
process was completed at t = 10−22 s. This means that potentially very high stresses during lobe forming
occur only in the elastic regime and have no effect on the time-dependent material behavior or stress history.
In fact, only the stresses and strains that occur after the beginning of the viscoelastic time domain (i.e.
t = 1.6 × 10−19 s, see Section II.B.2) matter.

The process started from the flat cutting pattern of the lobe. The pattern was mapped onto a cylindrical
surface defined by the generator of the isotensoid surface. The length of this generator between balloon apex
and base matched exactly the length of the pattern’s centerline. Hence, every length coordinate along the
pattern corresponds to a pair of x and z coordinates on the generator. The y coordinates (pattern width)
remained unchanged. Note that in this configuration the edge of the pattern generally does not lie on the
balloon’s symmetry planes, if the pattern width doesn’t correspond to the tendon distance of an isotensoid.

In the first step all of the boundary and dummy nodes were held fixed and an initial pressure of 50 Pa
was applied. In the second step the boundary nodes were moved in the y-direction onto the balloon’s
symmetry planes. Therefore the dummy nodes were moved in the y-direction while xtendon was held fixed
and Equation 24 becomes

Δytendon = Δydummy (27)

In the third step the boundary nodes were allowed to move freely in the meridional symmetry planes to
find their equilibrium configuration. The constraints on xtendon were deleted and the dummy nodes were
held fixed for the remainder of the simulation, thus Equation 24 becomes:

Δytendon = Δxtendon tan
π

2
(28)

In addition only the top end-fitting was held in place while the bottom end-fitting was free to move along
the balloon axis. Finally the fourth step decreased the pressure load to a lower value, such as 20 Pa. This
pressure value is low enough to ensure low membrane stresses at the beginning of the viscoelastic analysis.
Ideally the viscoelastic simulation should start with no pressure applied. However, when the pressure is
decreased most of the membrane becomes highly wrinkled (zero hoop stress), which results in a very small
time average force, such as 0.0157 N (p = 20 Pa). Since the default convergence tolerance is 0.5% of the time
average force; lower pressure values caused convergence difficulties that could only be overcome by increasing
the residual error tolerance. At these lower pressures it is important to use the contact formulation to prevent
intersection of the membrane and the symmetry planes. Note that this step ended with all stabilize forces
fully removed.

V.A.5. Viscoelastic Analysis Steps

Once the fourth step had been completed and any damping forces fully removed, the viscoelastic analysis
was started. The temperature was set to the measured lab temperature (T = 296 K) at the beginning of the
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Figure 17: Pressure record modeled with ramp and step functions
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analysis and assumed to be constant throughout the test. The pressure record over time was approximated
as shown in Figure 17.

The first step started with an increment size of Δt = 10−22 s and depending on the convergence Abaqus
automatically increased the time increment size (Δtmax = 200 s) until the total hold of 2 h had been
completed. Thereafter each analysis step started with Δt = 1 s and the time increment was automatically
increased up to Δtmax = 200 s, but never more than 10% of the total time of an analysis step.

A large portion of the required computing time was spent on the 4th lobe forming step and the initial
2 h low pressure hold. Hence, these parts of the simulation were divided into several smaller analysis steps
depending on the observed convergence behavior. If necessary the error residual tolerance was then controlled
in these smaller analysis steps. As previously mentioned the low pressure load of 20 or 5 Pa resulted in very
small time average forces. Thus the default residual error tolerances of only 7.87 × 10−5 made numerical
convergence impossible. In order to achieve convergence the residual tolerance had to be increased. A
suitable tolerance was temporarily chosen for each individual analysis step resulting in maximum tolerances
of 2.72 × 10−2 N. Once a higher pressure had been applied, the error residual tolerance was reset to its
default of 0.5% of the time average force.

VI. Results

Figure 18 shows the strain distribution in a lobe at five different pressure levels, at the end of each
pressure hold. This means that an initial pressure of 20 Pa has been maintained for 2 h and pressures of
120, 250, 500 and 700 Pa for 27-29 min. Half of the lobe has been plotted for each strain component. At low
pressures of 20 and 120 Pa a large area of the lobe is heavily wrinkled in the hoop direction and the surface
contracts by up to -13.5 %. At the end of the 250 Pa hold the wrinkles have disappeared.

In Figure 19 the corresponding stress distribution has been plotted. At 20 Pa the hoop stresses are
practically zero. Peak stresses occur next to the apex and base end-fittings and haven’t fully relaxed after
2 h. At 120 Pa the meridional stress increases, while the hoop stresses are still largely zero due to wrinkles.
The stresses become non-zero in the whole gore at 250 Pa. Note how up to 250 Pa the maximum meridional
stresses have increased to over 5 MPa whereas further pressurisation to 500 and 700 Pa results in only 1 MPa
additional stress.

