AAReST: Autonomous Assembly of a Reconfigurable Space Telescope Ae 105 Final Presentations 2018

Mission Overview

Fabien Royer

Building Large Space Telescopes

- Mirror dia. of current and planned space telescopes limited by constraints of a single launch
 - Hubble (1990): Ø 2.4 m
 - JWST (2018): Ø 6.5 m
 - HDST (2030+): Ø 11.7 m
- New paradigms needed for Ø 30 m+ segmented primary:
 - Autonomous assembly in orbit
 - Active ultralight mirror segments
- Active mirrors relax tolerances for assembly and manufacturing, correct thermal distortions
- Modular, robust, low-cost architecture

JWST

3

Building Large Space Telescopes

- Mirror dia. of current and planned space telescopes limited by constraints of a single launch
 - Hubble (1990): Ø 2.4 m
 - JWST (2018): Ø 6.5 m
 - HDST (2030+): Ø 11.7 m
- New paradigms needed for Ø 30 m+ segmented primary:
 - Autonomous assembly in orbit
 - Active ultralight mirror segments
- Active mirrors relax tolerances for assembly and manufacturing, correct thermal distortions
- Modular, robust, low-cost architecture

AAReST Mission Objectives

- Demonstrate key technologies:
 - Autonomous assembly and reconfiguration of modular spacecraft carrying mirror segments
 - Active, lightweight deformable mirrors operating as segments in a primary
- Operate for as long as necessary to accomplish the objectives (~90 days)
- Gather engineering data to enable development of the next system

CoreSat

Power, Comm., Telescope ADCS *Caltech*

9

11

12

Mission Requirements

- Minimum mission
 - 1. Produce one focused image from a deformable mirror
 - 80% encircled energy radius from point source < 25 μm
 - 2. Perform at least one in-flight autonomous spacecraft reconfiguration maneuver to demonstrate space assembly capability
- Extended mission
 - 1. Produce one focused image from a deformable mirror after reconfiguration
 - 2. Coalign images to improve SNR and demonstrate precursor to co-phasing
 - 3. Produce at least two images of other sources (e.g. Earth and Moon) for outreach purposes

1.	2.	3.	4.	5.	6.
Launch	Telescope Deployment	Telescope Calibration & Imaging	Reconfiguration	Telescope Recalibration & Imaging	Extended Mission

Launch in a compact, stowed volume

• 46 cm × 34 cm × 30 cm

14

1.	2.	3.	4.	5.	6.
Launch	Telescope Deployment	Telescope Calibration & Imaging	Reconfiguration	Telescope Recalibration & Imaging	Extended Mission

- Satellite health check, detumble, antenna deployment
- Deploy boom in two stages
- Uncage deformable mirrors

06/05/2018

1.	2.	3.	4.	5.	6.
Launch	Telescope Deployment	Telescope Calibration & Imaging	Reconfiguration	Telescope Recalibration & Imaging	Extended Mission

Caltech

- Telescope points to a bright reference star
- Calibrate:
 - Segment tip/tilt/piston
 - Deformable mirror surface figure
- Camera provides feedback for segment calibration

1.	2.	3.	4.	5.	6.
Launch	Telescope Deployment	Telescope Calibration & Imaging	Reconfiguration	Telescope Recalibration & Imaging	Extended Mission

- MirrorSats release from CoreSat using electromagnets
- Fly out ~10 30 cm
- Re-dock into "wide" configuration

17

1.	2.	3.	4.	5.	6.
Launch	Telescope Deployment	Telescope Calibration & Imaging	Reconfiguration	Telescope Recalibration & Imaging	Extended Mission

1.	2.	3.	4.	5.	6.
Launch	Telescope Deployment	Telescope Calibration & Imaging	Reconfiguration	Telescope Recalibration & Imaging	Extended Mission

- Co-align star images from different segments to improve SNR
 - Pre-cursor to co-phasing
- Produce images of extended sources (e.g. Moon, Earth) for outreach
- Perform orbital maneuvers using thrusters

AAReST History

2008 November: Large Space Apertures KISS workshop

2010 June: Ae105

Initial mission design

2012 September: Mission Concept Review

2013 September: Preliminary Design Review

2014 September: Detailed Design Review

2015 September: Complete Design Review

2016 June: Ae105

Telescope systems

2017 January: Telescope Complete Design Review

2017 June: Ae105

Preliminary design of CoreSat

2017 September: Complete Design Review of three satellites

2018 June: Here we are!

CoreSat hardware assembly and testing

CoreSat Overview

LEFT STACK

- Electromagnet Board UL
- Payload Interface Computer
- Payload Switch Board
- MirrorSat Frangibolt
- Electromagnet Board LL
- Interface Board
- Z Torque Rods
- Radio
- Antenna Board

CENTRAL STACK

- Star Camera
- Camera Frangibolt
- Interface Boards
- ADCS
- EPS board
- OBC
- Reaction Wheels

RIGHT STACK

- Electromagnet Board UR
- Payload Interface Computer
- Payload Switch Board
- MirrorSat Frangibolt
- Electromagnet Board LR
- Interface Board
- Z Torque Rods
- Battery

21

Antenna Board

Acknowledgement

The AAReST project is supported by:

- The Keck Institute for Space Studies
- Division of Engineering and Applied Science
- Provost's Innovation in Education Fund
- JPL (providing mentoring)

Outline

- 2:00 pm: Introduction & Mission Overview
- 2:15 pm: Structures
- 2:40 pm: Mechanisms
- 3:55 pm: ADCS
- 3:20 pm: Thermal
- 4:35 pm: Onboard Software
- 4:00 pm: Telecom
- 4:25 pm: Avionics
- 5:00 pm: Reception

Structures Team

Yunsang Choi Kanthasamy Ubamanyu Haojie Zhuang

Mentor: Antonio Pedivellano

Overview and Objectives

Goal: deliver a launch-qualified flight structure

- Vibration test to ensure the structural soundness of the CoreSat, MirrorSats
 - Design representative mass model
 - Manufacture and assemble mass model
- Study the structural dynamics of the spacecraft through FEM

Task breakdown

- Yunsang and Haojie
 - Manufacture AAReST Model for vibration testing
 - Integrate subsystems and perform fit checks
 - Document procedures and improvements
- Uba
 - Design of interface plate for vibration test
 - Finite element simulations

Task Changes

- Fit test and assembly time frame extended
 - Numerous errors in outsourced components
 - Components modified and fixed in house
- Vibration test postponed due to delay in arrival of Mirrorsats from IIST and Surrey

Current Status

Manufacturing: 100 % Assembly: 100 % Integration: 50 %

Boom

Assembly: 100 % Integration: 100 %

<u>CoreSat</u> Manufacturing: 100 % Assembly: 85 %

29

IIST MirrorSat Received

<u>Camera</u> Manufacturi

Manufacturing: 100 % Assembly: 100 % Integration: 100 %

Surrey MirrorSat Not yet shipped

CoreSat Mass Model Design

Representative Mass Model

30

Flight CAD

06/05/2018

CoreSat Internal Stacks

Example of internal representative mass stacks

Threaded rods and frame

31

06/05/2018

Manufacturing Errors

Misaligned Holes

06/05/2018

MirrorBox Mass Model

Flight CAD

Mass Model Design

Assembly

Integration

AE 105 Final Presentation

Camera Mass Model

- Manufacturing delayed by waterjet breakdown
- Switched to bandsaw manufacturing
- Waiting on Frangibolt interface and mount

