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The linear-elastic response of single-ply triaxial weave fabric composites is modelled in
terms of a homogenized Kirchhoff plate. The ABD matrix for this plate is computed from
an assembly of transversely isotropic three-dimensional beams whose unit cell is analysed
using standard finite-element analysis, assuming periodic boundary conditions. A subset
of the analytical results is validated by means of careful experiments. It is shown that this
simple unit cell beam model captures accurately the experimentally observed behaviour.

I. Introduction

Triaxial weave fabric (TWF) composites are of great interest for future lightweight structures, both rigid
and deployable. The fabric is made up of tows woven in three directions, at 0 degrees and ± 60 degrees;
it is impregnated with resin and cured in an autoclave, like a standard composite. A particular attraction
of this material is that it is mechanically quasi-isotropic, on a macroscopic scale, and hence can be used
to construct single-ply structural elements of very low areal mass. Figure 1 shows a photograph of two
spacecraft reflectors made from TWF. Note that one can “see through” these structure, due to the high
degree of porosity of the material.

Figure 1. Spring back reflectors (one folded and one deployed) on MSAT-2 spacecraft, from reference 1.

The behaviour of this material is more subtle than standard composite laminates, as in single-ply wo-
ven fabrics some of the three-dimensional degrees of freedom remain unconstrained. This results in some
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important differences between the behaviour of single-ply TWF composites and standard laminates, which
include:

• three-dimensional behaviour, leading to coupling between in-plane and out-of-plane effects;

• thermally-induced twist;

• geometrically non-linear variation of in-plane stiffnesses, as the TWF becomes stiffer at larger strains,
due to the straightening of the tows;

• variation of the Poisson’s ratio.

These effects have been recently investigated2–4 but there are still a number of open issues, both in terms of
modelling techniques and the experimental verification of the numerical models.

In this paper we focus on the mechanical response of single-ply TWF to small strains, thus neglecting
any geometrically non-linear or thermo-elastic effects. We introduce a homogenized Kirchhoff plate model
where the generalised strains are the three mid-plane strains and the three mid-plane curvatures, and the
corresponding stress resultants are the mid-plane forces and out-of-plane bending and twisting moments per
unit length. In analogy with standard laminated composites, the 6 × 6 constitutive matrix is denoted as
ABD. This matrix is computed by modelling the TWF composite as an assembly of transversely isotropic
three-dimensional beams whose unit cell is analysed using standard finite-element analysis, by assuming
periodic boundary conditions. A subset of the analytical results is validated by means of carefully designed
experiments.

Our aims are: (i) to establish the limitations of a simple unit-cell approach that does not include additional
variables, as it has clear advantages in terms of practical applications; (ii) to test the accuracy of the ABD
matrix obtained from a beam model, as opposed to the solid model considered by Aoki and Yoshida.2

We show that the simple unit cell beam model is able to capture accurately the experimentally observed
behaviour of single-ply TWF.

The paper is arranged as follows. In section II we describe the carbon fibre TWF composite that we have
studied; estimates for the mechanical properties of a single tow are obtained. In section III we introduce
our modelling technique and provide details for carrying out the calculations with the finite-element package
ABAQUS. In sections IV to VII we present four sets of tests in which we have measured the initial stiffnesses
in tension/compression, shear and bending; the failure load in each mode was also measured. In section VIII
we compare experimental and theoretical results. Section IX concludes the paper.

II. Material Description

A representative unit cell of TWF is shown in figure 2. The particular type of TWF that is studied
in this paper is SK-802, produced by Sakase-Adtech Ltd., Japan. This fabric consists of 1000 filaments of
T300 carbon fibre, produced by Toray Industries Inc., Japan, woven in the “basic weave” pattern. For the
matrix, we use the resin Hexcel 8552, from Hexcel Composites, UK. In the basic weave pattern the hexagonal
holes cover about half of the area. SK-802 has a dry mass of 75 g/m2 and a thickness of about 0.15 mm.
The properties of the two constituents, provided by the suppliers,5–7 are listed in table 1. We define the
x-direction of the weave to be aligned with the direction of the 0 degree tows.

