
AMPLITUDE OF WRINKLES
IN THIN MEMBRANES

Y.W. Wong and S. Pellegrino
Department of Engineering, University of Cambridge
Trumpington Street, Cambridge, CB2 1PZ, U.K.
pellegrino@eng.cam.ac.uk

Abstract This paper presents a theory for predicting the wavelength and ampli-
tude of the wrinkles that form in a membrane in pure shear. Predictions
from this theory are compared to experimental measurements and a fi-
nite element simulation and are found to be very accurate.

Keywords: Membrane, Wrinkles, Gossamer spacecraft

1. INTRODUCTION
A number of space missions will require high-accuracy membrane

structures acting as sunshields, solar arrays and solar sails, radars, and
inflatable antennas. These prestressed membrane structures will have to
remain partially wrinkled in their operational configuration. Removing
the wrinkles would require a biaxially tensile stress state, thus signifi-
cantly increasing the loads transmitted to the edge deployable structure
that supports the membrane.

Wrinkles can reduce the performance of reflectors and sunshields, or
cause difficulties in maneuvering solar sails. Hence, it is now important
to predict details of the wrinkles, such as wavelength and amplitude, in
order to determine if the membrane structures meet the requirements of
each particular application.

The wrinkling of membranes has attracted much interest in the past,
starting from the observation that the thin-walled shear web of a beam
can carry loads well above the initial buckling value; which prompted the
development of tension field theory by Wagner (1929). Simpler formula-
tions of this theory by Reissner (1938), Stein and Hedgepeth (1961), and
Mansfield (1969, 1989) made it possible to find solutions to problems in
which the tension-lines are non parallel. Further generalizations were
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proposed by Pipkin (1986) and, more recently, Epstein and Forcinito
(2001).

A premise common to all of these formulations, and also to the ac-
companying numerical solutions that have been pursued alongside, is
that the membrane is modelled as a no-compression, two-dimensional
continuum with negligible bending stiffness. See Jenkins and Leonard
(1991) for an extensive list of references and Adler (2000) for a more
recent perspective; see also Liu et al. (2000) for a numerical study in
which wrinkle amplitudes were predicted. Hence, it is assumed in effect
that an infinite number of wrinkles of infinitesimally small amplitude
will form. This is not, of course, what actually happens and it is well
known that, although the stress fields produced by these theories are
essentially correct, the out-of-plane displacements are significantly dif-
ferent from those observed in practice. This is not a problem in the
design of membranes that are purely load-carrying elements, but it is
not acceptable in the present context.

The only study, to our knowledge, which has taken into account the
role played by the membrane bending stiffness is Rimrott and Cverko’s
(1986) study of the “hanging blanket” problem. These authors consid-
ered a vertical membrane subject to in-plane gravity loading and sup-
ported on two level points, a problem for which the tension field solu-
tion in terms of cosine-shaped wrinkles had already been determined by
Mansfield (1981). However, it can be readily verified —e.g. with a bath
towel— that in practice there is only a small number of tension strips,
which are in equilibrium in a strongly three-dimensional configuration.
Rimrott and Cverko showed that the introduction of a critical, compres-
sive stress perpendicular to the wrinkles produced trends matching the
experimentally observed variation of the number of tension strips with
the density of the membrane.

In this paper we return to the simple configuration considered in the
earliest study of wrinkled membranes, namely the rectangular membrane
in shear. For this problem we compute a series of reference solutions,
by means of non-linear finite element analysis, where the membrane
is accurately modelled with a fine mesh of thin-shell elements. These
solutions provide an insight into the stress distribution in the wrinkled
membrane, on which we then base a simple analytical solution inspired
by Rimrott and Cverko’s approach to the hanging blanket. Thus, we
obtain predictions for the wrinkle wavelength and amplitude as functions
of the angle of shear and of the geometric and material properties of the
membrane.

This theory has three key components. First, it is assumed that the
tension lines, i.e. the direction of the wrinkles, are determined by a
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standard tension field approach. Second, the (small) compressive stress
in the direction perpendicular to the wrinkles is set equal to a criti-
cal buckling stress which is a known function of the wavelength of the
wrinkles. Third, the stress components along and perpendicular to each
wrinkle —modelled as a doubly-curved shell— are in equilibrium in the
out-of-plane direction. Results from this model are compared to both
direct experimental measurements and finite element simulations, and
are found to be in good agreement.

2. PRELIMINARY CONSIDERATIONS
Figure 1 shows a photograph of an aluminized Kapton membrane, of

length L = 380 mm, height H = 128 mm, and thickness t = 25 µm, that
is attached to rigid blocks along the top and bottom edges and is free
along the sides. A relative horizontal displacement δ = 3 mm has been
imposed between the two blocks without changing their distance, thus
imposing a geometric shear strain γg = 2.3% on the membrane.