Figure 20 shows the change in strain distribution during a constant pressure period; the strains have
been plotted at the beginning and the end of the 27 min pressure hold at 120 Pa. Meridional strains increase
in particular at the equator (by almost 1 %) and due to Poisson’s effects the amount of wrinkling in the
hoop direction decreases. The corresponding change in the stress distribution is plotted in Figure 21. The
material redistribution causes the two initially separated stress peaks to shift in the direction of the equator.
The hoop stresses are still largely zero due to wrinkling.

meridional hoop

ε [%]

1.01

-2.61

-6.23

-9.85-9.85

-13.47-13.47

(a) 20 Pa

meridional hoop

ε [%]

2.79

-1.15

-5.08

-9.02-9.02

-12.95-12.95

(b) 120 Pa

meridional hoop

ε [%]

5.61

3.43

1.25

-0.92-0.92

-3.10-3.10

(c) 250 Pa

meridional hoop

ε [%]

6.26

3.94

1.63

-0.69-0.69

-3.00-3.00

(d) 500 Pa

meridional hoop

ε [%]

6.44

4.17

1.89

-0.38-0.38

-2.66-2.66

(e) 700 Pa

Figure 18: Strain distribution at the end of each pressure hold
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Figure 19: Stress distribution at the end of each pressure hold
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Figure 20: Change of strain distribution during period of constant pressure; before and after 27 min at
120 Pa
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Figure 21: Change of stress distribution during period of constant pressure; before and after 27 min at
120 Pa

The most significant gravity effect was the mass of the components of the balloon; this was included in
the simulation but the stress and strain results along the centerline are still almost symmetric, Figure 22.
For this reason the strain and stress plots in Figure 24-27 show results only for the top quarter.
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(b) Stresses along the lobe centerline

Figure 22: Strains and stresses along the lobe centerline of 4 m balloon; end of 700 Pa pressure hold

In Figures 24 and 25 a continuous representation of the creep strains has been plotted at two different
locations along the meridional length; at the equator and at one quarter. In order to capture the variation
across the lobe width that has been seen in the snapshots (Figure 18 and 19), for both locations the strains are
presented at three positions equally spaced on the half-width of the cutting pattern, as shown in Figure 23.

The overview on the left, Figures 24(a) and 25(a), shows the full time range that was covered including
the initial 2 h at 20 Pa. At such low pressures the surface is highly wrinkled and large negative hoop strains
appear as a result; the soft overlay elements are effective in allowing the analysis to converge. The detail on
the right, Figure 24(b) and 25(b), shows the same strains once the pressure is increased from 20 Pa and the
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Figure 23: Positions of creep strain output from Abaqus

film becomes less wrinkled.
With increasing pressure, the meridional strains gradually increase to just over 6 percent at the equator,

while the center hoop strains remain fairly constant between -2.5 and -3 % at pressures of 120-700 Pa. At
one quarter the situation is the other way around: the meridional strains remain fairly constant at 1.7 %,
while the hoop strains gradually change from almost -1 % to just above zero.

The stress distribution at the same locations has been plotted in Figure 26. The meridional stress shows
both at the equator and at one quarter a characteristic relaxation behavior. The meridional stress variation
shows a very steep slope every time the pressure is increased and then a gradual decline as the stress relaxes
as the material creeps. In addition there is a 20 % reduction of meridional stress across the lobe width. The
hoop stress increases with the applied pressure but otherwise remains constant over time. Also the hoop
stress variation across the lobe is small. These observations are valid for both the equator and one quarter
locations.

A comparison of results from experiment and numerical analysis, in Figure 27, sheds light on the quality
of the finite element model. The bold black lines are the simulation results at the lobe center in the meridional
and hoop direction. The thin coloured lines are the experimental mean strains from three lobes as presented
in Section 6.6.2. More details on the experimental results can be found in reference 2.

At the equator the creep behavior with respect to the slope of the creep strain is well represented by the
model. However, the simulation generally overestimates meridional strains by 0.8-1.5 % in the meridional
direction, and underestimates hoop strains by 0.8-1 %. A different situation is observed at one quarter. The
meridional creep behavior appears somewhat different: while the experimental creep strains are continuously
increasing, the numerical strains remain fairly constant. Generally the strain predictions are about right at
one quarter.