Flight CAD

Assembly

34

Mass Comparison

	CAD Mass (g)	Measured Mass (g)
Center Stack	1345	1520
Right Stack	1377	1401
Left Stack	866	932
Total	3588	3853

Mass difference: 265 g (6.7% deviation)

Deviations:

- 80 gram resolution for masses (up to 40 grams ~1% deviation)
- The CAD model lacks fasteners and cable harnessing

MirrorSats

- Representative model required for vibration testing
 - MirrorSats attached to CoreSat via Frangibolt (provided by Caltech)
 - Electromagnet provided by Surrey
- IIST MirrorSat received
- Surrey MirrorSat not yet shipped

IIST MirrorSat 36

06/05/2018

Vibration Table Interface

- Mount AAReST to the vibration table
- Requirements
 - Lowest natural frequency > 2000 Hz
 - Match actual boundary conditions
 - 3-axis vibration test

Figure 1: Example of Vibration table [1]

38

Caltech

Figure 2: Flight LV interface

Figure 3:a) Proposed interface; b) Interface with AAReST

[1] http://www.sentekdynamics.com/vibration-testing-specifications-and-standards/ 06/05/2018 AE 105 Final Presentation

Design of Interface Plate

- Initial estimation for thickness ^[2]
 - Rectangular plate simply supported along all edges $\omega^{2} = \frac{\pi^{4}D}{a^{4}\rho} \left\{ \left(\frac{a}{b}\right)^{4} + 2\left(\frac{a}{b}\right)^{2} \right\}; \text{ where, } D = \frac{Eh^{3}}{12(1-\nu^{2})}$

38.1mm (1 ¹/₂") thick rectangular plate of 350mm x 300mm

- 3-axis vibration test
 - vibration table often allows only lateral vibration
 - 45° angled mount

[2] W. Leissa, 1969, Vibrations of plates, NASA) 06/05/2018

Numerical Simulation

Motivation

- Efficient tool for evaluating design changes and sensitivity studies
- Easy to obtain stress and strain distributions
- Required by launch provider
 - Modal frequency analysis
 - Random environment analysis
 - Shock analysis

Objective

- Study the structural response of the CoreSat
 - Develop a "representative" FE model
 - Fidelity of FE model correlated against vibration test results

Finite Element Model

41

Finite Element Model

- Simplified geometry of the model
 - Single part for entire external structure
 - Sub systems included as point masses
- Connection type
 - Tie constraint no relative motion between them
 - Coupling constraint allowing control over the transmission of forces
- Element type
 - C3D10 10 node quadratic tetrahedron
- Boundary condition
 - Clamped at Launch vehicle interface

42

Modal Analysis

PSLV Stiffness requirements

- For base-fixed conditions
- Lateral > 45 Hz

Longitudinal > 90 Hz

Mode 1 Lateral Mode (X) 65.1 Hz 06/05/2018

Mode 4 Lateral Mode (Y) 109.4 Hz AE 105 Final Presentation

Mode 5 Longitudinal Mode (Z) 111.4 Hz Caltech 43

Modal Analysis

PSLV Stiffness requirements

- For base-fixed conditions
- Lateral > 15 Hz

Longitudinal > 90 Hz

Requirements satisfied!

with a margin of 22% for longitudinal and 44% for lateral

Mode 1 Lateral Mode (X) 65.1 Hz

Mode 5 Longitudinal Mode (Z) 111.4 Hz Caltech

Mode 4 Lateral Mode (Y) 109.4 Hz AE 105 Final Presentation

Random Response Analysis

Random environment load analysis

06/05/2018

- Load analysis using extracted eigenmodes for base-driven random vibration
- Extracted range of modes sufficiently spans the mass of spacecraft
 - 90% of total mass captured along each axis

Random Response Analysis

- Random environment load analysis
 - Load analysis using extracted eigenmodes for base-driven random vibration
- Extracted range of modes sufficiently spans the mass of spacecraft
 - 90% of total mass captured along each axis
- Parameters used for analysis:
 - Damping 5% ^[2]
 - Apply base motion as PSD along all 3-axes

47

Results

AE 105 Final Presentation

Deliverables

- Assembly procedure
 - Include information regarding how to assemble and put together
 AAReST mass model
 - Facilitate future assembly work that would have to be performed
- List of recommendations
 - Suggest possible improvements for flight structure, from design perspectives to outsourcing tips
- Numerical simulations
 - Simplified, representative finite element model
 - Modal analysis results
 - Random environment analysis results

06/05/2018

AE 105 Final Presentation

Conclusion

- Internal and external structures of AAReST are assembled
- Awaiting parts from IIST and Surrey
- Satisfied PSLV frequency requirements
- Nominal stress levels are below yield stress

Future work

- Optimize the design of interface for vibration table
- Perform vibration and shock test
- Refine and calibrate the model depending on the results
- Perform shock analysis via FEM

Mechanisms Team

Mouadh Bouayad David Watson

Mentor: Christophe Leclerc

06/05/2018

Validation and Characterization of Separation Interface

- Role of separation interface:
 - Holds MirrorSat and camera to CoreSat during launch
 - Release MirrorSat for reconfiguration, release camera for boom extension

 Responsible for power transfer from Fran CoreSat to MirrorSat

Frangibolt: Separating device

- Upon actuation of separating device (Frangibolt), energy is released into MirrorSat
 - Will Frangibolt actuation cause the ejection of a MirrorSat?
 - How can we determine when the Frangibolt has actuated?

Location on AAReST

06/05/2018

Power Transfer

Pin

Interface System

54

Frangibolt System

Deliverables

- Estimate recoil energy, velocity, impulse of separation
 - Derive MirrorSat motion upon Frangibolt actuation
- Record actuation time for Frangibolt
 - Compare at various input voltages
 - Determine power consumption of Frangibolt
- Measure temperature profile
 - Determine when to cut power to Frangibolt
- Determine the power transfer capability of interface
 - Transfer 4.5V @ 2A

Recoil Energy – Testing Design

- A pendulum was chosen to measure the energy released during Frangibolt actuation
 - Energy chosen for ease of direct measurement
 - Minimal friction during motion
 - Pendulum theory used to easily verify results

- Minimum voltage : 26.8 V
- Nominal voltage: 29.6 V
- Maximum voltage : 33.4 V
- Fourth test using a mass dummy to simulate motion of a full MirrorSat after actuation
 Calter

57

06/05/2018

Recoil Energy – Constructed Test Setup

Acrylic and foam Frangibolt Containment box

58

Recoil Energy – Dummy Mass Setup

m = 3.8 kg

Interface Mount, Frangibolt

59

06/05/2018

Reloading Frangibolt for Actuation

- Prior to each use, Frangibolt required to be reset
- Requires 3,400 *lbf* of compressive force
- Used compression fixture to apply parallel force
- Measured length after compression required within ± 0.005" specified by Manufacturer

