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Abstract A mathematical model to measure the shape

of a 3D surface using angle measurements from em-

bedded sensors is presented. The surface is known in

a reference configuration and is assumed to have de-

formed inextensibly to its current shape. An inexten-

sibility condition is enforced through a discretization

of the metric tensor generating a finite number of con-

straints. This model allows to parameterize the shape

of the surface using a small number of unknowns which

leads to a small number of sensors. We study the singu-

larities of the equations and derive necessary conditions

for the problem to be well-posed as well as limitations

of the algorithm. Simulations and experiments are per-

formed on developable surfaces under relatively small

deformation to analyze the performance of the method

and to show the influence of the parameters used in
our algorithm. Overall, the proposed method outper-

forms the current state-of-the-art by almost an order of

magnitude.
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1 Introduction

Recovering the shape of a 3D surface often requires

a measurement system with a certain depth of view.

Cameras, scanning lasers or radars are often used to

generate a point cloud of the surface. Methods exist to

convert this cloud into a more or less smooth 3D surface

[1,2].

Many solutions focus on reconstructing the shape

of a surface from a set of measurements and a refer-

ence configuration (also called a template). The 3D

shape of the reference is known either from a previ-

ous measurement or from the method of construction

of the structure. For instance, the surface depicted in

figure 1 is known to be a sheet of paper and its di-

mensions are dictated by a predefined printed pattern.
Monocular reconstruction of a surface is a well-known

method [3,4,5,6,7,8,9,10]. For instance, Shape-from-

Template (SfT) which preserves geodesic distances is

widely used to reconstruct shapes by matching features

in a picture of the surface and a template while allowing

isometric deformation of the structure from the tem-

plate. Other methods also integrate the measurement

of the direction of the normal to the surface implic-

itly from images [8,9,10]. Such methods include Shape-

from-Shading (SfS) that uses the reflection of light from

the surface.

There are inherent limitations to these methods. For

instance, the camera has to be held in front of the sur-

face at a distance sufficient to accommodate the field

of view or range of the system. Rigs of cameras can

extend the depth of view by having each camera look

at a different part of the structure and hence closer

to it but add complexity and still require a minimum

distance from the surface. There may be insufficient

space available in front of the structure, or holding the
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Fig. 1: Example of images used for monocular,

template-based reconstruction of inextensible surface

[4]. The left image shows a flat sheet of paper (refer-

ence configuration) and the other images show bent and

crumpled configurations to be reconstructed.

camera may be very difficult, e.g. in the case of large

space structures or rapidly moving objects. In the for-

mer case, while it is possible to attach a camera to a

deployable boom or have a second spacecraft follow the

primary structure, such solutions add mass and com-

plexity to the system. Finally, camera-based methods

such as Shape-from-Template require a pattern to be

drawn on the surface which may be undesirable in some

situations. For instance, a flexible solar array is covered

with photovoltaic cells and drawing a pattern on top

would decrease the efficiency of the array.

The approach investigated in this paper is based on

embedding angle sensors directly on the surface to be

reconstructed.

Different technologies exist to perform such mea-

surements. Most state-of-the-art technologies use iner-

tial sensors (a combination of accelerometers and mag-

netometers) to measure angles from the gravity vector

and Earth’s magnetic North and have been investigated

to reconstruct both 3D curves and surfaces [11,12,13,

14,15,16]. Note that if the surface experiences large ac-

celerations, the accelerometers fail to detect the direc-

tion of gravity. Magnetic fields are easily affected by

magnets, currents, or ferrous materials, which limits the

usage of magnetometers.

Sun sensors have recently been studied mostly for

space applications where gravity is near-zero [17,18,19].

Different sensor technologies exist. The simplest ones

use quad-photodiodes behind an aperture, effectively

acting as a 4-pixel pinhole camera [19]. More complex

architectures involve cameras with a large photosensor

array that locate the centroid of the spot created by

the light source using image-processing algorithms [20].