L
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x

y

Figure 1. Sheared Kapton sheet, showing extensive wrinkling.

The photograph shows that, instead of deforming purely in two-dimen-
sional shear, the membrane has buckled out of plane, forming a series
of approximately straight wrinkles. Excluding the wrinkles originating
near the bottom-left and top-right corners, the wrinkles in the central
part of the membrane are parallel and uniformly spaced. The wrinkle
wavelength, i.e. the distance between two consecutive crests, or troughs,
is denoted by 2λ.

We have carried out a finite-element simulation of the shearing pro-
cess, using the finite-element package ABAQUS (2000) where the mem-
brane was modelled by four-node thin shell elements (type S4R5). The
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Table 1. Kapton membrane properties.

Length, L (mm) 380
Height, H (mm) 128
Thickness, t (mm) 0.025
Young’s Modulus, E (N/mm2) 3530
Poisson’s ratio, ν 0.3

numerical singularities that occur at the beginning of the analysis, due to
the small bending stiffness of the shell elements, were avoided by apply-
ing a small, uniform initial stress in the y-direction to the membrane and
by carrying out an initial, geometrically non-linear step. This was fol-
lowed by a prediction of the possible wrinkling modes, made by running
an eigenvalue buckling step. These modes were superposed and ampli-
fied, and applied as initial geometric imperfections, before running the
final step. The final analysis of the wrinkled membrane was facilitated by
using the automated “stabilize” option in ABAQUS, which introduces
dynamic pseudo-inertia and pseudo-damping forces when an instability
is detected, thus triggering a pseudo-time integration of the dynamic
snap of the system. The default ABAQUS values for the amount of
damping that is introduced in the calculation were tuned down to achieve
the greatest possible accuracy.

A single type of membrane, made of Kapton, was used for all the
studies presented in this paper (except that photographed in Figure 1);
its properties are given in Table 1.

Figure 2 is a plot of the principal stresses in a heavily wrinkled mem-
brane, predicted by ABAQUS. For each element we have plotted two
vectors aligned with the principal stress directions and of length propor-
tional to the principal stresses. Note that: (i) only the major stress σ1
is visible in the plot, as the minor stress is very small; (ii) in the central
part of the membrane the major principal stress is inclined at 45◦; and
(iii) there are stress concentrations by a factor of up to 2.5 in the top-left
and bottom-right corners.

The same results are also found from tension field theory (Mansfield,
1969) and it is interesting to compare the loci of the crests and troughs
predicted with ABAQUS, Figure 3(a), with the tension lines for a semi-
infinite strip. Thus, Figure 3(b) shows the tension lines at 5◦ intervals as
well as the first six wrinkles (a-f) predicted by ABAQUS. It can be seen
that wrinkles (a-d), forming respectively at 63◦, 56◦, 51◦, and 46◦ to
the horizontal, practically coincide with the corresponding tension lines.
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Figure 2. Stress trajectories from ABAQUS solution.

The 45◦ tension line is at infinity; but the actual wrinkles are inclined
at practically 45◦ at only a short distance from the corner.

a         b         c       d       e      f

Mansfield (1969)

ABAQUS

(a) (b)

90o 80o 70o 60o 50o

   45o   45o   46o   51o  56o63o
a   b    c     d    e   f

Figure 3. Comparison between (a) ABAQUS solution and (b) tension field.

Figure 4 is a plot of the distribution of the principal mid-surface
stresses across the centre of the membrane, for two different shear dis-
placements. Near the free edges, σ1 rapidly increases to an approxi-
mately uniform, positive value. σ2 is also essentially uniform in the
central region and, although it appears to be zero from this plot, in fact
it is negative, albeit small.

The value of the minor principal mid-surface stress at a representative
point in the middle of the membrane has been plotted in Figure 5 as
a function of the shear displacement δ. The behaviour shown here is
characteristic of the post-wrinkled response of the membrane, and it
provides a series of important clues. The fact that the mid-surface stress
—which of course does not include bending effects— is compressive in
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Figure 4. Mid-surface principal stresses through horizontal section at mid-height.
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Figure 5. Variation of minor principal stress with shear displacement, at the centre
of the membrane.
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Figure 6. Trajectories of maximum and minimum out-of-plane displacement at
mid-height, for increasing shear displacement.



Wrinkle Amplitudes 7

H

x

y

z

ξ

η

45o 45o

w

1/κη

σξ

1/κξ

ση

(a)

(b)

√2H

λ
λ

Figure 7. (a) Perspective view of a single wrinkle and (b) infinitesimal free body.

the direction perpendicular to the wrinkles is particularly significant. It
is also significant that its value increases with the shear displacement.