Caltech

61

Video Results of All Tests

Recoil Energy –Test Results

- Interface tests:
 - Velocity measured thanks to both protractor and slow motion camera
 - For each test, both velocity measurements concur within 10%
 - Estimate recoil energy as $E_k \approx 0.08 J$
 - Initial velocity estimated for full MirrorSat: $v_0^{exp} \approx 0.2 \ m/s$
- Dummy mass test:
 - Only slow motion measurement (protractor not reliable)
 - Initial velocity measured lower than expected:

 $v_0^{mes} \approx 0.06 \ m/s < 0.2 \ m/s$

Recoil Energy – Discrepancies

- Large discrepancy between the mass dummy test and the interface tests
 - Energy measured about 10 times lower than expected
- Possible causes:
 - Rotation of the dummy mass
 - Solid friction between the interfaces
 - Testing setup wasn't perfectly rigid
- The testing setup can be improved:
 - Improve movement of pendulum
 - Frame can be stiffer

Recoil Energy – MirrorSat Simulations

- Simulation of MirrorSat's movement produced
- Assuming a magnetic force of 1N at 2mm
- If $v_0 > 0.03 m/s$, the MirrorSat is ejected
- $v_0^{exp} \approx 0.2 \ m/s$ expected from tests
- v₀^{mes} ≈ 0.06 m/s was measured in tests

⇒ MirrorSat is ejected under current configuration

Caltech

65

Actuation Times for All Tests

- Actuation time is within [20, 50] seconds
- Decreasing and proportional function of input voltage

06/05/2018

Temperature Profiles of All Tests

- Profile varies by input voltage
- Inconsistent temperature at actuation
- No change in profile after actuation

Power Transfer Capability

- MirrorSat interface will transfer power as designed
- CoreSat interface shorts over conduction pins
 - Pins are press-fit
 - Causes removal of anodization when inserted
 - Creates a short across the interface
 - Solution: increase hole size and isolate pins

Pin-Pad resistance: $R = (0.3 \pm 0.1)\Omega$

Conclusion

- Frangibolt releases $\approx 0.08 J$ of energy upon actuation
 - This results in a MirrorSat exit velocity of $v_0 \approx 0.2 \ m/s$
- As designed, the 1 N at 2 mm permanent magnetic force is not strong enough to hold the MirrorSat upon actuation
 - Electromagnets may be used instead (stronger)
- Power transfer is possible once pins are isolated from CoreSat interface
- Temperature profile data is inconclusive for actuation point

Future Work

- A test in a vacuum to measure the RTD data will provide an accurate temperature profile for actuation in space
- An improved testing setup for the Mass Dummy test will provide more accurate results
- A stronger electromagnet needs to be tested for holding MirrorSat in place
- A new method for determining when Frangibolt actuation has occurred is necessary, since RTD data is inconclusive

Questions?

AAReST Attitude Determination and Control System (ADCS)

Avinash Chandra Mike O'Connell Hiroyasu Tsukamoto

Mentor: Michael Marshall

Overview

- Responsibilities
 - Develop high-level ADCS operational architecture
 - CubeSpace ADCS \rightarrow ADCS specific to this mission
 - Plan ADCS acceptance tests
 - Execute ADCS on-board computer (OBC) health check
- ADCS components (excluding coarse sun sensors)

73

ADCS Operational Architecture

Goal: Architect operational modes and commands to ADCS

- We developed:
 - 1. Mapping from ADCS operational modes to CubeSpace ADCS
 - 2. Software architecture for ADCS operational mode transitions
 - 3. Available sensors in each AAReST configuration
 - 4. Software architecture for AAReST configuration change

Summary of ADCS Operational Modes and Configurations

Summary of CubeSpace ADCS

1. Mapping from Operational Modes to CubeSpace ADCS

Mapping from Operational Modes to CubeSpace ADCS

Operational mode	Control mode	Estimation mode
Idle	None	None
Detumble	Detumbling control & Y-Thomson spin	MEMS rate & Magnetometer rate
Slew	XYZ-Wheel control	MEMS Gyro EKF
Rendezvous and Docking (RDV)	XYZ-Wheel control	MEMS Gyro EKF
Sun Pointing (Coarse Pointing)	Sun tracking control	Full State EKF
Science (Fine Pointing)	Target tracking control	MEMS Gyro EKF
Ground Track	Target tracking control	MEMS Gyro EKF
06/05/2018	AE 105 Final Presentation	77 Caltec

2. Software Architecture for Operational Mode Transition

78

Software Architecture for Transition

Mapping from Required Actions to Commands

Actions	Command Name	ID
1. Check & clear errors	Clear Errors	12
2. Enable ADCS	ADCS Run Mode	10
3. Set control gains	Set CONTROL NAME Parameters	38, 39, 40, 54
4. Set target reference	Tracking Controller Target Reference	55
5. Set control mode	Set Attitude Control Mode	13
6. Distribute power	ADCS Power Control	11
7. Set estimation mode	Set Attitude Estimation Mode	14
8. Set estimation noise and sensor mask	Set Estimation Parameters 1 & 2	43, 44
9. Perform control	Trigger ADCS Loop	18

3. Available Sensors in Each AAReST Configuration

Sensor Obstructions

- Table shows obstructions by component configuration and impact on sensors
 - Available estimation modes depend on available sensors

Star tracker must be moved slightly to avoid obstructions Reduced sensor performance – further analysis required for CSS Sensor obstructed – not needed during corresponding mission phases Mask nadir obstructions in software

Sensor unobstructed

Component	Boom		Antenna		MirrorSat			
Configuration	Stowed	Partially Deployed	Fully Deployed	Stowed	Deployed	Wide	One wide/ one narrow	Narrow
Fine sun sensor								
Star tracker								
Nadir sensor								
-X _{CAD} CSS								
+Z _{CAD} CSS								

4. Software Architecture for Configuration Change

Architecture for Configuration Change Event

- Designed ADCS operational architecture for configuration change
- Applies to boom deployment and frangibolt breakage

ADCS Configuration Sheet

- Goal: Identify ADCS component orientation relative to S/C body frame
- Required by CubeSpace for initial firmware delivery
- Completed configuration sheet and delivered it CubeSpace
- To be updated after final S/C integration and assembly

Acceptance Test Methodology & Setups

Acceptance Test: Overview

- Needed to verify proper functioning of CubeSpace ADCS components
- Developed test plans and setups
- Test philosophy
 - Health check
 - Polarity test
 - Primarily verifying trends in data
 - Not verifying performance quantitatively

Summary of Test Setups

Component	Test Setup
All components: voltage/current/power	Shunt resistance circuit
Sun sensor	Halogen lamp- pinhole setup
Mangetorquer	Polarity: suspend magnetorquer Functional: determine magnetic moment
Reaction wheel	Polarity: suspend reaction wheel Functional: angular rate data from software
Nadir sensor	Earth and space movie on laptop screen using Celestia
Star tracker	Star-field images on laptop screen using Celestia
Gyroscope	Swivel table
Magnetometer	Earth magnetic field, mobile app for magnetic field measurement