Table 1. Fibre and matrix material properties

Properties T300 fibre Hexcel 8552 matrix
Density, ρ [kg/m3] 1,760 1,301
Longitudinal stiffness, E1 [N/mm2] 233,000 4,760
Transverse stiffness, E2 [N/mm2] 23,100 4,760
Shear stiffness, G12 [N/mm2] 8,963 1,704
Poisson’s ratio, ν12 0.2 0.37
Maximum strain, εmax [%] 1.5 1.7
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Figure 2. Dimensions, in mm, of SK-802 unit cell

The material is processed as follows. The fabric is laid on release paper and one layer of 30 g/m2 semi-
solid resin film, for a single side infusion, is placed on the fabric. It is the vacuum-bagged in a standard way,
and the lay-up is first heated to a temperature of 110◦C and a pressure of 6 bar for 1 hour in an autoclave,
allowing the resin to flow and spread evenly through the fibres. They are then cured at a temperature of
185◦C with the same pressure, for 2 hours.

A. Tow Properties

Figure 3 is a micrograph showing the tow cross-sections. The exact shape and orientation vary slightly,
depending on where the section is taken, but in general the cross-sections consist of a central part, roughly
of constant height, tapering to a point on either side. The average tow width, measured from a series of
micrographs, is 0.85 mm. The average tow cross-sectional area is 0.0626 mm2.

1 mm

Figure 3. Micrograph of tow cross sections

Each tow will be modelled as a beam element, whose engineering constants are determined as follows.3,4, 8

The subscripts f and m denote fibre and matrix, respectively.
The longitudinal extensional modulus and the Poisson’s ratio are obtained from the rule of mixtures

E1 = E1fVf + Em(1− Vf ) (1)

ν12 = ν13 = ν12fVf + νm(1− Vf ) (2)

The transverse extensional modulus is found from the Halpin-Tsai semi-empirical relation8

E2 = E3 = Em
1 + ξηVf

1− ηVf
(3)
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where
η =

E2f − Em

E2f + ξEm
(4)

and the parameter ξ is a measure of reinforcement of the composite that depends on the fibre geometry,
packing geometry, and loading conditions. It has been set equal to 2.0.

The shear modulus G12 = G13 is found from the Halpin-Tsai semi-empirical relation

G12 = G13 = Gm
(G12f + Gm) + Vf (G12f −Gm)
(G12f + Gm)− Vf (G12f −Gm)

(5)

The computation of the in-plane shear modulus, G23, is done according to reference 9 (it is quite lengthy
and hence the details are not shown here). Subsequently, ν23 is computed from

G23 =
E2

2(1 + ν23)
(6)

Using the measured volume fraction, Vf = 0.67, the engineering constants used to define the beam element
are listed in table 2. Note that the longitudinal stiffness of the beams is much greater than the transverse
stiffnesses.

Table 2. T300/Hexcel 8552 tow material properties

Material Properties Value
Longitudinal stiffness, E1 [N/mm2] 157,650
Transverse stiffness, E2 = E3 [N/mm2] 13,280
Shear stiffness, G12 = G13 [N/mm2] 4,561
In-plane shear stiffness, G23 [N/mm2] 4,538
Poisson’s ratio, ν12 = ν13 0.256

III. Homogenization of Unit Cell

A. Model of Unit Cell

Figure 4 shows a perspective view of the unit cell defined in Figure 2, where each tow is represented by its
centre line. Note that at the cross-over points the centre line offset is equal to the thickness of one tow. Also
note that it is assumed that the connection between the tow centre lines can be modelled as fully rigid.