They can also identify features in the image (such as

stars) to improve their accuracy.

The angle measurements of these sensors are fed in

an algorithm that will be described in this paper, and

the algorithm reconstructs the shape of an inextensible

support surface that holds the sensors.

This study is limited to inextensible deformations,

also called isometric deformations as the surface can-

not stretch or contract. The term inextensible will be

used in this paper, as it is widely used in the field of

structural mechanics. This requires a reference configu-

ration, also called template in the literature, to be fully

known in order to define the conservation of lengths

upon deformation.

The overall problem is described in figure 2. Im-

posing inextensibility of the deformation of the surface

usually serves two purposes: 1) to eliminate singular-

ities in the algorithms and 2) to improve the results

by adding some knowledge of the deformation. Many

methods used to reconstruct inextensible surfaces em-

ploy a triangular [5,21] or quadrilateral [22] mesh to

map the surface. Each edge of the mesh can be defined

as a straight, rigid line which implicitly enforces inex-

tensibility. This method requires a fine mesh in order to

achieve a smooth mapping; this means that many de-

grees of freedom must be computed from a large amount

of data (for instance, high resolution images) which can

be computationally expensive. Tangential and normal

vectors are undefined at the intersection of edges which

can cause issues in defining angles. Note that different

methods exist to reduce the number of variables of a

fine mesh [23] with some guaranteeing inextensibility

of the deformation [24], eventually preserving details of

the template. However, they add complexity to the re-

construction algorithm. Previous research involving em-

bedded sensors does not strongly impose inextensibility

of the deformation. The surface is reconstructed by in-

tegrating along inextensible lines where the angle sen-

sors are placed uniformly [11,14,15]. The inextensibility

is either imposed explicitly, by enforcing conservation

of lengths between sensors, or implicitly by connecting

sensors by means of rigid lines. The surface is then filled

by different techniques such as Coon’s methods in [13]

or using a quad mesh in [11]. While inextensibility is

imposed along the lines of integration, it is usually con-

strained by the placement of sensors and incomplete as

shear is not taken into account.

Our approach is to reconstruct the relatively smooth

shape of the surface in its current configuration by only

assuming an inextensible transformation from the refer-

ence configuration (or template) and the measurement

of angles at discrete locations along the structure. Be-

cause the number of sensors that can be placed on a

structure is limited, constraining the amount of vari-

ables to define the shape of the surface, only smooth

shapes are considered in this paper.

In order to estimate the shape of a surface, we pa-

rameterize it on a set of basis functions. This is pre-

sented in section 2. Different sets of basis functions rel-
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Reference Configuration Current Configuration

Inextensible Deformation

Fig. 2: Definition of the problem. The surface is parametrized by two coordinates (u, v). The 3D surface is a mapping

of the 2D coordinates to 3D. The shape of the reference configuration is known while the current configuration

needs to be reconstructed.

evant to this problem are introduced. We define the

inextensibility of the deformation in section 3 using the

conservation of the metric tensor. The general math-

ematical relations are discretized in order to generate

a finite set of constraints. The singularities associated

with this first system of equations are analyzed. A set of

angle measurements is defined in section 4. Their sin-

gularities are analyzed separately from the inextensi-

bility conditions, and we especially investigate require-
ments on the placement of the sensors. The complete

system of equations including inextensibility and an-

gle measurements is obtained in section 5. It is gener-

ally an overconstrained system whose least error solu-

tion can be found, given an initial estimate, using the

Levenberg-Marquardt algorithm. Singularities of this

complete system are studied based on the remarks done

on the singularities of each set of equations. The ap-

proach is tested on simulations of a developable surface

with a conical shape, in section 6. A complete study

analyzing the overall error of the reconstructed shapes,

the inextensibility, the influence of sensor noise and dif-

ferent parameters of the algorithm are investigated. In

section 7, the presented method is compared to the cur-

rent state of the art, which uses Inertial Measurement

Units (IMUs) as sensors. It is shown that the presented

method outperforms current methods. Finally, section

8 shows the results of an experimental demonstration.

