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Abstract

This paper is concerned with spatial linkages forming a closed loop. In one extreme configura-

tion (deployed), these linkages form a frame of polygonal shape, such as a square or a hexagon,

and in the other extreme (folded) configuration form a tight bundle. Throughout their motion

range, they have mobility one. These linkages have potential applications for next-generation

deployable spacecraft structures. The paper presents a systematic study of the kinematics of

closed-loop structures with these special properties, and presents a numerical scheme for simu-

lating their deployment without making any assumptions about particular symmetry features.

The proposed simulation technique is applied to three examples that show different behaviour

during deployment.

1 Introduction and Background

This paper is concerned with the kinematics of deployable structures, based on the concept

of a mechanical linkage consisting of straight rods connected by revolute joints, that form a

segmented hoop that folds into a tight bundle. A structure of this kind was proposed by J.M.

Hedgepeth, following a preliminary suggestion by A. Busemann [1]. The idea was presented in
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reference [2], which deals mostly with a related structural concept, that was later adopted for

the edge beam of the Hoop-Column Antenna shown in Figure 1. Here the rim consists of four or

more hinged segments of equal-length, where each joint involves two revolutes connected by an

intermediate short element. Even for hoops with a small number of segments, the presence of

these blocks increases the mobility and hence, since kinematic freedom can lead to deployment

uncertainty, in the Hoop-Column Antenna additional links were introduced to bring the mobility

down to one.

Of particular interest to this paper is Appendix A of Reference [2], which considered the al-

ternative hinging method, illustrated in Figure 2, where there is only one revolute between

consecutive links. Note that the orientation of each revolute varies during deployment of the

10-sided linkage shown (unlike the Hoop-Column Antenna), and also note that 5-fold symmetry

about a central axis has been imposed here.

An advantage of this particular hinging method is that it requires half the number of revolutes

as the previous scheme and so the need for additional synchronization links is much reduced.

Actually, the four-sided version of this linkage is an example of the classical 4-bar linkage dis-

covered by G.T. Bennett [3], and the six-sided version had been discovered by Bricard (see the

recent survey in Reference [4]). However, the particular realization of these linkages that was

first proposed by Hedgepeth is the key to their practical exploitation as deployable structures.

Structures of this kind have potential applications for deployable spacecraft structures, in solar

arrays —as already envisaged in Ref. [2]—, solar sails, and synthetic aperture antennas or

radar. For example, a configuration that has been recently investigated in Reference [5] is the

deployable rectangular frame shown in Figure 3.

It should be noted that spatial linkages based on the concept of a ring pantograph, which can

itself be viewed as a structure consisting of multiple closed loops, have already been extensively

studied and have found many applications [6,7].

This paper presents a general approach for analysing the kinematics of closed-loop structures,

without making any assumptions about their behaviour being symmetric. The proposed ap-

proach is particularly suitable to detect points of bifurcation along the motion path of such

structures. The paper is arranged as follows. Section 2 introduces the notation and briefly

outlines the kinematic formulation. Section 3 details the geometry of the closed-loop linkages

proposed by Hedgepeth and derives the so-called loop-closure equation for these structures. For

the case of 4-rod linkages, assuming symmetry, an analytical expression for the variation of the
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joint angles is obtained. Section 4 presents a novel numerical scheme for simulating the motion

of a structure with mobility one, by carrying out an incremental solution of the loop closure

equation. This scheme begins by imposing an initial set of angle changes on the revolutes; these

changes have magnitudes proportional to the zero-energy mechanism of the structure, obtained

from the singular-value decomposition of the (rank deficient) Jacobian matrix of the system.

Next, an iterative correction step is carried out, to make the violation of the constraint equa-

tions smaller than a specified value. Section 5 presents the simulation results obtained from two

of Hedgepeth’s linkages and Section 6 then presents an additional set of results, for an alterna-

tive linkage that —unlike the previous examples— has a point of kinematic bifurcation along

its motion path. Section 7 concludes the paper.