Our simulation, carried out with the finite element package ABAQUS Version 6.4, uses a transversely
isotropic, geometrically linear model of the beam, modelled with the three-dimensional 3-node quadratic
beam element, B32. This element is derived from Timoshenko beam theory and so allows for transverse
shear deformation. The complete model for a unit cell consists of 494 nodes and 248 beam elements.

A uniform rectangular beam cross section area of 0.803 mm wide × 0.078 mm thick is assumed. The
beam cross-over points are connected using the multi-point-constraint *MPC function in ABAQUS. *MPC
type *BEAM is chosen to represent the connection between two crossing beams. *BEAM provides a full,
rigid connection between the centre-line points that are directly above one another.

There are 8 boundary nodes for this unit cell, all in the cell mid-plane; one on the top and bottom edges
and three on the right and left edges (labelled i, ii, and iii in the figure). Note that the nodes labelled i and
iii, on the right and left edges, coincide with the end nodes of the beams that model the 0-direction tows;
the other four nodes are located half-way between the cross-over points.

B. ABD Matrix

We represent the TWF unit cell in terms of a thin Kirchhoff plate. Hence our kinematic variables are the
mid-plane strains εx = ∂u/∂x, εy = ∂v/∂y, εxy = (∂u/∂y) + (∂v/∂x), where it should be noted that the
engineering shear strain is used, and κx = −∂2w/∂x2, κy = −∂2w/∂y2, κxy = −2∂2w/∂x∂y, where it
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Figure 4. (a) Perspective view of TWF unit cell; (b) moment sign convention for plate.

should be noted that twice the surface twist is used, as it is standard in the theory of laminated plates.8 The
corresponding static variables are the mid-plane force and moment resultants per unit length Nx, Ny, Nxy

and Mx, My, Mxy.
In analogy with classical laminate theory we write the 6× 6 matrix relating the two sets of variables as

an ABD stiffness matrix,




Nx

Ny

Nxy

Mx

My

Mxy





=




A11 A12 A16 | B11 B12 B16

A21 A22 A26 | B21 B22 B26

A61 A62 A66 | B61 B62 B66

B11 B21 B61 | D11 D12 D16

B12 B22 B62 | D21 D22 D26

B16 B26 B66 | D61 D62 D66








εx

εy

εxy

κx

κy

κxy





(7)

This matrix is symmetric, and so the 3 × 3 submatrices A and D along the main diagonal are symmetric
(Aij = Aji and Dij = Dji), however (unlike the B matrix of a laminate) the B matrix is not guaranteed to
be symmetric.

C. Periodic Boundary Conditions

Periodic boundary conditions are a standard tool in the computation of homogenized models for composites
and so there is an extensive literature on this topic. A recent paper by Tang and Whitcomb10 explains the key
ideas involved in this approach, in the context of semi-analytical solutions based on assumed displacement
fields within the unit cell. Of particular relevance to the present study is the direct micro-mechanics method
introduced by Karkkainen and Sankar11 for plain weave textile composites. The approach presented here is
essentially that of this reference, but (i) extended to a triaxial weave and (ii) discretizing the TWF into a
mesh of beam elements, instead of solid elements.

Consider a homogenized plate subject to uniform mid-plane strains εij and uniform mid-plane curvatures
κij . The periodic boundary conditions, for the changes in a displacement component, ∆ui, and rotation
component, ∆θi, of corresponding nodes on opposite boundaries, can be defined as follows,

∆ui = εij∆lj (8)
∆θi = κij∆lj (9)
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where ∆lj is the distance in the u-direction between two corresponding nodes.
Note that we use the subscripts R, L, T, and B to denote nodes on the right, left, top, and bottom edges

of the unit cell, respectively, and i, ii, and iii to distinguish between different side nodes. Also note that only
stretching/shearing and out-of-plane bending/twisting of the mid-plane are considered. In-plane bending
and shearing are not considered.

To prevent a rigid body motion, one point on the unit cell, point O in figure 4(a), has been constrained
against translation in any direction.