Sun Sensor

- Setup designed to match sun's:
 - Angular diameter
 - Radiation flux density

- Radiation spectrum

• Test: compare trend in data

Magnetorquer

Polarity test

- Setup designed to reduce counter torque on magnetorquer
- Test: magnetorquer should align with earth's magnetic field

Functional test

- Setup designed to calculate magnetic moment, *m*
- Test: compare *m* with specification sheet

- \boldsymbol{B} : magnetic field
- m : magnetic moment
 - r: distance from rod center
- μ_0 : absolute permeability of free space

89

- I: current
- N: number of wire turns
- A: loop area

Reaction Wheel

Polarity test

- Setup designed to reduce counter torque on reaction wheel box
- Test: rotation of reaction wheel box should match desired direction

Functional test

- Obtain angular speed data from software
- Compute torque; compare with specification sheet

91

Nadir Sensor

- Setup designed to match earth's angular diameter
- Not addressing earth/space luminance explicitly

Star Tracker

Setup designed to match:
Angular separation of stars

- Parallel rays
- Not addressing magnitude of stars (algorithm makes no distinction)

Gyroscope

LapWorks 8" heavy duty swivel

- Setup designed to rotate gyro at an angular rate
- Test:
 - Rotate swivel at about 2°/s
 - Compare polarity and value of gyro reading

93

Magnetometer

- Test:
 - Place magnetometer in earth magnetic field on ground
 - Compare magnetometer readings with MagnetMeter app

MagnetMeter app on App Store (Apple) to compare magnetometer readings

OBC Health Check

- Confirmed basic OBC functions working upon delivery
- Health check procedure provided by CubeSpace
- All health checks successful
 - Watch dog tests displayed failure due to glitch in interface program, CubeSpace reviewed log files and confirmed test was successful

Conclusion

- Responsibilities
 - Develop high level ADCS operational architecture
 - Plan ADCS component acceptance tests
 - Perform OBC health check
- Completed
 - Mapping between operation modes, sensor obstructions, and available estimation and control modes
 - ADCS command flow for operation mode transition and configuration change
 - Procedure, setup, and parts required for ADCS component acceptance tests
 - Performed OBC health check
- Going forward
 - Perform ADCS component acceptance tests
 - Develop ADCS software around outlined architecture

96

Questions?

Thermal Team

Jonah Krop

Henry Steiner

Mentor: Daniel Türk

06/05/2018

Thermal Overview

Objectives:

- Identify components in danger of exceeding operational and survival temperatures
 - Document and determine critical components
 - Update previous thermal model and run numerical simulations
 - Identify critical components that exceed thermal requirements
- Design passive thermal control system
 - Recommend optical coatings and/or pointing restraints
- Determine impact on mechanical architecture (boom thermal expansion)

Presentation Layout

- 1. Spacecraft requirements and critical components
- 2. Model description
 - a. Physical model
 - b. Orbits and experimental cases
- 3. Results
 - a. Mirrors
 - b. CoreSat
 - c. Camera
 - d. Boom
- 4. Conclusions
- 5. Future Work

Critical Thermal Requirements

Component	Survival Min. (°C)	Operational Min. (°C)	Operational Max. (°C)	Survival Max. (°C)
Deformable Mirrors	-60	-15	+20	+50
ADCS hardware	-50*	-10	+60	+100*
Camera	-100	-20†	+20+	+100

 Critical components were identified from list of spacecraft components based on narrowest operational temperature limits and initial simulations

(*) Estimated survival temperatures(†) Theoretical operational temperatures (experimental data has suggested operational limits are larger)

Boom Requirements

Error Source	Min	Max
Boom deflection: translation (mm)		
X translation	-0.625	+0.625
Y translation	-0.625	+0.625
Z translation (Axial)	-0.127	+0.127
Boom deflection: rotation (°)		
Тір	-0.04	+0.04
Tilt	-0.04	+0.04

(Boom requirements provided by Daniel Türk)

ThermalDesktop Model

- 4 W heat load applied to outside surface of camera 30 W applied to internal nodes of Coresat (split into 10 W per stack)
- 6 W applied to outside surfaces of MirrorSats

Mirror Modelling

- Deformable mirrors are made of borosilicate glass
- Mirror is modelled as thin shell cylinder, 0.508mm thick
- Mirror is coated with polished aluminum on the front and black paint on the back
- 1 central node, 6 anterior nodes, and 6 edge nodes

Mirror with labeled nodes

Mirror Modelling

- PCB added below deformable mirror to examine the effects of power dissipation on mirror
- Mirror actuation requires 3 W for 10 minute science period

ThermalDesktop Model

- Model contains a mix of solid prisms and thin shells to model different components
 - Each element has material and optical thermal properties assigned to it
 - Each element is composed of a set of nodes at which radiation calculations are computed
- Model incorporates solar radiation, earth radiation, earth albedo

Spacecraft Hot Case

Hot Case: No eclipse period ($\boldsymbol{\Omega} = 90^{\circ}$)

As viewed from sun

06/05/2018

Spacecraft Cold Case

Cold Case: Eclipse period ($\boldsymbol{\Omega} = 180^{\circ}$)

Deformable Mirrors, Spacecraft Cold Case

- Mirrors are in direct sunlight, experience eclipse
- Displays irregular temperature jumps, but confidence in min. and max. values due to convergence when tilted towards cold case
- >90% of eclipse period within operational range

Deformable Mirrors, Spacecraft Hot Case

- Mirrors receive no direct sunlight
- ~5°C temperature variations due to Earth radiation and albedo reaching mirrors
- >95% of orbit within operational limits, PCB heat during science brings mirrors within limits

Spacecraft Pointing Considerations

Considering the mirror thermal requirements, what elevation angles of AAReST are permitted and where can science be performed in each case?

Pointing Restrictions: Hot case

Pointing Restrictions: Cold case

- When pointed towards sun (< +/- 30°), science must be performed towards end of eclipse period
- When pointed away from sun (> +/- 30°), science must be performed towards end of sunlight period

CoreSat: ADCS

- 50% margin below hot limit
- Cold case reaches exactly lower limit
- Has heat load applied according to internal power

Camera Coating: Chromic Paint Covers All Cases

- ~25% margin below hot temp, ~50% margin above cold temp
- Camera coated in chromic paint (α=0.44, ε=0.56)
- Camera is <u>running</u> in the cold case (4 W load)

Boom Thermal Distortion

- Changes in temperature cause physical expansion or contraction of materials
- Will consider two problems of thermal distortion
 - Axial expansion (or contraction) as temperature changes
 - Translation as a result of temperature differences between sides of the boom (hot case only)
 - Camera tilt as a result of temperature differences between sides of the boom (hot case only)

Boom Distortion Req. Met

- ~25% margin before reaching upper limit, ~65% margin above lower limit
- Difference of ~5 µm between sides of the boom at steady temperature in hot case, causes camera tilt of ~0.02°

Comparing to Requirements

AAReST Component	Operational Restriction	Survival Restriction	Results	Smallest Margin	
CoreSat/ADCS System	-10/+60°C	-50/+100°C	-15/+45°C	0%	
Deformable Mirrors -15/+20°C		-60/+50°C	-15/+45°C	20%*	
Boom ±0.127 mm (axial) ±0.625 mm (translation)			-0.03/+0.09 mm (axial) 0.005 mm (translational)	25%†	
Camera	±20°C	±100°C	-8/+15°C	25%†	

* margin to survival temps.