This variation has an underlying, square-root type trend, superposed
onto a series of sharp peaks and jumps, which correspond to sudden
increases in the numbers of wrinkles and a rearrangement of the shape
of the central part of the membrane. The complete sequence of the
formation of wrinkles at mid-height is shown in Figure 6, where each
bifurcation point —and the corresponding “transition” in the plot—
corresponds to a jump in Figure 5. Note that the side wrinkles do not
move, as they are “pinned” by the corner supports.

3. ANALYTICAL MODEL
Consider one of the wrinkles in the central, uniformly wrinkled part of

the membrane. From standard tension field theory, its direction is found
to be at 45◦ to the edges of the membrane, as shown in Figure 7(a).

The initially flat membrane has deformed into a doubly-curved shape
lying alternately above and below the original, xy plane of the mem-
brane. This wrinkled surface intersects the xy plane at a regular half-
wave distance λ and it is observed in practice that these intersections
are along straight lines.

A simple mode-shape describing the wrinkled surface can be readily
set up using the coordinate system ξ, η shown in Figure 7(a). Note that
ξ is parallel to the wrinkle direction, and η is perpendicular to it. The
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out-of-plane deflection is

w = A sin
π(ξ + η)√

2H
sin

πη

λ
(1)

and the in-plane deflection is small. Here, A is the amplitude and λ
is the half-wavelength, both unknown. Since the wrinkles are long and
narrow, η << ξ apart from a small region near the origin. Hence, the
mode-shape can be simplified to

w = A sin
πξ√
2H

sin
πη

λ
(2)

The compressive stress ση acting perpendicular to the wrinkles is set
equal to the stress required to buckle a simply-supported, infinitely wide
plate of length λ which is loaded length-wise. Hence, by Euler’s formula
(Calladine, 1983)

ση = − π2Et2

12(1 − ν2)λ2 (3)

This is very small in comparison with the longitudinal (tensile) stress σξ

and hence the stress-strain relationship for a uniaxial stress state can be
assumed to be valid

σξ = Eεξ (4)

Since the wrinkles are at 45◦ to the x and y axes

εξ = γ/2 (5)

where γ = δ/H if the strain/stress variation across the wrinkle is ne-
glected. Substituting Equation 5 into Equation 4

σξ = Eγ/2 (6)

For equilibrium of the membrane in the normal direction

σξκξ + σηκη = 0 (7)

where the principal curvatures are given by

κξ = −∂2w

∂ξ2 =
π2A

2H2 sin
πξ√
2H

sin
πη

λ
(8)

κη = −∂2w

∂η2 =
π2A

λ2 sin
πξ√
2H

sin
πη

λ
(9)

Substituting Equations 3, 6, 8 and 9 into Equation 7, simplifying and
rearranging we obtain the following expression for the half-wavelength λ

λ =
√

π

[3(1 − ν2)]
1
4

√
Ht

γ
1
4

(10)
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Next, we obtain an expression for the amplitude A of the wrinkle. This
must be such that the contraction of the membrane in the η-direction

εη = −γ/2 (11)

matches the sum of the strain in the membrane

εηM = − ν

E
σξ (12)

plus the geometric strain produced by the out-of-plane deformation of
the membrane, which at mid-height can be shown to have the expression

εηG ≈ −π2A2

4λ2 (13)

Hence,

−γ

2
= − ν

E
σξ − π2A2

4λ2 (14)

Substituting Equation 6 and solving for A gives

A =

√
2(1 − ν)γ

π
λ (15)

from which λ can be eliminated using Equation 10, to find

A =

√
2(1 − ν)

√
π[3(1 − ν2)]

1
4

√
Ht γ

1
4 (16)

3.1 Alternative Formulation
An alternative approach is to find λ by minimizing the strain energy

in the wrinkled membrane, modelled as a thin plate stretched in the
ξ-direction and wrinkled in the η-direction.

The general expression for the bending strain energy per unit area of
an initially flat plate that is bent into a cylindrical shape is

Ub =
Et3

24(1 − ν2)
κ2

η (17)

As κη is not constant, see Equation 9, the average strain energy, Ub, per
unit area is obtained from

Ub =
Et3

24(1 − ν2)

(
1√
2Hλ

∫ √
2H

0

∫ λ

0
κ2

ηdξdη

)
=

Et3

24(1 − ν2)
π4A2

4λ4 (18)
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The strain energy for stretching in the η-direction is negligible, hence
a general expression for the stretching strain energy per unit area is
given by

Us =
1
2
Etε2ξ (19)

Here, εξ is the sum of the strain due to the in-plane shear, Equation 5,
plus that due to the out-of-plane deflection due to wrinkling

εξ =
γ

2
+

1
2

(
∂w

∂ξ

)2

(20)

Thus, εξ also is not constant, and hence the average strain energy of
stretching, Us, over a wrinkle is given by

Us =
1
2
Et

(
1√
2Hλ

∫ √
2H

0

∫ λ

0
ε2ξdξdη

)

≈ Et

2
γ2

4
+

Et

2
π2A2γ

16H2 (21)

The first of these terms is independent of the wrinkle amplitude A, and
hence will not be carried through to the next stage of the analysis.