The PBC of two corresponding nodes are set as follows. For the left/right edges,

uRn − uLn = εxx∆lx (10)
vRn − vLn = εxy∆lx/2 (11)

wRn − wLn = κxyb∆lx/2 (12)
θRxn − θLxn = −κxy∆lx/2 (13)
θRyn − θLyn = κxx∆lx (14)
θRzn − θLzn = 0 (15)

where

n = i, ii, iii sets of nodes on left/right boundaries
R, L = right and left boundary, respectively
x, y, and z = directions of cartesian coordinate system

For the top/bottom edges,

uT − uB = εxy∆ly/2 (16)
vT − vB = εyy∆ly (17)

wT − wB = κxya∆ly/2 (18)
θTx − θBx = κyy∆ly (19)
θTy − θBy = −κxy∆ly/2 (20)
θTz − θBz = 0 (21)

In ABAQUS, we simulate these PBCs using the *EQUATION and *BOUNDARY commands. Dummy
nodes are used to represent the deformation terms, strain or curvature, in equations (10) to (21). The
constraint forces and moments that correspond to each dummy node action are then used to compute the
ABD matrix for the composite, as explained in the next section.

D. Virtual Work Calculation of ABD Matrix

Six unit deformations are imposed on the unit cell, in six separate ABAQUS analyses. In each case we set
one average strain/curvature equal to one and all others equal to zero. For instance, in the first analysis,
εxx = 1 while εyy = εxy = 0 and κxx = κyy = κxy = 0. From each of the six analyses we obtain one set
of deformations, including displacement and rotation components at the 8 boundary nodes, and one set of
corresponding constraint forces and moments.

Next, we use virtual work to compute the entries of the ABD matrix. For example, entry 1,1 is obtained
by writing the equation of virtual work for the first deformation mode (i.e. εxx = 1) and the forces/moments
also in the first mode. Hence the equation reads

Nxxεxx∆lx∆ly =
∑

b.n.

(Fxu + Fyv + Fzw + Mxθx + Myθy + Mzθz) (22)

where the summation is extended to the 8 boundary nodes (b.n.). Then, substituting εxx = 1 and comparing
with equation (7) we obtain

A11 =
∑

b.n. (Fxu + Fyv + Fzw + Mxθx + Myθy + Mzθz)
∆lx∆ly

(23)
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The calculation of the whole ABD matrix is best done by setting up two matrices with 48 rows (i.e. 6
degrees of freedom per node times 8 boundary nodes) and 6 columns (i.e. the six deformation modes). The
first matrix, U , contains in each column the displacement and rotation components at all boundary nodes
for one deformation mode; the second matrix, F , contains in each column the forces and moments at all
boundary nodes for one deformation mode. The ABD matrix is then given by

ABD =
UT F

∆lx ·∆ly
(24)

The outcome of this calculation is





Nx

Ny

Nxy

Mx

My

Mxy





=




3411.10 2050.20 0 | 0 0 -0.64

2050.20 3411.00 0 | 0 0 0.64

0 0 680.42 | 0.64 -0.64 0

0 0 0.64 | 2.17 0.60 0

0 0 -0.64 | 0.60 2.17 0

-0.64 0.64 0 | 0 0 0.78








εx

εy

εxy

κx

κy

κxy





(25)

where the units are N and mm.
Aoki ad Yoshida2 have argued that, because TWF is quasi-isotropic, both the A and D matrices have

to satisfy the conditions met by an isotropic plate, namely A11 = A22, A66 = (A11 − A12)/2 and D11 =
D22, D66 = (D11 − D12)/2. It can be verified that all of these conditions are satisfied by the matrix in
equation (25).