Finally the balloon shape measurements are compared to the corresponding finite element model results.
The balloon height was defined as the distance between the end-fittings. Generally the overall balloon shape
prediction shows little or no time variation at constant pressure. The only changes in height were observed at
a pressure of 120 Pa (5.6 mm or 0.22 % increase after 27 min). However, it was not possible to capture such
little changes of balloon height in the shape measurements. At pressures of 120-700 Pa there is a constant
height difference of about 20 mm between experiment and simulation. At 20 Pa the difference is 170 mm.

A shape comparison, Figure 29, by means of the line half-way between the tendons (centerline) reveals
that the model is not just stretched in height, but also the balloon radius appears larger in the simulation.
The summation of the line increments between experimental targets and simulation nodes, respectively,
shows that the centerline in the simulation is longer, Table 4. The 4 m balloon cutting pattern presented
in Section 6.1.2 has a length of 5242.6 mm; 32 mm longer than the centerline length that was measured at
20 Pa (5210.6 mm). Otherwise the shape of the centerline curves agrees well at 120 and 700 Pa.

Table 4: Lobe centerline lengths from apex to base end-fitting center

pressure [Pa] 20 120 700

experiment mean [mm] 5210.6 5252.0 5315.7
simulation [mm] 5254.5 5315.2 5375.1
difference [mm] 42.9 63.3 59.4
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Figure 24: Abaqus strain at the equator
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Figure 25: Abaqus strain at one quarter
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Figure 26: Stresses at T = 296 K
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Figure 27: Comparison of strains
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VII. Detailed Model of a Seam

One of the construction details neglected in the finite element model described in Section V is the actual
geometry of the seam and tendon attachment between the lobes. The tendon is not attached all the way,
but is freed from the seam assembly about 320 mm before it reaches the end-fitting. The tendon end is
then attached to a pin at the end-fitting. This tendon attachment has been found to be misaligned from the
natural run of the seam by 1-2 pins.

VII.A. Model Description

Considering the seam detail means that there is no mirror symmetry about the meridional plane through the
center of the lobe. Hence, the full lobe width needs to be modeled. To reduce the size of the finite element
model, symmetry across the equator is assumed by neglecting gravity effects. In addition, a pseudo-elastic
material model was adopted, as a full viscoelastic analysis would take too long. The moduli E1 and E2 in
the two material directions were taken as 167 MPa and 214 MPa, respectively, based on a the assumption
of T=283 K, σ1=4.5 MPa, σ2=5.0 MPa, t=400 s.

For the numerical model the cutting pattern was kept unchanged while the seam was cut in two parts,
which were modeled as attached to the left and right edges of the gore model, Figure 30(b). Both seam parts
were modeled as single sheet membranes with their thickness corresponding to the total thickness of the film
layers included in the actual seam. One seam part contained the tendon. The displacement of the tendon
end-fitting attachment by 18.2 mm (distance between 2 pins for tendon attachment at the end-fitting) results
in a kink in the tendon with angle α, Figure 31.
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15.9 5.5

pattern width

6.5

13.5

gore 1 gore 2

tendon

(a) Schematic seam cross-section, dimensions in mm
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(b) Configuration of film layers across gore width as mod-
eled

Figure 30: Seam schematic with various film layers, reality vs. model
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Figure 31: Schematic of end-fitting area with two seam strips and tendon; end-fitting attachment of tendon
displaced from A to B
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VII.A.1. Mesh and Elements

For the finite element model the same element types were used as in Section V; three-node triangular
membrane elements (M3D3) and two-node truss elements (T3D2). The mesh consisted of a total of 14678
nodes and 27110 membrane elements; 20579 elements for the pattern, 1338 elements for the seam attached to
edge B, 5193 elements for the seam containing the tendon. The mesh density for the gore was highest along
the tendon (minimum element side length 2 mm) and coarsest at the equator center (maximum element side
length 30 mm). In the two seam strips the element side lengths range between 3 and 8 mm.

A set of overlayed membrane elements was used to improve convergence in heavily wrinkled areas (see
Section 7.1.3). The overlaid membranes had a stiffness of E=1 MPa and prestresses of σx=0.05 MPa and
σy=0.18 MPa (σy=0.1 and 0.15 MPa for the two seam strips).