+ margin to operational temps.

Conclusion

- Deformable mirror temperatures remain within operational limits long enough to perform science and do not exceed survival temperatures
- ADCS remains within operational limits (no margin in cold case)
- Boom distortion is within requirements
- Camera can be coated to keep it in operational requirements, but might need to run while in cold scenarios

Future Work

- Refine camera model
- Improve internal modelling complexity to simulate internal temperature profile more accurately
- Experiment with azimuthal angles for pointing considerations
- Extend analysis and adapt model for wide configuration

Questions?

Onboard Software

Lucas Benoit-Maréchal Jean-Sébastien Spratt Alexander Wen

Mentor: Fabien Royer

06/05/2018

AE 105 Final Presentation

Presentation Overview

•	Team Overview	Lucas
•	Software Development Process	Lucas
•	Hardware Test Setup Development	Alexander
•	Testing Process	Jean
•	Conclusion	Jean

123

Project Responsibilities and Scope

124

Scope and responsibilities

- OBC responsible for communication between AAReST subsystems
 - Interface with existing subsystem software through I2C
- Main focus: two modules
 - Mirror
 - ADCS

• Software:

- Driver files that implement telecommand and telemetry requests
- C Language
- Communication channel I2C

• Hardware:

- EFM32 board to emulate OBC
- Arduino to emulate modules

Deliverables

- Code for Mirror + ADCS functions
 - 75% of functions written (290/390)
- Documentation on functions' writing process
 - Compilable file template
 - Documented pitfalls and solutions
- Hardware development and test setup
 - Software configuration for emulators (EFM32 and Arduino boards)
 - Hardware modifications

Module Development

127

- Functions: format and transmit messages
- Header file .h
 - Variables and functions declaration

Anatomy of a telecommand

• Interface Control Document (ICD) example:

Table 64: Set SGP4 Orbit Eccentricity Command Format

ID	47		Parameters Len	8	
Description	Set SGP4 Orbit Eccentricity				
Parameters	Offset (bits)	Length (bits)	Name Data Type D		Description
	0	64	Eccentricity	DOUBLE	Eccentricity

Caltech

Work organization

- Multi developer configuration management: GitHub platform
 - Code reviews
 - -Clear GUI
 - Homogenized nomenclature

awwen / AAReST-Onboard-Software Private		4 × S	otop ignoring 🔻	1	★ Star	0	∛ Fork	0
<>Code ① Issues 0	Pull requests Projects Image: Constraint of the second se							
Branch: master - AAReST-Onboard-Software / testADCS / Drivers / Create new file				U	pload files	Find file	e Hist	tory
ibenoitm Merge pull request #13 from awwen/Jean-2				Late	st commit +	F4de8af 1	7 days a	ago
ADCS.c Merge branch 'master' into Jean-2 21 days ago				ago				
ADCS.h Merge pull request #13 from awwen/Jean-2 17 days ago			ago					
initDevice.c [testADCS] Working i2c transmitter a month ago			ago					
E InitDevice.h [testADCS] Working i2c transmitter a month ago			ago					
Mirror.c [Mirror] Typo in check sum 17 days ago			ago					
Mirror.h [Mirror] Setup Mirror driver files + 1 Example function 17 days ago			ago					

Test Setup Development

131

Additional work is needed to make driver functions run and execute on the development board

We Developed Test Setups That Simulate Flight Config

We Developed Test Setups That Simulate Flight Config

More Software Needed: Development Board Requires Drivers and GPIO Config Files to Setup for I2C

More Software Needed: Development Board Requires Drivers and GPIO Config Files to Setup for I2C

Even with all of the software configured, some hardware modifications needed as well

Rework Procedure

Required Tools:

Soldering Iron

Rework Instructions:

Remove the 0 ohm resistor R198 of the LC-Sense Circuit.

Notes

The location of the resistor is indicated below. It is the center, black package component in a column of three components.

We Built our Test Setups Incrementally: Easy to Debug, Leverage previous work at all stages

ADCS Simulator: Working Final Setup

Mirror Simulator: Working Final Setup

USR_Mirror_I2C_Start_App();

USR_Mirror_I2C_Move_Pico2(100000);

Move PicoMotor 2

Testing Process

141

Test Flow

- 1. Independent visual code review
- 2. Telecommand Testing (Write only)

Dev Board I2C ADCS Sim

3. Telemetry Request Testing (Write and Read)

4. Integration Testing

142

2. Telecommand Testing

- Create test inputs for each data type
- Write a list of expected messages using the Interface Control Document (ICD) and test inputs
- Run commands and check obtained message

// Test values:	
uint8_t testu8 =	170;
uint16_t testu16	= 43690;
uint32_t testu32	= 2863311530;
uint8_t testbool	- 1;
uint8_t testenum	= 2;

Command ID	Expected Message
1	190
2	2 170 170 170 170 170 170
3	31

// Calling functions with test values inputs: USR_ADCS_I2C_Reset(); //1 USR_ADCS_I2C_CurrentUnixTime(testu32, testu16); //2 USR_ADCS_Cache_Enable_State(testbool); //3

Compiling Expected Message list

Table 10: Reset Command Format

Repeat for each command (ADCS Example):

Command ID	Expected Message
1	1 90
2	2 170 170 170 170 170 170
3	31
4	4
Run Commands and Read Message

Caltech

Caltech

146

Compare to Expected Messages

Developed test excel spreadsheet

Command ID	Expected Message	Message	Result
1	190	190	TRUE
2	2 170 170 170 170 170 170	2 170 170 170 170 170 170	TRUE
3	31	31	TRUE
4	4	4	TRUE
7	7 170	7 170	TRUE
11	11 170 170 128	11 170 170 128	TRUE
12	12 192	12 192	TRUE
13	13 2 128 170 170	13 2 128 170 170	TRUE
14	14 2	14 2	TRUE
15	15 170 170 170 170 170 170	15 170 170 170 170 170 170	TRUE
16	16 170 170 170 170 170 170	16 170 170 170 170 170 170	TRUE
17	17 170 170 170 170 170 170	17 170 170 170 170 170 170	TRUE
	Expected	Obtained True if me mate	essages ch

3. Telemetry Request Testing

- Set up Arduino to respond with test register
- Set up dev board test to check responses
- Run commands and check stored values

Additional Testing Code

4. Integration Testing

- ADCS: Hardware was received too late
- Mirror Module:
 - 1. MATLAB Function Testing on Module
 - 2. Telecommand Testing

Mirror Box Telecommand Testing

Mirror Box

*Provided by Thibaud Talon

Work Accomplished

Mar 4, 2018 – May 31, 2018

Contributions: Commits -

Contributions to master, excluding merge commits

293 Functions written

Work Accomplished

Functions Written

Conclusion

Accomplishments:

- Coded all planned ADCS and Mirror functions
- Developed test setup for the ADCS and Mirror modules
- Performed unit testing on representative functions, and laid out testing procedure for the rest
- Performed integration testing of a few functions on the Mirror module, and laid out the procedure for full integration testing

Future Work:

- Code other modules using documented coding procedure as template
- Finish testing of ADCS and mirror module using the developed test setup and documented testing procedure
- Use testing template to test other modules

QUESTIONS?