IV. Tension Tests

Tab

90

50

90 

50

Tab

εx

εy

TWF (3 plies)

Aluminium tab

(a) (b)

Figure 5. Specimen used in the tension tests (dimensions in mm); (a) front view; (b) edge view

A. Specimen and Testing Procedure

The layout of the tensile test specimen is shown in figure 5.12 To minimize edge effects, we have adopted an
aspect ratio of 1:1; the 90 mm wide specimens include 16 unit cells. The specimens were cut with straight
edges and sandwiched at each end between two additional 60 mm × 90 mm TWF layers and two 90 mm
by 50 mm aluminium tabs, 1 mm thick. These additional reinforcements serve the purpose of preventing
premature failure occurring near the clamped areas. The extra TWF layers were glued to the centre layer
with Araldite epoxy resin mixed with hardener at a ratio of 1:1. The aluminum tabs were attached to the
specimen’s ends with an industrial superglue.

7 of 17

American Institute of Aeronautics and Astronautics



0 0.2 0.4 0.6 0.8 1 1.2
0

5

10

15

20

25

30

35

F
o

rc
e
 /
 w

id
th

 [
N

/m
m

]
εx [%]

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6
−
 ε
y
 [
%

]

νxy2

1

1

1

Stx1

1 Transition strain

Transition strain

Stx2

εx [%]

νxy1

(a)

(b)

Figure 6. Definition of transition strain

Ten specimens were tested. Strain measurements were carried out with Epsilon LE-01 and LE-05 laser
extensometers, using two pairs of 3 mm wide retro-reflective strips attached to the central region of the
specimen, about 50 mm apart each in the longitudinal and transverse direction, on the specimen center.
The specimens were gripped over the aluminium tabs between two wedged clamping jaws. The tests were
carried out with an Instron 5578 testing machine fitted with a 30 KN load cell, following the procedure in
reference 12. An extension rate of 1 mm/min was used.

B. Results

Figure 6(a) shows a plot of longitudinal force per unit width vs longitudinal strain for specimen T6. The
load-deformation plot is mildly non-linear. Following reference 3 we approximate the response curve with
two straight lines; the response at smaller strains is that of a grillage of “wavy-tows”, whereas at larger
strains the tows along the main load-bearing path are essentially straight. The slopes of these lines define
the small-strain (subscript 1) tensile stiffness of the specimen, Stx1 and the large-strain stiffness, Stx2. In
the plot, the intersection between the two straight lines defines the transition strain.

A non-linearity is also observed in the transverse strain-longitudinal strain plot, figure 6(b). We fit
two straight lines to this curve3 and hence define two Poisson’s ratios, νxy1 and νxy2; the subscript t has
been dropped because the Poisson’s ratio in compression will not be measured and so there is no need to
distinguish between tension and compression.

The results for the full set of tests are summarised in figure 7 and figure 8. Table 3 presents both stiffness
and Poisson’s ratio, before and after the transition strain. The failure stress, σu

t , and strain, εu
t , are also

shown. Note that in all cases the stiffness increases and the Poisson’s ratio decreases, once the transition
strain is reached.
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Figure 7. Measured force per unit width vs strain response from tension test
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Table 3. Tension test results

Specimen Stx1 Stx2 νxy1 νxy2 σu
t εu

t

[N/mm] [N/mm] [MPa] [%]
T1 2100.3 3278.7 0.564 0.428 198.53 1.11
T2 2062.8 3015.1 0.541 0.360 160.19 0.90
T3 2067.0 3028.0 0.663 0.422 165.58 0.91
T4 2069.5 3129.7 0.561 0.408 163.10 0.93
T5 2245.8 3088.0 0.658 0.466 139.42 0.81
T6 2250.0 3075.6 0.564 0.358 164.91 1.00
T7 2306.9 3116.1 0.542 0.353 191.28 1.00
T8 2261.2 3172.9 0.520 0.366 183.91 0.98
T9 2069.5 3066.5 0.558 0.421 150.38 0.84
T10 2024.8 3098.0 0.690 0.388 183.46 1.08