2 Kinematic Formulation

This section introduces the general description of geometric transformations of a cartesian co-

ordinate system used in this paper. More details can be found in standard textooks [8,9].

The general position and orientation of a coordinate system, P1, x1, y1, z1, with respect to a fixed

coordinate system, O, X, Y, Z, can be described by the translation from O to P1 followed by the

rotation of O, X, Y, Z to P1, x1, y1, z1, Figure 4. This transformation is described by a vector v1

(3×1) and a matrix R1 (3×3). The Denavit-Hartenberg notation [10] is adopted and hence

T1 =




R1 v1

0 0 0 1




(1)

where R1 transforms x1, y1, z1 into the global coordinate axes and is defined in terms of the

Euler angles φ, ω, ψ (we use the x-convention [11]). Hence,

R1 =




cosφ − sinφ 0

sinφ cosφ 0

0 0 1







1 0 0

0 cos ω − sinω

0 sinω cosω







cosψ − sinψ 0

sinψ cosψ 0

0 0 1


 (2)

The transformation from P1, x1, y1, z1 to P2, x2, y2, z2, shown in Figure 4, is represented by

T2 =




R2 v2

0 0 0 1




(3)
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where v2 = P1P2 and R2, whose components are defined with respect to x1, y1, z1, rotate x2, y2, z2

into x′1, y
′
1, z

′
1. Note that R2 goes in the opposite direction to v2.

Consider the compound transformation T1,2, i.e. T1 followed by T2. The translation vector is

v1 followed by R1v2 (as the second translation has to be expressed with respect to the first

coordinate system), hence

v1,2 = v1 + R1v2 (4)

The rotation matrix is obtained from

X = R1x1 = R1R2x2

Therefore

T1,2 =




R1R2 v1 + R1v2

0 0 0 1




=




R1 v1

0 0 0 1







R2 v2

0 0 0 1




= T1 × T2 (5)

A more general compound transformation can be expressed as

T1,n = T1 × T2 × . . .× Tn (6)

3 Hedgepeth’s Deployable Structures

Hedgepeth [3] proposed a family of closed-loop deployable structures consisting of n rods with

identical cross section, where n is even. The geometry of these structures is most easily described

if the rod’s cross-section is assumed to be an isosceles triangle; this is the case shown in Figure 2

and Figure 5. Note that more general rod shapes are acceptable, provided that the hinges can

still be mounted in the required orientation and the rods do not interfere with the motion of the

structure.

First, consider the structure in the configuration where it forms a tight bundle. For the rods to

fit together in this configuration the apex angle of the isosceles triangles must be, see Figure 5(a),

α1 =
360◦

n
(7)

Hence, the base angles are

α2 = 90◦ − α1

2
(8)
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To ensure that the rods fit together also in the deployed configuration their ends are cut at an

angle of 180◦/n to the axis of the rod and “door hinges” are mounted alternately on inner- and

outer-facing faces of the rods, see Figure 5(b). The end sections of the rods are also isosceles

triangles, with base angles

α3 = arctan
(

cos2(α1/2)
sinα1/2

)
(9)

We describe each rod by means of a transformation matrix between two suitably defined coor-

dinate systems, one at each end of the rod. The orientation of each coordinate system is such

that the z-axis is aligned with the corresponding hinge axis and the line defined by the apexes

of the isosceles triangles lies in the x-z plane.

Figure 6 shows a sequence of four elementary transformations. First, Figure 6(a), one translates

O, X, Y, Z to P1, x, y, z by the vector v1. Next, Figure 6(b), one rotates P1, x, y, z about z

through φ to obtain P1, ξ, η, ζ; φ is such that the rotated ξ and ζ become coplanar with the

hinge axis. Next, Figure 6(c), one rotates P1, ξ, η, ζ about ξ through ω to obtain P1, ξ, η
′, ζ ′; ω

is such that the rotated ζ becomes aligned with the hinge axis. Finally, Figure 6(d), one rotates

P1, ξ, η
′, ζ ′ about ζ ′ through ψ to obtain P1, x1, y1, z1; ψ is such that v1 lies in the plane defined

by the rotated ξ′ and ζ ′.