Sub-millimeter accuracy was achieved on a 1.2×0.2 m2

structure under relatively small deformations, as pre-

dicted from simulations.

2 Surface Model

2.1 Definition of Parametric Surface

A 3D surface can be described explicitly by the map-

ping r : X ⊂ R2 → R3. Only two curvilinear coordi-

nates (u, v) are needed to uniquely define a point on

the surfaces as shown in figure 2. The image of this

two-coordinate point through the mapping represents

the location of that point in 3D space.

For instance, a flat surface (or plane) can be repre-

sented by:

r(u, v) =

uv
0

 (1)

A cylindrical surface of radius R along the z-axis

can be represented by:

r(u, v) =

R cosu

R sinu

v

 (2)
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Table 1: Nomenclature

αS
Angle around the first tangent vector
at the location of sensor S

βS
Angle around the second tangent vector
at the location of sensor S

M0, M
Metric tensor in reference, and current
configurations

n(u, v) Normal of surface parameterized by r(u, v)
NS Total number of sensors
Nu Number of control points in the u-direction
Nv Number of control points in the v-direction

N̂u Size of [ûi]

N̂v Size of [v̂j ]
qk Position of the control point k

r(u, v)
Position of the surface in the
current configuration

r0(u, v)
Position of the surface in the
reference configuration

∂r
∂u

(u, v)
First tangential vector of the surface
parameterized by r(u, v)

∂r
∂v

(u, v)
Second tangential vector of the surface
parameterized by r(u, v)

u, v Curvilinear coordinates of a surface
uS , vS Curvilinear coordinates of sensor S

[ûi]
Coordinates of inextensibility grid in the
u-direction

[v̂j ]
Coordinates of inextensibility grid in the
v-direction

φk(u, v) Basis function k

2.2 Basis Function Decomposition

We consider a finite dimension mapping defined by ba-

sis functions. The mapping r can be written as:

r : X ⊂ R2 −→ R3

(u, v) 7−→ r(u, v) =

N∑
k=1

qkφk(u, v)
(3)

where φk : X → R are basis functions, qk are unknown

3D points called control points and define the weight

of the basis functions, and N is the dimension of the

function space.

This basis representation is common for such prob-

lems [4,5,25,26]. Many sets of functions can be used to

describe the mapping r. Perriollat et al. [4] use Thin-

Plate Splines, Metaxas et al. [25] use Finite Element

basis functions which are piecewise polynomials defined

over local supports. B-Splines are used to fit a surface

to data points [27]. Note that B-Splines and the more

complicated 2D Non-Uniform Rational Basis Splines

(NURBS) are often used in computer-aided design to

draw complex surfaces. Other basis functions such as

rational Gaussian functions can also be used [28]. They

have the advantage of being able to capture both global

and local deformations with one set of basis functions

Current Configuration

Fig. 3: Parameterized mapping defining the surface to

be reconstructed. Circles represent the 3D position of

the control points.

by varying the standard deviation of each Gaussian.

Simple polynomial series have also been used in [17].

In order to define angles of the surface at specific lo-

cations (see Section 4), the basis functions used in our

problem need to be differentiable. We limit this study to

simple polynomial basis functions: 2D Lagrange poly-

nomials. They are defined over a grid of control points

aligned with the curvilinear coordinates (see figure 3).