Average 2145.8 3106.9 0.586 0.389 170.08 0.96
Std. dev. 106.239 76.141 0.060 0.038 18.709 0.097

Variation [%] 4.95 2.45 10.27 9.73 11.00 10.12
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V. Compression Tests

Compression tests on thin composites are notoriously difficult, as the failure mode of interest is fibre
microbuckling but other test-dependent failure modes tend to occur at lower stress. Following reference 13,
we carry out the compression tests on short sandwich columns, as shown in figure 9. This reference shows
that by a suitable choice of the properties of the foam the lateral restraint provided by the core can be
optimized to prevent failure by overall Euler buckling, core shear macrobuckling, and face wrinkling so that
the specimen fails by fibre microbuckling.

PVC

foam 

core

55

20

40 mm wide

TWF face sheet

x

z

Figure 9. Specimen for compression test (dimensions in mm)

A. Specimen and Test Procedure

To minimize edge effects, nearly-square TWF sheets, of size 40 mm by 55 mm, were tested. These sheets
were bonded to a 20 mm thick sandwich core of closed-cell Polyvinyl chloride (PVC) foam (trade name:
Divinycell, density 186 kg/m3). The TWF face sheets were bonded to the PVC core using Araldite resin,
mixed with hardener at a ratio of 1:1.

Ten nominally identical specimens were tested with an Instron 5578 testing machine, fitted with a 2 KN
load cell. The load was applied via flat steel platens. A loading rate of 1 mm/min was applied. The lon-
gitudinal deformation on both surfaces of the specimen was measured with Epsilon LE-01 and LE-05 laser
extensometers, using pairs of retro-reflective strips placed about 30 mm apart.

B. Results

The results of the compression tests are summarised in figure 10, and key results are listed in table 4. The
behaviour of TWF in compression is non-linear, with failure occurring at strains in the range 0.41% to 0.77%
(note the large spread in these values). The scatter in the compressive stiffness, Scx, is much smaller.
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Figure 10. Measured compressive force/width vs strain curve
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Figure 11. (a) Modified two rail shear rig; (b) enlarged section A-A (dimensions in mm)

Table 4. Compression test results

Specimen Scx [N/mm] σu
c [MPa] εu

c [%]
C01 2178.8 110.10 0.52
C02 2218.7 108.49 0.72
C03 2220.9 100.85 0.52
C04 2290.3 95.92 0.57
C05 2299.4 87.80 0.77
C06 2280.5 100.69 0.57
C07 2346.2 110.60 0.60
C08 2328.7 87.25 0.64
C09 2247.1 108.65 0.41
C10 2036.9 79.81 0.62

Average 2244.75 99.02 0.59
Std. dev. 89.742 10.997 0.103

Variation [%] 4.00 11.11 17.36

VI. In-plane Shear Tests

These tests aim to determine the in-plane shear properties of TWF. We used a modified version of the
standard two-rail shear test method,14 see figure 11, as this fixture accommodates wide specimens and hence
minimizes edge effects. In view of a comment by Adams, Carlsson and Pipes15 a 90 degree test fixture
was used, instead of the 97 degree fixture in reference 14. Further modifications include the increase in the
number of bolt holes from three to six smaller holes per rail, as large holes in TWF may result in high stress
concentrations. In addition, sheets of sandpaper were used at the interface, in the clamped region, for a
better grip of the specimen.

A preliminary test on a single-ply TWF specimen showed local buckling around the top and bottom free
edges of the specimen right from the start, followed by the gradual development of extensive waviness over
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the whole unsupported region of the specimen. Due to the thinness of the material (t = 0.156 mm), it is
impossible to avoid these effects in a single sheet configuration and, since the data measured in a buckled
state would not be representative of the material shear properties, we decided to use sandwich specimens
similar to those used in the compression tests.