This sequence of transformations determines the values of the angles φ, ω, ψ for each rod. Since

there are only two rod types, which will be denoted by the subscripts 1 and 2, the three angles

are

φ1 =−φ2 =− arctan(tan
α1

2
sinα3)

ω1 =−ω2 =90◦ + arctan
q√

p2 + r2

ψ1 =−ψ2 = −180◦ − φ1

where

p = cosα3 tanα3 − sinα3 cosα1

q = sinα3 tanα3 + cosα3 cosα1

r = sinα1

The components of the vector v1 are, for both rod types

a = cosα3

d = sinα3
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The kinematics of the structure are defined by the variation of the hinge angles θA, θB, . . .. These

angles, see Figure 7, are defined to be zero in the folded configuration and increase monotonically

during deployment. In the deployed configuration the value of θA is

θA = arccos

[
1− 2 cos2 α3

(
sin

(
90◦ − 180◦

n

)
+ sin2 α1

2
tanα3

)2
]

(10)

3.1 Loop Closure Equation

In the case n = 4 the structure forms a deployable square frame. Figure 8 shows a model made

from square-section timber rods connected together by “door” hinges. This is an example of

structure whose rods do not have a triangular cross section. During folding, the model preserves

two planes of symmetry and one 2-fold symmetry axis. This structure is an example of the

well-known Bennett linkage [8, 12, 13].

Assuming the length of the rods, measured along the apex line, to be one unit we have

v =




a

0

d


 =




√
6

3

0
√

3
3




The transformation angles for rod type 1 is

φ1 = −30◦

ω1 = +90◦ + arctan(1/
√

8) = +109.47◦

ψ1 = −150◦

The corresponding transformation matrix is

T1 =




−2
3

√
3

3 −
√

2
3

√
6

3√
3

3 0 −
√

6
3 0

−
√

2
3 −

√
6

3 −1
3

√
3

3

0 0 0 1




and an analogous expression can be derived for rod type 2.

The transformation matrix for a hinge with angle θA is

TA =




cos θA − sin θA 0 0

sin θA cos θA 0 0

0 0 1 0

0 0 0 1




(11)
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One can now consider a closed-loop structure consisting of 4 rods arranged in the sequence

type 1, type 2, type 1, type 2 and connected by revolute joints with hinge angles θA, θB, θC , θD.

Having reached the last joint of the structure one has to ensure that it coincides with the first.

More precisely, the first and last points of the linkage must be the same and the first and last

revolutes must also coincide. This condition is known as the loop-closure equation [8,9].

A linkage with n = 4 rods, i.e. two pairs of identical rods, is described by the product of two

pairs of constant matrices and four angle-dependent matrices:

T1 × TθA
× T2 × TθB

× T1 × TθC
× T2 × TθD

= I (12)

In the general case of n rods (where n is even) the loop closure equation is analogous to Equa-

tion 12, but now includes n/2 pairs of constant matrices as well as n angle-dependent matrices.

3.2 Analytical Solution for n = 4

If symmetric behaviour is assumed, and hence θA = θC and θB = θD, Equation 12 can be

simplified to







−2
3

√
3

3 −
√

2
3

√
6

3√
3

3 0 −
√

6
3 0

−
√

2
3 −

√
6

3 −1
3

√
3

3

0 0 0 1







cos θA − sin θA 0 0

sin θA cos θA 0 0

0 0 1 0

0 0 0 1







−2
3 −

√
3

3 −
√

2
3

√
6

3

−
√

3
3 0

√
6

3 0

−
√

2
3

√
6

3 −1
3

√
3

3

0 0 0 1







cos θB − sin θB 0 0

sin θB cos θB 0 0

0 0 1 0

0 0 0 1








2

= I

and solving this equation symbolically yields

θB = arctan
2
√

3 cos2 θA − 3 sin θA cos θA + 3 sin θA − 4
√

3 cos θA + 2
√

3
− cos2 θA − 2

√
3 sin θA cos θA + 2

√
3 sin θA − cos θA + 2

(13)

A plot of θA against θB is shown in Figure 9.