Let Nu and Nv be the size of the grid in each direction

and note that N = Nu ×Nv. We can rewrite equation

(3) as:

r(u, v) =

Nu∑
k=1

Nv∑
l=1

qk,lφk,l(u, v) (4)

Lagrange polynomials are often used to interpolate

functions based on known values at discrete locations

[29]. They are easy to compute and physically under-

standable as the control points lie on the surface to be

reconstructed. Unfortunately, for a large number of con-

trol points, which corresponds to a large polynomial or-

der, they are susceptible to Runge’s phenomenon where

a function can have large oscillations near the bound-

aries of the domain [30]. The basis functions are written

as:

φk,l(u, v) = Luk(u)Lvl (v) (5)
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Fig. 4: Lagrange basis function φ4,3(u, v) = Lu4 (u)Lv3(v)

on a regular grid of interpolation coordinates [uk] =

[vl] = (−2,−1, 0, 1, 2).

where Luk (resp. Lvl ) is the Lagrange polynomial in the

u-direction (resp. v-direction):

Luk(u) =

Nu∏
p=1
p 6=k

u− up
uk − up

and Lvl (v) =

Nv∏
p=1
p 6=l

v − vp
vl − vp

(6)

where uk (resp. vl) are interpolation coordinates defined

in the uv-plane. Figure 4 shows the Lagrange basis func-

tion φ4,3(u, v) = Lu4 (u)Lv3(v) on a uniform grid of inter-

polation coordinates [uk] = [vl] = (−2,−1, 0, 1, 2).

3 Inextensibility Constraints

3.1 Definition of the constraints

Curvilinear distances on a surface in 3D Euclidian space

can be calculated using the metric tensor [31,32]. It is

the tensor representation of the first fundamental form

in differential geometry [33]. For the parametric surface

defined in equation (4), the associated metric tensor is:

M(u, v) =

 ∂r∂u · ∂r∂u ∂r
∂u ·

∂r
∂v

∂r
∂u ·

∂r
∂v

∂r
∂v ·

∂r
∂v

 (7)

where a · b is the inner product between vectors a and

b.

The length of a curve defined in the uv-space by

(u(t), v(t)), t ∈ [t0, t1] can be calculated as:

s =

∫ t1

t0

√[
u′(t), v′(t)

]
M(u(t), v(t))

[
u′(t)

v′(t)

]
dt (8)

As a result, the deformation between two surfaces

defined by r0 and r is inextensible if any curve has

the same length on both surfaces, or if and only if the

metric tensor is conserved upon deformation M = M0: ∂r∂u · ∂r∂u ∂r
∂u ·

∂r
∂v

∂r
∂u ·

∂r
∂v

∂r
∂v ·

∂r
∂v

 =

∂r
0

∂u ·
∂r0

∂u
∂r0

∂u ·
∂r0

∂v

∂r0

∂u ·
∂r0

∂v
∂r0

∂v ·
∂r0

∂v

 (9)

Note that M0 is fully known since the reference con-

figuration is known. The inextensibility of the transfor-

mation leads to the following 3 equations:

∂r

∂u
· ∂r
∂u

=

∥∥∥∥∂r∂u
∥∥∥∥2 =

∥∥∥∥∂r0

∂u

∥∥∥∥2 (10)

∂r

∂v
· ∂r
∂v

=

∥∥∥∥∂r∂v
∥∥∥∥2 =

∥∥∥∥∂r0

∂v

∥∥∥∥2 (11)

∂r

∂u
· ∂r
∂v

=
∂r0

∂u
· ∂r

0

∂v
(12)

Equations (10) and (11) impose the condition that

the square of the local strain in both directions u and

v is zero. Equation (12) imposes the condition that the

angle between the two tangent directions remains con-

stant.

Equations (10) - (12) form a system of three non-

linear differential equations for three unknowns (the

components of r). The family of solutions represents

all possible inextensible deformations from the initial

configuration r0. The complexity of this system makes

it impossible to solve analytically. As a result we derive

a finite subset of constraints inspired from these PDEs.

We define a regular grid called inextensibility grid

aligned with the curvilinear coordinates u and v. It is

parameterized by the coordinates [ûi] = (û1, ..., ûi, ..., ûN̂u
)

and [v̂j] = (v̂1, ..., v̂j , ..., v̂N̂v
). This grid is shown in fig-

ure 5. It is usually different from the grid used to define

the Lagrange polynomials shown in figure 3.