VII.A.2. Boundary Constraints

Boundary constraints along the edges labeled as A and B in Figure 30(b) were enforced using ∗equation in
a local cylindrical coordinate system. The nodes along the edges were constrained to have the same vertical,
radial and circumferential displacement while maintaining a 7.5o lobe opening angle. Therefore the nodes
along the two pattern edges (A and B) and the dummy nodes were transformed into a local cylindrical
coordinate system using the command ∗transform, type=C such that the balloon axis became the z-axis
of the cylindrical system. The ∗equation constraint to attach one seam strip to edge A (see Figure 30(b))
was then written as

Δxseam − ΔxedgeA = 0
Δyseam − ΔyedgeA = 0 (29)
Δzseam − ΔxedgeA = 0

and similarly for the other seam strip and edge B. In addition a set of equations was written to define the
movement of each individual node on edge A as equal to the movement of a corresponding node on edge B:

ΔxedgeA − ΔxedgeB = 0
ΔyedgeA − ΔyedgeB − Δydummies = 0 (30)

ΔzedgeA − ΔxedgeB = 0

VII.A.3. Contact Constraints

The contact constraint between the seam and the gore was modeled as tied contact, where contact is
maintained between two surfaces once it has been established at the beginning of an analysis. Tied contact
constrains each of the nodes on the slave surface to have the same displacement as the point on the master
surface that it contacts.
The membrane elements of the two seam strips defined two element-based master surfaces. Two corre-
sponding node-based slave surfaces were defined on the gore including 8009 nodes within a 25 mm wide
band along the cutting pattern edge. Tied contact was defined in the model definition with the command
∗contact pair, tied, adjust=1.0. Contact between the symmetry plane and the lobe surface was not im-
plemented, since a combination of tied contact and self contact is not permitted in Abaqus. As a consequence
self-contact of the membrane around the tendon was observed at a pressure below 330 Pa.

Two limitations of the tied contact model were observed: firstly, no contact formulation was enforced
between the free tendon and the membrane, since the free tendon section between end-fitting and seam-entry
was modeled with one truss element that cannot be used to define a contact surface. Hence, where the tendon
was detached the membrane could bulge freely when the pressure was applied.
Secondly, the tied contact prevents the buckling of the seam and consequently the seam remains in contact
even where the tendon is entering the seam. Figure 32 shows the observed buckling and slipping of the seam
in the physical structure.
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Figure 32: Tendon enters the seam; buckling and slipping of seam observed

VII.B. Results

The stress and strain distribution in the gore at two different pressures, 300 and 1000 Pa, has been plotted
in the top half of Figures 33 to 34. For comparison the simulation of the balloon as been rerun using
the standard finite element model from Section V with the same pseudo-elastic properties (E1=167 MPa,
E2=214 MPa). The corresponding strain and stress distribution have been plotted in the lower half. Note
that the high stresses are due to the relatively stiff pseudo-elastic properties. Their choice was arbitrary and
not bound to a particular temperature, time or state of stress.

The results from the detailed model are slightly un-symmetric across the gore width. The peaks of the
strains in both directions and the meridional stress have shifted to the right, only the hoop stresses appear
symmetric. Both meridional and hoop stresses are very low where the gore is supported by the extra layers
of film of the seam. These observation are valid at both pressure levels.

The lack of symmetry across the gore width becomes apparent when one takes a cross-section of the
lobe at the equator, Figure 35. An indentation forms along the tendon (on the left) and the two seam
strips are part of the lobed shape. At a pressure of 300 Pa the lobed shape shows a valley on the right
due to the additional structural stiffness along the seam, Figure 35(a). This effect decreases with increasing
pressure. Since self-contact in the tendon area was not prevented, a penetration of the membrane surface is
observed for pressures less than 330 Pa, Figure 35(a). This is in contrast to the experimental observations,
where the up to five times thicker seam has some bending stiffness and resists small negative hoop stresses.
Consequently in the physical structure at low pressures the seam does not fold around the tendon, but takes
a rather flat shape.
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Figure 33: Strain and stress distribution at a pressure of 300 Pa; comparison of detailed and simplified seam
model
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Figure 34: Strain and stress distribution at a pressure of 1000 Pa; comparison of detailed and simplified
seam model

33 of 37

American Institute of Aeronautics and Astronautics



-100 -50 0 50 100

0

20

40

60

80

lobe width [mm]

lo
b
e

h
ei

g
h
t

[m
m

]

penetration standard model

detailed seam model

(a) 300 Pa

-100 -50 0 50 100

0

20

40

60

80

lobe width [mm]

lo
b
e

h
ei

g
h
t

[m
m

]

standard model

detailed seam model

(b) 1000 Pa

Figure 35: Comparison of equator cross-sections of the lobe; simplified vs. detailed seam model

VII.C. Swirl of End-Fittings

The misalignment of the tendon attachment by 1 or 2 pins during the production of the balloon causes a
kink in the natural run of the tendon, referred to as swirl. Figure 36(a) shows the balloon at a pressure of
less than 5 Pa. The swirl is visible where the tendon enters the seam about 320 mm from the end-fitting.
In Figure 36(b) the balloon was pressurized to 700 Pa and the swirl almost completely disappeared. Only
a few tendons were left with a slight swirl. Note how the initially straight seam is deformed as the tendon
straightens at a higher pressure.