Telecom Subsystem

Kai Matsuka, Conor Martin, Edward Chu

Mentors: Michael Marshall, Maria Sakovsky

AAReST Telecom Overview

Previous Ae105 classes:

- Selected desired frequencies
- Selected transceiver and designed antennas
- Tested antenna deployment mechanisms

Our primary Ae105 tasks:

- Configure and test the AstroDev radio
 - ➔ Verify functionality of radio
- Experimentally characterize the antennas
 - → Validate antenna design and optimize transmitted power

Telecom Team Objectives

Antenna Responsibilities (Kai, Edward)

- 1. Perform sensitivity analysis via antenna simulation
- 2. Fabricate antenna assemblies
- 3. Fabricate EM-representative spacecraft model
- 4. Characterize antenna performance
- → End goal: Test and validate the antenna design

Radio Responsibilities (Conor)

- 1. Test radio commands
- 2. Configure the radio
- 3. Plan power tests
- → End goal: Test and verify functionality of the radio

Antenna Sensitivity Analysis

- Need to build EM-representative AAReST model for antenna experiments
- Need to determine which components to include in model
- ➔ Vary geometry in simulation and compare the antenna characteristics

EM-Representative SC Model

Background:

- Ideal monopole antenna assumes infinitely large "ground plane"
- Spacecraft chassis acts as ground plane

Objective: Build EM-representative model for antenna experiments

Approach: Simple but sufficiently representative of model

- Used sensitivity analysis results to design model
- Waterjetted 1/16" thick aluminum plates with foam core
- Used vibration test LVI

06/05/2018

Antenna Fabrication

Objectives:

- Develop the antenna fabrication procedure
- Fabricate antenna assemblies for testing

Soldering

Potting

Finished Assembly

160

Results:

- Fabricated 6 antennas, including 2 flight-like antennas
- Iterated, refined, and documented fabrication procedure

06/05/2018

AE 105 Final Presentation

Antenna Experiment Setup

Objective: Find the antenna length that minimizes s_{11} at the desired frequency

Procedure:

- 1. Calibrate the Network Analyzer (NA)
- 2. Measure s_{11} vs. frequency
- 3. Trim the antenna in $\frac{1}{4}$ " increments
- 4. Repeat 2 and 3

Experiment Parameters:

AAReST Comm Freq:146MHz (VHF), 436.5 MHz (UHF)Meas. Freq. Range:50 – 700 MHzPredicted Lengths:18.1 in (VHF), 5.7 in (UHF)Varied Length Range:12.5-24 in (VHF), 6-10 in (UHF)

Antenna Experiment Results

Results:

- Experimentally determined the optimal VHF antenna length
- Observed expected trend for minimum s₁₁ vs frequency
- Unexpected s₁₁ values for UHF case → future task is troubleshooting

Caltech

162

nal Presentation

Telecom Team Objectives

Antenna Responsibilities (Kai, Edward)

- 1. Perform sensitivity analysis via antenna simulation
- 2. Fabricate antenna assemblies
- 3. Fabricate EM-representative spacecraft model
- 4. Characterize antenna performance
- → End goal: Test and validate the antenna design

Radio Responsibilities (Conor)

- 1. Test radio commands
- 2. Configure the radio
- 3. Plan power tests
- → End goal: Test and verify functionality of the radio

Radio Test Plan

- 1. Testing and configuration
 - Create program to send test commands
- 2. Power input
 - Measure voltage and current in receiving and transmitting operating modes
- 3. Power output
 - Measure RF output power
- 4. Inrush current
- 5. Functional test with telecom system
 - Verify radio communication with mock ground station

Future Work

Radio Commands for Testing

- Known commands and expected responses
- 15 total commands
 - 5 with no payload
 - 10 different payload sizes

0x1001	No-Op	-	0	No-op command. Increments command processing counter.
0x2001	No-Op Ack	-	0	No-op Acknowledge.
0x1002	Reset	-	0	Reset radio processors and systems.
0x2002	Reset Ack	144 A	0	Reset Acknowledge.
0x1003	Transmit	Bytes	N	Send n number of bytes to radio board.
0x2003	Transmit Ack	-	0	Transmit Acknowledge.
0x2004	Received Data	Bytes	N	Received n number of bytes AX.25 packet
0x1005	Get Transceiver Configuration	8 - 1	0	Read radio configuration.
0x2005	Transceiver Configuration	Configuration Structure ²	N	Radio configuration structure.
0x1006	Set Transceiver Configuration	Configuration Structure	N	Set radio configuration.
0x2006	Set Transceiver Configuration Ack	-	0	Set radio configuration Acknowledge.
0x1007	Telemetry	-	0	Query a telemetry frame.
0x2007	Telemetry	Telemetry Structure	N	Telemetry frame. ³
0x1008	Write Flash	16 Byte MD5	16	Write Flash with MD5 Checksum
0x2008	Write Flash Ack	-	0	Write Flash Acknowledge
0x1009	RF Configure	RF Structure	N	Low Level RF Configuration
0x2009	RF Configure Ack	-	0	RF Configuration Acknowledge
0x1010	Beacon Data	Bytes	N	Set Beacon Contents
0x2010	Beacon Data Ack	-	0	Ack Set Beacon Contents
0x1011	Beacon Configure	Beacon Structure	N	Set beacon configuration
0x2011	Beacon Conf. Ack	-	0	Ack Beacon Configuration
0x1012	Read Firmware Rev	-	0	Read radio firmware revision.
0x2012	Firmware Rev	Bytes	4	Firmware number, float 4 byte
0x1013	DIO Key Write	Bytes	16	DIO Key Write
0x2013	DIO Key Write Ack	-	0	Ack DIO Key Write
0x1014	Firmware Update	16 Byte MD5	16	Firmware Update Command
0x2014	Firmware Update Ack	-	0	Firmware Update Ack
0x1015	Firmware Packet	Bytes	TBD	Firmware Packet Write
0x2015	Firmware Packet Ack	-	0	Firmware Packet Ack
0x1020	Fast Set PA	Byte	1	Power Amplifier Level Set High Speed
0x2020	Fast Set PA Ack	-	0	Power Amplifier Set Ack

Radio commands and responses

-

Bytes

Bytes

-

Configuration

Structure²

Configuration

Structure

0

0

0

0

N

0

N

0

N

N

No-op command. Increments command processing counter.

Reset radio processors and systems.

Send n number of bytes to radio board

Received n number of bytes AX.25

Set radio configuration Acknowledge

No-op Acknowledge.

Reset Acknowledge.

packet

Transmit Acknowledge.

Read radio configuration.

Set radio configuration.

Radio configuration structure.