Equations (10) - (12) are discretized into a finite

number of constraints on this grid. The strain con-

straints are applied on average between two nodes of

the grid. This is equivalent to conserving the length of

each edge of the grid. The dot product constraint is

taken at the nodes of the grid. This leads to the follow-

ing equations:∫ ûi+1

ûi

∥∥∥∥∂r∂u (u, v̂j)

∥∥∥∥ du =

∫ ûi+1

ûi

∥∥∥∥∂r0

∂u
(u, v̂j)

∥∥∥∥ du (13)

∫ v̂j+1

v̂j

∥∥∥∥∂r∂v (ûi, v)

∥∥∥∥ dv =

∫ v̂j+1

v̂j

∥∥∥∥∂r0

∂v
(ûi, v)

∥∥∥∥ dv (14)

∂r

∂u

T

(ûi, v̂j)
∂r

∂v
(ûi, v̂j) =

∂r0

∂u

T

(ûi, v̂j)
∂r0

∂v
(ûi, v̂j) (15)

where the right hand-side is known.
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Reference Configuration Current Configuration

Inextensible Deformation

Fig. 5: Inextensibility constraints on the grid defined by [ûi] and [v̂j]. The red and blue segments remain the same

length after deformation. The angle around the node defined by the green arc also remains the same.

These constraints can be physically interpreted by

considering a 2D structure made of rods and rigid joints.

The length constraints represent the inextensibility of

the rods while the angle constraints represent the fixed

angles between rods imposed by the joints.

A similar approach is used in [3,7,8]. The metric

tensor is constrained to remain constant upon defor-

mation at discrete locations on the surface (nodes of

a grid). The length constraints in equations (13) and

(14) are replaced by simply imposing the norm of the
tangent vectors to remain constant. Using lengths in

the constraints as opposed to the norm of the tangent

vectors makes it easier to define the reference configura-

tion, especially for more complex geometries. Distances

are well defined quantities while the norm of the tan-

gent vectors highly depends on the mapping used to

define the reference configuration.

3.2 Rank Deficiencies

The inextensibility conditions defined in equations (13)

- (15) applied over the whole inextensibility grid define

a system of 3N̂uN̂v − N̂u − N̂v equations

f(q1, ..., qN ) = 0 (16)

where f is a vector containing all the inextensibility

conditions, written as:

fu,i,j =

∫ ûi+1

ûi

∥∥∥∥∥
N∑
k=1

qk
∂φk
∂u

(u, v̂j)

∥∥∥∥∥ du
−
∫ ûi+1

ûi

∥∥∥∥∂r0

∂u
(u, v̂j)

∥∥∥∥ du = 0

(17)

fv,i,j =

∫ v̂j+1

v̂j

∥∥∥∥∥
N∑
k=1

qk
∂φk
∂v

(ûi, v)

∥∥∥∥∥ dv
−
∫ v̂j+1

v̂j

∥∥∥∥∂r0

∂v
(ûi, v)

∥∥∥∥ dv = 0

(18)

fA,i,j =

N∑
k=1

N∑
l=1

qk
Tql

∂φk
∂u

(ûi, v̂j)
∂φl
∂v

(ûi, v̂j)

−∂r
0

∂u

T

(ûi, v̂j)
∂r0

∂v
(ûi, v̂j) = 0

(19)

The jacobian of this system of equations is defined

as the tensor:

J =

[
∂f

∂q1
...