4 Numerical Solution of Loop-Closure Equation

A general solution method for the loop closure equation is presented, based on a predictor-

corrector scheme suitable for implementation in a standard Newton-Raphson iteration. For
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definiteness a loop with n = 4 rods will be considered.

4.1 Predictor Step

From the closure equation in the initial configuration

T1 TA0 T3 TB0 T1 TC0 T3 TD0 = I (14)

Consider small geometry changes in each hinge which do not require any deformation of the

rods. For the linkage to still fit together it needs to satisfy the loop-closure equation also in the

deformed configuration

T1 TA T3 TB T1 TC T3 TD = I (15)

where TA, TB, TC and TD correspond to the general configuration defined by θA, θB, θC and

θD. Consider the Taylor expansion of the hinge angles. By ignoring higher-order terms

sin(θA0 + ∆θA0) ≈ sin θA0 + cos θA0(∆θA0)

cos(θA0 + ∆θA0) ≈ cos θA0 − sin θA0(∆θA0)

Substituting into, e.g. the transformation matrix TA, yields

TA =




cos(θA0 + ∆θA0) − sin(θA0 + ∆θA0) 0 0

sin(θA0 + ∆θA0) cos(θA0 + ∆θA0) 0 0

0 0 1 0

0 0 0 1




' TA0 +




− sin θA0 − cos θA0 0 0

cos θA0 − sin θA0 0 0

0 0 0 0

0 0 0 0




∆θA0

= TA0 + T ′A0
∆θA0 (16)

where T ′A0
is the derivative of TA calculated at A0.

Substituting Equation 16 and analogous expressions for TB, TC , etc. into Equation 14 yields

T1 (TA0 + T ′A0
∆θA0) T3 (TB0 + T ′B0

∆θB0) · · · = I (17)
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Expanding Equation 17 and rearranging, we have

T1TA0T3TB0T1TC0T3TD0

+(T1T
′
A0

T3TB0T1TC0T3TD0) ∆θA0

+(T1TA0T3T
′
B0

T1TC0T3TD0) ∆θB0

+(T1TA0T3TB0T1T
′
C0

T3TD0) ∆θC0

+(T1TA0T3TB0T1TC0T3T
′
D0

) ∆θD0 = I (18)

From Equation 14, the first term of Equation 18 is equal to the identity matrix. Hence, the sum

of the remaining terms must be zero. Defining A = T1T
′
A0

T3TB0T1TC0T3TD0 , etc. this equation

can be rearranged into

A ∆θA0 + B ∆θB0 + C ∆θC0 + D ∆θD0 = [0] (19)

where [0] is a 4× 4 null matrix. It is interesting to note the form of these matrices



0 a1,2 a1,3 a1,4

−a1,2 0 a2,3 a2,4

−a1,3 −a2,3 0 a3,4

0 0 0 0




∆θA0 +




0 b1,2 b1,3 b1,4

−b1,2 0 b2,3 b2,4

−b1,3 −b2,3 0 b3,4

0 0 0 0




∆θB0 + · · · = [0] (20)

At first glance, the matrix equation (20) would appear to be equivalent to 9 scalar equations in 4

unknowns (not 16, since the 7 equations corresponding to the diagonal and the last row are always

satisfied). The fact that the 3×3 sub-matrix in the top-left corner is skew-symmetric corresponds

to the fact that any rotation can always be defined by only three elementary rotations, hence

6 of the 9 coefficients of this sub-matrix are dependent on the other 3. Hence, there remain

6 independent parameters, which form the Plucker coordinates, or line coordinates of each

particular joint.