A. Specimens and Testing Procedure

The specimens were 80 mm wide by 130 mm long, with an unsupported width of 10 mm. Two TWF sheets
were bonded with Evo-stik impact adhesive which sets in 15 - 30 minutes to a 3 mm thick PVC foam core
of the same type as that used in the compression tests, see section V.A. An initial guess of 3 mm for the
foam thickness proved adequate.

Five shear tests were carried out with an Instron 5578 testing machine, mounted with a 2 KN load cell.
A loading rate of 0.5 mm/min was used.

specimen

clip gauge 2

clip gauge  1

x

y

20 mm

Figure 12. Shear test set up with clip gauges

Measuring the shear strain proved quite challenging. Routinely strain gauges are used, however these
cannot be bonded to TWF. An initial attempt was to use the laser extensometers with retro-reflective strips
mounted on the unsupported region of the specimens. However, the specimen rotates under load and so two
extensometers are insufficient to determine the shear strain. Next, a photogrammetry method was attempted
but proved to be too noisy. The targets used were 0.5 mm long rods of white rubber with a diameter of
0.6 mm, glued to the TWF tows using polyvinyl acetate (PVA) adhesive. A 10.0 megapixel digital camera
was used to capture images of a 10 mm wide region during the test, then the x and y coordinates of the
centroid of each target were measured using the sub-pixel resolution function in PhotoModeler Pro 5.2.3.
The specimen shear strain was then computed. The resulting strain measurements, see figure 13, are very
noisy.

The measurement technique that was finally chosen uses two clip gauges attached to the steel test fixtures,
one across the specimen and one at 45 degrees, see figure 12. A clip gauge is a round strip of very thin
spring steel fitted with surface mounted strain gauges that measure the curvature of the strip. The tips of
the clip tips fit into small holes punched on nuts attached to the test fixture. During the test, each clip
gauge measures the distance between two nuts, from which the corresponding strains are computed at the
end of the test. Then, the shear strain is computed from

εxy = 2ε2 − ε1 (26)

where the subscripts 1 and 2 correspond to the clip gauge number. Note that we the strain parallel to the
fixture is neglected.
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Figure 13. Measured shear force vs shear strain using photogrammetry
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Figure 14. Shear force per unit length vs shear strain
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B. Results

The relationship between shear force per unit length vs shear strain, obtained from the clip gauge readings,
is shown in figure 14. The measured shear properties are then summarized in table 5. The shear failure
stress and strain are represented by σu

s and εu
xy, respectively. No failures originating from the edge were

observed in the tests that were carried out.

Table 5. Shear test results

Specimen Sxy [N/mm] σu
s [MPa] εu

xy [%]
SC1 666.0 28.05 0.84
SC2 737.5 30.73 0.72
SC3 828.6 34.14 1.02
SC4 839.7 36.46 1.21
SC5 813.8 32.17 0.86

Average 777.12 32.31 0.93
Std. dev. 73.874 3.213 0.189

Variation [%] 9.51 9.95 20.37

VII. Bending Tests

Four-point bending tests were carried out to measure the bending stiffness of single-ply TWF. The test
setup, based on reference 16, is shown in figure 15. An advantage of using the 4-point bending configuration
is that a uniform curvature forms over the central region, whose length can be measured quite accurately,
and so the results can be interpreted with greater accuracy than in 3-point bending.

Instron cross head

specimen

Figure 15. 4-point bending test setup (scale in mm)

A. Specimens and Test Procedure

The single-ply specimens were 100 mm long and 40 mm wide. The distance between the outer supports was
60 mm and the distance between the inner supports 20 mm. The deflection of the centre of the specimen with
respect to the inner supports was measured by attaching a retro-reflective strip on a side of the specimen and
an another strip was attached to the loading head; the relative displacement was measured with an Epsilon
LE-05 laser extensometer.

Five tests were performed using an Instron 5578 machine with a 100 N load cell. A loading rate of
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1 mm/min was applied. Note that in this test only the initial bending stiffness was investigated; the
specimens were not taken to failure.