∂f

∂qN

]
(20)

Let (q∗1 , ..., q
∗
N ) be a solution of equation (16) and

r∗ the associated surface. Let qk = q∗k + δqk with

‖δqk‖ � 1. One can calculate ∂f
∂qk

by calculating the
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first order term of the Taylor expansion of f(q∗1 , ..., q
∗
k+

δq∗k, ..., q
∗
N ). This leads to:

∂fu,i,j
∂qk

=

∫ ûi+1

ûi

∂r∗

∂u (u, v̂j)∥∥∥∂r∗

∂u (u, v̂j)
∥∥∥ ∂φk∂u (u, v̂j)du (21)

∂fv,i,j
∂qk

=

∫ v̂i+1

v̂i

∂r∗

∂v (ûi, v)∥∥∥∂r∗

∂v (ûi, v)
∥∥∥ ∂φk∂v (ûi, v)dv (22)

∂fA,i,j
∂qk

=

(
∂φk
∂v

∂r∗

∂u
+
∂φk
∂u

∂r∗

∂v

)
(ûi, v̂j) (23)

Singularities of the jacobian (deformations associ-

ated with a null singular value) describe the possible

isometric motions of the surface around the current con-

figuration.

Because equations (21) - (23) are functions of the

basis function derivatives in u and v, the inextensibil-

ity grid has to cover the whole surface. The values of

the basis function derivatives decrease as the distance

from a control point increases. If the grid is localized

in a certain region, the motion of a control point far

from this region can create a numerical singularity as

equations (21) - (23) become close to 0.

Rigid-body translations and rotations are obvious

singularities of the jacobian which can be shown from

equations (21) - (23). Additionally to rigid body mo-

tions, it is possible to have non-rigid singularities. These

are important since they correspond to actual deforma-

tions of the surface. They are dependent on the current

shape r∗.

Table 2 shows the number of singularities for differ-

ent shapes, number of control points and size of inexten-

sibility grids, calculated numerically using MATLAB.

Lagrange polynomials cannot exactly represent circu-

lar surfaces such as cylinders, cones, sphere, etc. These

shapes were generated by placing the control points

evenly on these mathematically defined surfaces. The

inextensibility grid was also evenly spaced and mapped

to the whole surface delimited by the control points.

Different parameters where used to create the shapes

(such as radii, cone opening angle, etc.) and the results

were identical. Finally, the number of singularities was

calculated using the MATLAB rank function on the

jacobian of the system with the default tolerance pa-

rameter.

The plane yields the largest number of singulari-

ties, and the numerically calculated values are equal to

3+NuNv. This result holds also for larger grids, as it is

possible to see from equations (21) - (23) that the mo-

tion of each control point perpendicular to the plane

creates a singularity. This set includes the rigid trans-

lation normal to the plane and the two rotations whose

axes lie within the plane. The in-plane rigid transla-

tions and the rigid rotation around the normal are the

3 additional singularities, hence yielding the number

3 +NuNv.

Table 2 shows that for all non-planar shapes, the

actual number of singularities is much smaller than 3 +

NuNv.

Num. of control points 4× 4 10× 10 10× 10

Size of inex. grid 4× 4 10× 10 20× 20

Plane 19 103 103

Cylinder 12 30 10

Cone 9 20 6

Sphere 10 21 6

Random 8 20 6

Table 2: Numerically calculated number of singularities

of the inextensibility constraints

4 Angle Measurement Constraints

4.1 Definition of the measurement

In order to measure the deformation of the surface, we

introduce local angle measurements at several points

on the surface. These measurements determine the an-

gles between the normal to the surface and a specific

direction.

We assume that the angles are measured to the line

from the sensor location and the origin of R3 which

coincides with the vector r. This can be done in practice

by placing a light source at the origin and light sensors

on the surface.

At each sensor location, two angles α, β are mea-

sured along the curvilinear coordinates, that is along
∂r
∂u and ∂r

∂v from the normal of the surface as, shown in

figure 6.

The location of the sensors is defined by (uS , vS) ∈
RNS×2 where NS is the total number of sensors. They

do not need to lie on a specific grid as required by pre-

vious research [11,14,15]. Figure 7 shows an example of

the location of the sensors in the uv-space and their po-

sition in the current configuration. The local coordinate

system at the location of a sensor is also shown.