(a) Swirl of tendons at lower pressures (10 Pa) (b) Straight tendons at higher pressure (700 Pa)

Figure 36: Tendon swirl in the end-fitting area at low and high pressure
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This phenomenon was replicated in the finite-element model. The lobe section in Figure 37(a) shows the
onset of the simulation with the tendon highlighted in red. The lobe section in Figure 37(b) was obtained
at 1000 Pa and shows the tendon almost straightened.

(a) Starting configuration, α=3.32◦

(b) Straightened tendon at 1000 Pa, α=1.40◦

Figure 37: Comparison of starting configuration of tendon versus straightened tendon

The initial swirl gradually disappears as the stiff tendons take proportionally higher stresses at increasing
pressure. This is accompanied by a rotation of the end-fitting and a decrease of the kink angle α (see
Figure 31). In Figure 38 α was plotted with increasing pressure. The starting configuration of α=3.32◦

has been assigned to zero pressure. The simulation considered pressures ranging from 300 to 1000 Pa. The
dotted line has been interpolated.
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Figure 38: Decrease of angle α with increasing pressure

VIII. Discussion and Conclusion

This research was motivated by the need for a reliable prediction of stresses and strains that occur during
the flight of super-pressure balloons. Viscoelasticity plays a major role in the stress and strain distribution
in balloon structures. The film creeps as time passes, causing the stresses to redistribute. While initially
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relatively high stresses can be caused by the pressurization of the structure, these stresses relax as time
passes and a more even stress distribution is reached eventually. Although an initial version of the material
model had been published, nonlinear viscoelastic simulations of super-pressure balloons were missing. This
was mainly due to the lack of a suitable numerical implementation of the material model. At the same time
experimental data from balloon structures was limited and time-dependence was not included. There was
only little knowledge about the time-dependent strain and stress distribution in an actual balloon structure
and hence it was not possible to validate the material model. As a consequence the material model, the
numerical simulations and the experimental data were somewhat disconnected. The present work has closed
the gap between theory and experimental observation.

The integral formulation of the nonlinear viscoelastic material model proposed by Rand has been rewritten
in incremental form and implemented in Abaqus. In addition a formulation for wrinkling in orthotropic
membranes has been developed and implemented. The two separate implementations of wrinkling and
viscoelasticity have been combined in a single user-defined subroutine in Abaqus. In heavily wrinkled cases
an overlay with a very soft and pre-tensioned membrane was adopted to provide some residual stiffness at
all times. Models with only some wrinkled areas worked well without this trick.

For the measurement of creep strains in actual balloon structures a contact-free experimental method
based on photogrammetry has been developed. Experiments have been done on a 4 m balloon. Measurements
included creep strains under biaxial and uniaxial load cases. Experiments on balloon structures focused on
the measurement of local creep strains and the overall shape of a balloon.

The newly developed numerical tools were applied to a 4 m diameter balloon model with a distinctly
lobed shape. At a pressure of 700 Pa the balloon showed a maximum stress of 6.0 MPa in the meridional
direction (2.5 MPa hoop stress) and meridional strains of up to 6.4% (-2.7% hoop strain).

The viscoelastic behavior was accurately predicted at the equator although strains were generally over-
estimated. However, at a quarter of meridional length, where the stresses are more balanced, the predicted
creep behavior was less accurate. Generally a better agreement was found where stresses were less balanced.
Excellent results were obtained under uniaxial stress, while biaxial stress states were found very sensitive
to small structural variations. These discrepancies indicate that further refinements are still needed in the
viscoelastic material model of SF420.

The effects from additional detail in the model were analyzed by including the seam-tendon assembly and
tendon-end-fitting attachment. For simplicity this simulation was done only using pseudo-elastic properties
instead of a full viscoelastic model. The resulting lobe shape had the meridional indentation along the
tendons and a deformation of the lobed shape becomes visible at pressures up to about 500 Pa due to the
higher stiffness of the seam. In addition the phenomenon of a swirl in the end-fitting area was replicated in
the simulation. The initial kink angle in the tendon reduced from 3.4◦ to 1.4◦ when a pressure of 1000 Pa was
applied. During their shape-finding the comparably stiff tendons straighten and depending on the differential
pressure in the balloon this leads to a rotation of the end-fitting.
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