B. Results

0 2 4 6 8 10 12 14
0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

κx [1/m]

M
o

m
e

n
t 
/ 
w

id
th

 [
N

m
/m

]

×10−2

Figure 16. Measured moment per unit width vs curvature

A plot of bending moment per unit width vs longitudinal curvature is shown in figure 16. The relationship
is practically linear, and hence the bending stiffness can be estimated. The measured bending stiffnesses are
summarized in table 6. The variation between the 5 tests was only 2 %.

Table 6. Measured bending stiffness

Specimen bending stiffness, Dx [Nmm]
B01 2.008
B02 2.046
B03 2.092
B04 2.108
B05 2.132

Average 2.077
Std. dev. 0.050

Variation [%] 2.40

VIII. Comparison of Theory and Experiment

To compare the theoretical results with the experimental measurements it is best to work with the inverse
of equation (7). This is because in the experiments we measured the deformations due to unit loads. Hence
we define the following 6× 6 compliance matrix
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



εx

εy

εxy

κx

κy

κxy





=




a11 a12 a16 b11 b12 b16

a21 a22 a26 b21 b22 b26

a61 a62 a66 b61 b62 b66

b11 b21 b61 d11 d12 d16

b12 b22 b62 d21 d22 d26

b16 b26 b66 d61 d62 d66








Nx

Ny

Nxy

Mx

My

Mxy





(27)

The compliance matrix, denoted as abd, is the inverse of the ABD matrix, and is also symmetric (aij = aji

and dij = dji). Computing the inverse of the matrix in equation (25)





εx

εy

εxy

κx

κy

κxy





= 10−6 ×




459 −276 0 0 0 600

−276 459 0 0 0 −600

0 0 1471 −600 600 0

0 0 −600 499220 −138210 0

0 0 600 −138210 499220 0

600 −600 0 0 0 1283000








Nx

Ny

Nxy

Mx

My

Mxy





(28)

Consider the case where a tensile load is applied in the x-direction

Nx 6= 0 and Ny = Nxy = Mx = My = Mxy = 0 (29)

Then substitute these values into equation (28). The first row gives

εx = a11 Nx (30)

from which we can predict the extensional stiffness in the x-direction

Sx =
Nx

εx
=

1
a11

(31)

Considering also the second row of equation (28) and rearranging we can determine the Poisson’s ratio from

νxy = − a21

a11
(32)

Similarly, the shear stiffness can be predicted from

Sxy =
Nxy

εxy
=

1
a66

(33)

and finally, the bending stiffness is given by

Dx =
Mx

κx
=

1
d11

(34)

The computed and measured stiffnesses and Poisson’s ratio are compared in table 7, where it should be
noted that all experimental values correspont to the initial average stiffnesses. Also note that the experi-
mental extensional stiffness has been obtained by averaging the tensile and compressive values. Overall, our
predictions agree extremely well with the measurements.
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Table 7. Predicted and measured results

Property Prediction Measurement (average)
Extensional stiffness, Sx [N/mm] 2178 2195
Poisson’s ratio, νxy 0.601 0.586
Shear stiffness, Sxy [N/mm] 680 777
Bending stiffness, Dx [Nmm] 2.003 2.077

IX. Discussion

We have shown that a simple curved beam model subject to periodic boundary conditions predicts very
accurately the main stiffnesses of carbon-fibre TWF. The analysis can be easily set up and runs very quickly.
Our results are in agreement with Aoki and Yoshida,2 although is should be noted that the entries of our
ABD matrix are about 50% larger because we have used a stiffer matrix and a higher fibre volume fraction.

The PBC model presented here only applies to infinitely large pieces of TWF. In finite-size pieces edge
effects can be of considerable importance; they have been considered elsewhere.2,3 Finally, it should be noted
that only linear-elastic behaviour has been considered in this paper; there is obvious scope for extending this
work into a geometrically non-linear regime.
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