166

Radio Commands for Testing

No-Op

No-Op Ack

Reset

Reset Ack

Transmit

Transmit Ack

Received Data

Get Transceiver

Configuration

Transceiver

Configuration

Set Transceiver

Configuration

Set Transceiver

0x1001

0x2001

0x1002

0x2002

0x1003

0x2003

0x2004

0x1005

0x2005

0x1006

0v2006

- Known commands and expected responses
- 15 total commands
 - 5 with no payload
 - 10 different payload sizes

Generic message structure

Header	Payload	Payload Check Sum A	Payload Check Sum B
(8 Bytes)	(0 to 255 Bytes)	(1 Byte)	(1 Byte)

Figure 1--Packet structure for the Command and Data Interface (CDI).

Sync Characters	Command Type	Payload Size	Header Check	Header Check
(2 Bytes)	(2 Byte)	(2 Bytes)	Sum A (1 Byte)	Sum B (1 Byte)

Figure 2--Description of the packet header used in the CDI.

06/05/2018

Radio Commands for Testing

	001001	No-Op	-	0	No-op command. Increments command processing counter.
Known commands and	0x2001	No-Op Ack	1	0	No-op Acknowledge.
	0,000	Decet			
	et Confi	guration" me	sage structi	ire	
uint 1 interface baud rat	e: //Ra	dio Interface	Baud Rate (9	600=0x0	00)
uint 1 tx power amp lev	el· //T	x Power Amp	level (min =	0x00 ma	x = 0xFF
uint 1 rx rf baud rate:	//Rad	in RX RE Bau	Rate (9600	-0x00)	,
unit_11x_11_baud_rate;	//Dedi		Data (0600	-0,000)	
unt tix n baud rate,	//Rad	O TARE Bau	Rate (9000	-UXUU)	
uint_1 rx_modulation;	//(UXU	J = GFSK);			
uint_1 tx_modulation;	//(0x00) = GFSK);			
uint_4 rx_freq; //0	Channel	Rx Frequenc	(ex: 45000	000)	
uint_4 tx_freq; //C	Channel	Tx Frequency	(ex: 450000	(00)	
unsigned char source[6]:	//AX2	25 Mode Sour	e Call Sign	(default	NOCALL)
unsigned char destination	[6]: //AX	25 Mode Des	tination Call	Sian (de	fault CQ)
uint 2 tx preamble	//AX25	Mode Tx Pre	amble Byte I	enath ((x00 = 20 flags)
uint 2 ty postamble:	//AX2F	Mode Tx Pos	tamble Byte	Length	(0x00 = 20 flags)
uint_2 tx_postanoie,	//RAZ	Configuration	Diserste Dyle	Lengui	(0x00 - 20 lidys)
unt_2 function_config;	IRadio	Conliguratio	Discrete Be	enaviors	
uint_2 function_config2;	//Radio	Configuration	Discrete Be	haviors	#2

Radio Interface Program

ntation

Wrote interface program (MATLAB)

- Enabled serial communication
- Created user prompt
- Tested 8 important commands
 - Also tested external reset pin

%% Define preset list of commands, expected outputs

%%% Define all possible commands (no checksums) commands(1,:)=[72; 101; 16; 2; 0; 0]; %'Reset' commands(2,:)=[72; 101; 16; 3; 0; 0]; %'Transmit' -need payload commands(3,:)=[72; 101; 16; 6; 0; 0]; %'Set Configuration' -need payload commands(4,:)=[72; 101; 16; 32; 0; 0];%'Fast Set PA' -need payload commands(5,:)=[72; 101; 16; 5; 0; 0]; %'Get Configuration' commands(6,:)=[72; 101; 16; 7; 0; 0]; %'Get Telemetry' commands(7,:)=[72; 101; 16; 16; 0; 0]; %'Set Beacon Data' -need payload commands(8,:)=[72; 101; 16; 17; 0; 0]; %'Set Beacon Configuration'-need payload commands(9,:)=[72; 101; 16; 1; 0; 0]; % 'No-Op' commands(10,:)=[72; 101; 16; 8; 0; 0]; %'Write Flash' -need payload commands(11,:)=[72; 101; 16; 9; 0; 0]; %'RF Configure' -need payload commands(12,:)=[72; 101; 16; 18; 0; 0]; %'Read firmware revision' commands(13,:)=[72; 101; 16; 19; 0; 0]; %'DIO Key Write' -need payload commands(14,:)=[72; 101; 16; 20; 0; 0]; %'Firmware Update' -need payload commands(15,:)=[72; 101; 16; 21; 0; 0]; %'Write Firmware Packet' -need payload

Со	ommand Window
	Radio Test Comm Program:
	(1) Reset
	(2) Transmit
	(3) Set Transceiver Configuration
	(4) Fast Set Power Amplifier
	(5) Get Transceiver Configuration
	(6) Get Telemetry
	(7) Set Beacon data
	(8) Set Beacon Configuration
	(9) No-Op
	(10) Write Flash
V	(11) RF Configure (RF Structure)
	(12) Read Firmware revision #
	(13) DIO Key Write
	(14) Firmware Update
	(15) Write Firmware Packet
fx	Which command to send (1-15)?

Calteo

169

Power Requirements

Capabilities:

Radio can draw up to 16 W and transmit up to 7 W

Requirements:

- Power budget: <u>2 W input</u> for UHF transceiver allocated
- Link budget: 0.8 W RF output power
 - Requires ~2.5 W RF input power

Representative plots for Astropev radios

170

Power Requirements

Capabilities:

• Radio can draw up to 16 W and transmit up to 7 W

Requirements:

- Power budget: <u>2 W input</u> for UHF transceiver allocated
- Link budget: 0.8 W RF output power
 - Requires ~2.5 W RF input power

Representative plots for Astropev radios

Radio Power Test Setup

Simultaneous input and output power test

- Measure output power with spectrum analyzer
- Measure input power with shunt resistors: R₁ and R₂

Conclusions

Antenna:

- Fabricated antennas and improved fabrication procedure
- Delivered EM-representative spacecraft model
- Performed preliminary antenna tests
 - Partially confirmed the simulation results

Radio:

- Created interface program for serial radio communication
 - Verified functionality of relevant commands
- Evaluated power requirements
- Developed power test plan
 - Purchased components (attenuators, shunt resistors)

Future Work

Antenna:

- Identify why UHF antenna has unexpected s₁₁
- Measure s₁₁ parameter with different spacecraft configurations (e.g. wide configuration)

Radio:

- Conduct radio power tests
- Complete telecom system functional test
 - Simulate ground station
 - Send and receive signals to radio via RF

Questions?