Hence, this yields a 6×4 system of equations, whose coefficient matrix is known as the Jacobian

of the system [9] 


a1,2 b1,2 c1,2 d1,2

a1,3 b1,3 c1,3 d1,3

a2,3 b2,3 c2,3 d2,3

a1,4 b1,4 c1,4 d1,4

a2,4 b2,4 c2,4 d2,4

a3,4 b3,4 c3,4 d3,4







∆θA0

∆θB0

∆θC0

∆θD0




=




0

0

0

0

0

0




(21)

If the linkage that is being analysed has mobility one, then the matrix in Equation 21 will be

rank-deficient, with a rank of 3. This implies that the equation has a single infinity of solutions
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and also indicates that the linkage has an internal mechanism. By solving Equation 21 we can

find sets of ∆θ ′s 6= 0 which describe infinitesimal, zero-strain motions of the linkage.

This set of values can be obtained by computing the singular value decomposition of the Jacobian

matrix [14,15]. The singular value decomposition of a matrix A, in general rectangular, has the

expression A = UV W T . Here, U and W are square, orthonormal matrices containing the left-

and right-singular vectors; V is a rectangular matrix with r non-zero singular values on its main

diagonal, where r is the rank of the matrix A. In the present case, provided that the rank of

the Jacobian matrix is 3, the required zero-strain motion of the linkage is provided by the last

column, i.e. column 4, of the matrix W .

4.2 Corrector Step

A finite, yet small motion of the linkage where each hinge angle is changed by an amount

proportional to the infinitesimal mechanism computed above is likely to induce small errors.

Let C̄ be a configuration obtained from the predictor step, i.e. by imposing a small, and yet

finite change of angles to the initial configuration. We wish to compute a configuration C1,

near C̄, where all errors have been removed. Hence, we need to compute ∆C ′, the configuration

change from C̄ to C1.

In configuration C1

T1 TA1 T3 TB1 T1 TC1 T3 TD1 = I (22)

Although C1 is not known, C̄ is known. In this configuration the closure equation is not satisfied,

hence one can compute an error matrix E from

T1 TĀ T3 TB̄ T1 TC̄ T3 TD̄ = I + E (23)

Expanding the hinge angles in configuration C1 in term of C̄

θA1 = θĀ + ∆θ∗A, θB1 = θB̄ + ∆θ∗B, . . .

Now, writing the closure equation in configuration C1, substituting a Taylor expansion for each
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hinge angle, and then manipulating the equations as above we obtain

T1TĀT3TB̄T1TC̄T3TD̄

+(T1T
′̄
A
T3TB̄T1TC̄T3TD̄) ∆θ∗A

+(T1TĀT3T
′̄
B

T1TC̄T3TD̄) ∆θ∗B

+(T1TĀT3TB̄T1T
′̄
C
T3TD̄) ∆θ∗C

+(T1TĀT3TB̄T1TC̄T3T
′̄
D

) ∆θ∗D = I (24)

From Equation 23, the first term in Equation 24 is equal to I+E. Hence substituting Equation 23

into Equation 24, one obtains

+(T1T
′̄
A
T3TB̄T1TC̄T3TD̄) ∆θ∗A

+(T1TĀT3T
′̄
B

T1TC̄T3TD̄) ∆θ∗B

+(T1TĀT3TB̄T1T
′̄
C
T3TD̄) ∆θ∗C

+(T1TĀT3TB̄T1TC̄T3T
′̄
D

) ∆θ∗D = −E (25)

which can be written in the form

P ∆θ∗A + Q∆θ∗B + R ∆θ∗C + S ∆θ∗D = −E (26)

where P = T1T
′̄
A
T3TB̄T1TC̄T3TD̄, . . . etc. The error matrix E on the right hand side has the

structure 


e1,4

F e2,4

e3,4

0 0 0 0




Decompose F into its symmetric and skew-symmetric components, i.e. (F +F T )/2, (F −F T )/2,

and consider only the skew-symmetric part, whose coefficients are denoted by ē1,2, ē1,3 and ē2,3.