The angles at a sensor location (uS , vS) are defined

as:

tanαS =
r(uS , vS) · ∂r∂v (uS , vS)

r(uS , vS) · n(uS , vS)

‖n(uS , vS)‖∥∥∂r
∂v (uS , vS)

∥∥ (24)

tanβS = −
r(uS , vS) · ∂r∂u (uS , vS)

r(uS , vS) · n(uS , vS)

‖n(uS , vS)‖∥∥ ∂r
∂u (uS , vS)

∥∥ (25)
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∂r

∂v

∂r

∂u

n

r(u,v)

α>0

β<0

Fig. 6: Definition of the angles in the local coordinate

system of a sensor. r (uS , vS) represents the direction

to which the angles are measured. Note that the angle

β is negative in the figure (positive angles are defined

from n to ∂r
∂u ).

Current Configuration

Fig. 7: Example position of the angle sensors on the sur-

face (green circles). The vector defining the position of

a sensor r(uS , vS) is collinear with the light ray seen by

the sensor (the light source is positioned at the origin).

The local coordinate system at that sensor location is

also shown.

where n(uS , vS) is the normal to the surface:

n =
∂r

∂u
× ∂r

∂v
(26)

Note that the normal of the surface needs to re-

main relatively close to the measurement direction, oth-

erwise the denominator of the previous equations will

approach zero. In practice, light sensors have a limited

field-of-view which would limit the the measured angle

in equations (24) and (25) to less than 90◦.

Similar equations can be written when the angle

measurement is taken from a fixed direction such as an

infinitely distant light source along the vector z. Then

equations (24) and (25) become:

tanαS =
z · ∂r∂v (uS , vS)

z · n(uS , vS)

‖n(uS , vS)‖∥∥∂r
∂v (uS , vS)

∥∥ (27)

tanβS = −
z · ∂r∂u (uS , vS)

z · n(uS , vS)

‖n(uS , vS)‖∥∥ ∂r
∂u (uS , vS)

∥∥ (28)

4.2 Rank Deficiency

The equations (24) and (25) are invariant for any ro-

tation around the origin. This is because multiplying r

by a rotation matrix also multiplies the local tangent

and normal vectors. The dot products and norms are

invariant by rotation. Uniform scaling (multiplying r

by a non-zero coefficient) also creates a singularity.

Numerical rank deficiencies (singular values of the

jacobian close to 0) can occur when sensors are concen-

trated on a specific part of the structure. This has sim-

ilar effect to localizing the inextensibility grid on one

part of the surface (see section 3.2). The shape func-

tions only have a localized influence and if no sensor

is located on a specific region of the structure then it

can deform without modifying the measurement of the

sensors.

To show this, we calculate the derivatives of the

equations (24) and (25) with respect to qk. Because

of the complexity of these equations, it is assumed that

the deformation is perfectly inextensible. This means

that
∥∥ ∂r
∂u

∥∥,
∥∥∂r
∂v

∥∥, and ‖n‖ are constant. Without loss

of generality, they are set to 1. Additionally, the light

source is assumed to be very far from the surface and

along the z-direction (equations (27) and (28)).

With these simplifications, one can show that the

derivatives about an initial shape r∗ can be written as:

∂ tanαS
∂qk

=
tanα∗S
z · n∗

∂r
∗

∂v
∂φk

∂u −
∂r∗

∂u
∂φk

∂v
∂r∗

∂u
∂φk

∂v −
∂r∗

∂v
∂φk

∂u
1

tanα∗
S

∂φk

∂v

 (29)

∂ tanβS
∂qk

=
tanβ∗S
z · n∗

∂r
∗

∂v
∂φk

∂u −
∂r∗

∂u
∂φk

∂v
∂r∗

∂u
∂φk

∂v −
∂r∗

∂v
∂φk

∂u
1

tan β∗
S

∂φk

∂u

 (30)

From these equations, we can see that if
∥∥∥∂φk

∂u

∥∥∥ �
1 and/or

∥∥∥∂φk

∂v

∥∥∥ � 1 for all (uS , vS) ∈ RNS×2 then

both derivatives have components close to 0 and some
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columns of the jacobian will be close to 0 leading to

a numerical singularity. This would be the case if, for

example, only a part of the surface is covered with angle

sensors. The shape functions associated with the control

points located far away from the sensors will have near-

zero derivatives at the sensor locations.