Avionics

Kira Headrick Daniel Jamison Lewis Jones Zoey Flynn

Thibaud Talon Ashish Goel

06/05/2018

AE 105 Final Presentation

Team Structure

- Kira Solar panels
 - Generate power from solar radiation
- Lewis, Dan, Zoey Interface boards
 - Route power and signals within the CoreSat

Solar Panel (SP) Overview

- Solar Panel Responsibilities
- Cell Placement
- PCB Wiring
- Conclusion

177

+X Face

-X

Mirror Boxes

SP Responsibilities

Solar Cell Placement ٠

PCB Wiring ٠

SP Work: Overview

- Place solar cells
 - Majority of work
 - Changes made on rolling basis
- Place additional components
 - Temp. sensor
 - Sun sensor
 - Connectors
 - Access holes
 - Mounting screws
- Holes for mounting PCB to coresat
 - Number, Clearance
- Avoid reserved areas
- Match number of cells from last year
 - Revisit power consumption studies

179

+X Face

SP Work: +X

- Solar cells: 23 Challenges
- Placement of additional components prevented horizontal symmetry
- Reserved Area for LEDS

Overview – Solar Panel – PCB Wiring - Conclusion & Future Work

SP Work: +X

Last Year (23 cells)

Current (23 cells)

181

SP Work: -X

- Solar cells: 24
 - Primary power generating face
 - 1 more cell than last year
- Challenges
- Placement of additional components
 - Cannot overlap with solar cells
 - Spacers for antenna
 - Burn wire screws
- Coarse sun sensors moved
 - Greater field of view for ADCS

182

Overview – **Solar Panel** – PCB Wiring - Conclusion & Future Work

SP Work: -X

Last Year (23 cells)

Current (24 cells)

183

06/05/2018

SP Work: +/-Y

- Solar cells: 6 • Challenges
- **Reserved area for LEDs**
- Mirror Box connector placed ٠
 - Prevent line twisting

Overview – **Solar Panel** – PCB Wiring - Conclusion & Future Work

SP Work: +/-Y

Last Year (6 cells)

Current (6 cells)

Caltech

06/05/2018

4 pin Harwin connector

SP Work: Mirror Box

- Solar cells: 2
- 4 styles of mirror box PCB:
- Due to changes in
 - Screw size
 - Number of lines on connector
 - Placement of coarse sun sensor

SP Work: Mirror Box

• 4 styles of Mirror Box PCB

	MB on Y Faces		MB on X- Face
	MB on X+ Face Left Side		MB on X+ Face Right Side
• • • • • • • • • • • • • • • • • • •	AE 105 Final Pres	This way up (6) surface mount	187 Caltech

188

Cell Wiring Diagram

- Per cell: 2.7V, 0.5A
- Per input channel: 16V, 2A
- Combine +/-X and +/- Y channels for geometric reasons

06/05/2018

Eagle: Solar Cell Component

- Eagle: Software to make PCBs
- No physical datasheet for Solar Cell
 - Cell measured to create component

189

SP Conclusion & Future Work

- Solar Cell PCBs
 - Sufficient number of cells per face
 - Primary power face (-X)
 has one more cell than last year
- Wiring (Eagle)
 - PCB wiring architected
 - Component libraries created
- Future Work
 - Wire PCBs in Eagle

190

6 Pin Harwin Connector in Eagle 06/05/2018

Interface Boards

- Project Overview and Progress
- Y+ Interface Board
- Development Process
- Central Interface Board
- Flight Preparation Panel
- Y- Interface Board
- Conclusion

Interface Boards Overview

Objectives:

Design, manufacture, and test four separate interface boards: Y-, Y+, and two Central

Interface Board Responsibilities:

- **Routes connections**
 - Solar panels power
 - Sensor signals
 - Power, ground
 - I2C, UART, CAN
 - Payload
 - Radio
- **Provide Switching**
 - Frangibolts
 - **Burn wires**
 - Inter-satellite power link
 - Power lines
- Provide voltage conversion
- Analog-digital conversion
 - **Temperature sensors**

Interface Boards Progress

Completed:

- Routing diagrams
- Connector/component selection
- Schematics
- Layouts
- Hardware assembly for some boards

Current Status:

- Y+ Interface Board Assembled
- Central Interface Boards Being Assembled
- Y- Interface Board In Final Stages of Layout

Y+ Interface Board

Y+ Interface Board Responsibilities: Routing:

- Route all power and signal between central and Y+ electronics stacks of CoreSat
- Interface with Y+, X+, and X- solar panels
- Route all solar panel power to EPS
- Route all Coarse Sun Sensor (CSS) signals to ADCS

Signal Conversion/Switching:

- Convert analog signals from solar panel temperature sensors to digital
- Perform switching for Inter-Satellite Power Link (ISPL), which allows CoreSat to transfer power to MirrorSat

194

Provide mounting for antenna burnwire

Y+ Interface Board Progress

Completed:

- Schematic
- Design/Layout
- Fabrication
- Assembly

Ready for:

Verification Testing

Assembled Y+ Interface Board

Y+ IB, Top Face

Assembled Y+ Interface Board

AE 105 Final Presentation

Caltech

197

Assembled Y+ Interface Board

Y+ IB, Bottom Face

Development Process

Routing Diagrams

Caltech

199

06/05/2018

Routing Diagram

Routing Diagram of Y+ IB

AE 105 Final Presentation

- **Assign Pins**
 - Connectors and Components

Caltech

200

Week 1 - 7

Schematic/Layout

Objectives:

- Place components and connectors
- Route connections Timeline:
 - Week 8 12

5th Iterations of Y+ Interface Board Layouttation

PCB Fabrication/Assembly

Objectives:

- Send design for fabrication
- Place orders for components
- Assemble (solder) in clean room

Timeline:

Week 12-14

Central Interface Boards

Central IB Responsibilities:

- Provide interface between the central stack and science instruments, Y+ and Yinterface boards
- Provide power, switching, and data circuitry for the burn wires and frangibolts
- Provide mounting points for fine sun sensor and magnetometer

203

Central Interface Boards

Completed:

- Schematic
- Design/Layout
- Fabrication

In Progress:

Assembly

Future steps:

Verification Testing

204

Bottom Central Interface Board

 Purpose: power management, burn wire circuitry, camera connector, mounting points for fine sun sensor and magnetometer

06/05/2018

AE 105 Final Presentation

Caltech

205

Bottom Central Interface Board

 Purpose: power management, burn wire circuitry, camera connector, mounting points for fine sun sensor and magnetometer

Top Central Interface Board

 Purpose: Y+ and Y- interface board connectors, frangibolt circuitry, temperature sensor

AE 105 Final Presentation

Caltech

207

Top Central Interface Board

 Purpose: Y+ and Y- interface board connectors, frangibolt circuitry, temperature sensor

Central IB Layout

Bottom Board:

Top Board:

Central IB Fabricated PCBs

Bottom Board:

Top Board:

Flight Preparation Panel X-Face

Purpose:

 Allows system to be tested thoroughly after assembly and before flight

Design:

- Interfaces with all critical power and signal lines and also remove before flight, kill switch, and charging lines
- Consists of 100 lines that route to the interface boards
 - 16 lines to Y+ IB
 - 34 line to Y- IB
 - 50 lines to Central IB

211

Y-Interface Board

- Y- IB Responsibilities:
- Route connections between the Y- stack
- Interface with the Central and Y+ interface boards
- Provide power and data circuitry for the radio
- Connect FPP to EPS

Y-Interface Board Progress

Completed:

- Schematic
- Multiple iterations of design/layout

In Progress:

• Final layout

Future Steps:

Final checks

Conclusion & Future Work

- Y+ Board complete
- Central Board assembly in progress
- Y- Board awaiting final checks
- Future Work
 - Finalize Y- layout
 - Complete Central Board assembly
 - Order remaining parts

Thank You!

AE 105 Final Presentation

Caltech

217