This transformed equation can be treated in the same way as Equation 20, thus rearranging it

into 6 scalar equations



p1,2 q1,2 r1,2 s1,2

p1,3 q1,3 r1,3 s1,3

p2,3 q2,3 r2,3 s2,3

p1,4 q1,4 r1,4 s1,4

p2,4 q2,4 r2,4 s2,4

p3,4 q3,4 r3,4 s3,4







∆θ∗A

∆θ∗B

∆θ∗C

∆θ∗D




= −




ē1,2

ē1,3

ē2,3

e1,4

e2,4

e3,4




(27)

11



The least squares solution of Equation 27 is used to determine the minimal correcting angles

∆θ∗ due to the errors in configuration C̄

∆θ∗ = −
r∑

i=1

wi uT
i

vi,i
e (28)

where UV W T is the singular value decomposition of the 6× 4 coefficient matrix in Equation 27

and r is the number of non-zero singular values. Also, wi is the ith column of matrix W ; ui is

the ith column of U ; vi,i is the i, i term in matrix V ; −e is the vector on the right hand side of

Equation 27. Note that the singular value decomposition of the Jacobian matrix in Equation 21

is often a good approximation for evaluating Equation 28.

5 Results

The predictor-corrector algorithm presented in Section 4 has been used to simulate the deploy-

ment of two closed-loop structures of the type described in Section 3. In each simulation, the

structure was moved along its kinematic path in 200 steps, starting from the fully-folded con-

figuration, until the hinge rotation θA reached the value corresponding to the fully deployed

configuration, computed from Equation 10.

First, the behaviour of Hedgepeth’s deployable square structure, n = 4, was analysed, but this

time without assuming symmetric behaviour. Since it is already known from Section 3.2 that

this structure has a symmetric motion path, relaxing the symmetry constraint may lead to the

discovery of alternative, symmetry-breaking motion paths.

The results of the simulation are shown in Figures 10 and 11. Figure 10 shows a plot of the

variation of 3 hinge angles in terms of a chosen hinge angle, θA. Note that θB = θD and

θC = θA at all stages, hence confirming that the structure remains symmetric at all stages.

In other words, there are no symmetry-breaking alternative paths. Therefore, the behaviour

predicted by the numerical simulation is identical to the analytical results plotted in Figure 9.

Six snapshots from the deployment sequence are shown in Figure 11.

Next, the behaviour of the Hedgepeth deployable hexagon, n = 6, was analysed. For this struc-

ture it is possible to show the existence of a 3-fold symmetric deployment path that allows the

structure to move continuously from its folded, bundle configuration to the deployed, hexagonal

configuration [4]. Without making any assumptions, our numerical simulation has produced the

results shown in Figure 12 and 13. The plot in Figure 12 shows that also in this case there is a

12



unique motion path, with θA = θC = θE and θB = θD = θF throughout. Six snapshots from the

simulation are shown in Figure 13.

A key issue, when considering the behaviour of a deployable structure, is whether there is the

possibility of it deploying into the “wrong shape”. This issue can be investigated by monitoring

the singular values of the Jacobian matrix at every step of the deployment simulation, and

particularly the ratio between the largest and smallest non-zero singular values. The smallness

of this ratio is related to the sensitivity of the real structure to the presence of small geometric

imperfections or to small elastic deformation of its members.

In the two examples that have been presented in this section this investigation leads to the

conclusion that both structures are insensitive to errors, and hence “robust”. However, this is

not always the case and an example will be presented in the next section.