Hence, the total mean strain energy of wrinkling per unit area (ne-
glecting the term without A) is given by

U = Ub + Us =
Et3

24(1 − ν2)
π4A2

4λ4 +
Et

2
γ2

4
+

Et

2
π2A2γ

16H2 (22)

Next, we substitute Equation 15 —thus expressing A in terms of λ—
and obtain

U =
(1 − ν)Etγ

2

(
π2t2

24(1 − ν2)λ2 +
γλ2

8H2

)
(23)

which is minimised by differentiating with respect to λ. This gives

λ4 =
π2t2H2

3(1 − ν2)γ
(24)

Equations 10 and 24 are equivalent, which shows that the simple
equilibrium formulation with an assumed stress ση captures the same
effects as the energy formulation.

4. VALIDATION OF THEORY
We have tested the accuracy of our theory against (i) an ABAQUS

simulation of the wrinkling process, and (ii) an experiment on a 0.025 mm
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Figure 8. Wrinkle profiles from ABAQUS.

thick Kapton sheet mounted in a steel shear frame. The out-of-plane
deflections of this membrane were measured with a non-contact device
for monotonically increasing shear angles, both positive and negative.
The smallest value of γ for which measurements could be obtained was
0.00195, i.e. δ = 0.25 mm.

For any given shear displacement, both the simulation and the ex-
periment produce a characteristic pattern with two large side-wrinkles
—corresponding to wrinkle b in Figure 3— and a series of wrinkles of
approximately uniform amplitude in between. Figure 8 shows the cross-
section of the membrane at mid-height, for the configurations immedi-
ately following jumps 1 and 6, defined in Figures 5 and 6. Note that
the distance between successive peaks in Figure 8 has to be divided by√
2 to obtain the wrinkle wavelength. The side-wrinkles, which are only

beginning to show after jump 1, are clearly visible after jump 6.
After carrying out the simulation and experiment the average wrinkle

wavelengths and amplitudes were determined after excluding the region
of the edge wrinkles. Figures 9 and 10 show plots of these two pa-
rameters, together with the predictions from our theory; note that the
experimental values plotted were obtained by averaging the values mea-
sured for positive and negative shear angles. Finally, Figure 11 compares
the average, mid-plane, minor principal stress at mid-height of the mem-
brane, predicted by ABAQUS, with predictions obtained by substituting
Equation 10 into Equation 3.

It can be seen that the wavelengths obtained from ABAQUS and the
experiment differ by less than 2 mm (note that the numbers on the
ordinate of Figure 9 have to be doubled), i.e. about 12% of the values.
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The theoretically predicted amplitudes follow both the experiment
and the ABAQUS predictions very closely up to γ ≈ 1%; the Kapton
remains elastic within this range. For larger values of γ some plastic
deformation occurs; it is remarkable, and perhaps fortuitous, that in
Figure 10 the theoretical predictions fall right in the middle of the range
of the ABAQUS predictions and experimental measurements.

5. DISCUSSION AND CONCLUSION
It has been shown that the wrinkle half-wavelength, λ, of a mem-

brane in simple shear is accurately predicted by Equation 10 and the
amplitude, A, by Equation 16. Thus, λ is inversely proportional and A
is directly proportional to the fourth root of the shear angle; and both
of them are directly proportional to the square roots of the width and
thickness of the membrane. They are both independent of the Young’s
Modulus. Therefore, in the sheared-panel problem the wrinkle ampli-
tude varies quite slowly with the angle of shear.

The equilibrium formulation of our theory can be readily extended to
membranes with other boundary conditions; it will be interesting to see
if these conclusions remain valid. However, it should be noted that the
assumed mode-shape allows the required geometric strain only in the
middle of the membrane. A more accurate description of the wrinkled
surface may be required, in future.

To conclude, we note that the rather large spread in our numerical
and experimental results is due, in part at least, to the fact that the
number of wrinkles corresponding to a particular shear angle depends
on the exact number of bifurcations that have taken place, e.g. in Fig-
ure 6, which is sensitive to small imperfections. This may explain the
discrepancies between the two nominally identical experiments. The ir-
regularities in the variation of the number of wrinkles with the shear
angle originate from the difference between the response predicted upon
increasing or decreasing the angle of shear, coupled with the fact that —
instead of using a path-following algorithm— we have used displacement
incrementation.
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