6 A Further Example

The examples presented in the previous section, which have been shown to have unique deploy-

ment paths, are not typical of over-determinate closed-loop linkages. Our search for deployable

rectangular structures, of which an example was shown in Figure 3, has produced many exam-

ples of structures with mobility higher than one in at least one intermediate configuration. The

full story will be presented elsewhere but here we show an example that highlights the potential

usefulness of the proposed algorithm in detecting any special configurations where the kinematic

path can bifurcate.

Figure 14 shows a particular realization of an over-constrained linkage proposed by S.D. Guest

[16]. This model is made from square section timber rods forming a “picture frame” similar

to that in Figure 8, but in this particular case the structure is of rectangular shape. The

arrangement of the rods is similar to that in Figure 8 as, again, one set of cross-sectional

diagonals lie in the central plane of the structure and all four corners have been cut at 45◦ to the

centre lines of the rods. However, this time the two shorter sides have been cut in the middle.

Six “door” hinges have been attached to the upward facing faces of this structure: the corner

hinges face inwards, whereas the mid-side hinges face outwards.

Like the structures discussed in Section 5, this structure also has a rank-deficient Jacobian matrix

and its mobility is initially one. We have used our path-tracing algorithm to simulate its motion

and, unlike the examples in Section 5, we have found that here the rank of the Jacobian matrix
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drops from 5 to 4 in a particular, intermediate configuration. Hence, the deployment path of

this structure has a symmetry-breaking bifurcation point, corresponding to the vanishing of the

5th singular value of the Jacobian matrix. In this configuration it is possible for the structure

to switch to an alternative deployment path, as illustrated in Figure 15.

7 Discussion

This paper has presented a general methodology for carrying out high accuracy kinematic sim-

ulations of closed-loop linkages. A particular challenge associated with the linkages that are

of current interest for applications in deployable structures is that they typically contain six

revolute joints and hence, in order to have mobility, they have to be over-constrained. Yet they

are required to have a unique deployment path and so the Jacobian matrix associated with these

linkages should ideally be rank-deficient with nullity of one.

The proposed algorithm has been used to analyse three deployable structures that have the

special property of folding into a tight bundle and deploying into a flat polygonal shape. The

first two structures satisfy all of the conditions listed above, and yet their their deployment

kinematics involve a complex motion of the rods relative to one another. This limits the range

of applications for which these structures can be used; for example, if a thin, flat membrane

were to be attached to either of these structures, during deployment it would be required to

stretch by a significant amount. The third structure would not have this problem, but has been

shown that its deployment path has a bifurcation point. Using the tools presented in this paper,

we have a carried out an extensive study of alternative linkages; the results will be published

shortly [5].
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Main Notation

a x-component of length of a member

C configuration of linkage

d y-component of length of a member

e,E error vector (6 × 1), error matrix (4 × 4)

I identity matrix (4 × 4)

P point lying on axis of revolute joint

r rank of jacobian matrix

Ri rotation matrix (3 × 3)

Ti transformation matrix for member i (4 × 4)

Ti,j compound transformation matrix for members from i to j (4 × 4)

U, V, W singular value decomposition of Jacobian matrix (6 × 6), (6 × 4), (4 × 4)

v translation vector

x, y, z local cartesian coordinate system

X,Y, Z global cartesian coordinate system

αi angles of isosceles triangle

φ, ω, ψ Euler angles

θ hinge rotation angle

ξ, η, ζ partially rotated coordinate system

Subscripts:

0 initial configuration

Superscripts:

* correction

( ) incremented configuration
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Figure 1: Folded and deployed configurations of Hoop-Column Antenna demonstrator (courtesy

of Toshiba Corporation).
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Figure 2: Ten-sided closed loop deployable structure proposed by J. Hedgepeth [2].
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Figure 3: Deployable 6-bar rectangular structure (from [5]).
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Figure 8: Deployable square frame proposed by Hedgepeth.
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Figure 9: θA vs θB for Hedgepeth’s deployable square structure (having assumed symmetric

behaviour).
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Figure 14: Deployable rectangular frame proposed by S.D. Guest.
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