5 Surface Reconstruction as a Least-Squares

Problem

The numerous constraints detailed in the previous sec-

tions 3 and 4 (equations (13), (14), (15), (24), and (25))

are used to determine the shape of a surface parametrized

with 2D Lagrange Polynomials (section 2). This algo-

rithm can be written as follows:

Input: Initial Location of the Lagrange Polynomials
control points q̄0
Location of the inextensibility grid vertices
{(ûi, v̂j), i = 1, ..., N̂u, j = 1, ..., N̂v}
Location of the sensors
{(ûS , v̂S), S = 1, ..., N̂S}
Points of interest where to reconstruct the
surface {(u, v)}

Result: Optimal shape of the surface r̃
q̄∗ ← q̄0
Loop

(αS , βS)← RetrieveMeasurements();
q̄∗ ← GetCPLocations(q̄∗, ûi, v̂j , ûS , v̂S , αS , βS);
r̃ ← GetShape(q̄∗, u, v)

EndLoop

Algorithm 1: Reconstruction of the shape of a sur-

face from discrete angle measurements

Here, the function RetrieveMeasurements() collects the

angle measurement from all sensors (or creates random

measurements in the case of simulations), GetCPLoca-

tions() is a minimization function described in the next

section 5.1 and GetShape() is simply equation (3). The

algorithm loops indefinitely as long as measurements

are available. A result, i.e., a shape of the structure is

given at the end of each loop. GetCPLocations() gets

initiated by the result of the previous loop except for

the first loop where an initial guess is given.

5.1 System of Equations

Equations (13), (14), (15), (24), and (25) form a sys-

tem that solves the problem of reconstructing a surface

from angle measurements undergoing an inextensible

deformation from a template:∫ ûi+1

ûi

∥∥∥∥∂r∂u (u, v̂j)

∥∥∥∥ du− ∫ ûi+1

ûi

∥∥∥∥∂r0

∂u
(u, v̂j)

∥∥∥∥ du = 0

∀i = 1, ..., N̂u − 1, ∀j = 1, ..., N̂v

∫ v̂j+1

v̂j

∥∥∥∥∂r∂v (ûi, v)

∥∥∥∥ dv − ∫ v̂j+1

v̂j

∥∥∥∥∂r0

∂v
(ûi, v)

∥∥∥∥ dv = 0

∀i = 1, ..., N̂u, ∀j = 1, ..., N̂v − 1

∂r

∂u

T

(ûi, v̂j)
∂r

∂v
(ûi, v̂j) =

∂r0

∂u

T

(ûi, v̂j)
∂r0

∂v
(ûi, v̂j)

∀i = 1, ..., N̂u, ∀j = 1, ..., N̂v

tanα−
r(uS , vS) · ∂r∂v (uS , vS)

r(uS , vS) · n(uS , vS)

‖n(uS , vS)‖∥∥∂r
∂v (uS , vS)

∥∥ = 0

∀S = 1, ..., NS

tanβ +
r(uS , vS) · ∂r∂u (uS , vS)

r(uS , vS) · n(uS , vS)

‖n(uS , vS)‖∥∥ ∂r
∂u (uS , vS)

∥∥ = 0

∀S = 1, ..., NS

(31)

Replacing r with equation (3) everywhere, the sys-

tem is a function of the unknown control point coordi-

nates, and can be written as:

fk(q̄) = 0 ∀k = 1, ..., Neq (32)

where fk(·) represents the equations defined in (31),

Neq = 3N̂uN̂v − N̂u− N̂v + 2NS is the number of equa-

tions in the system, and q̄ is the unknown vector defined

as the vertical concatenation of the control points. Since

this system is (usually) overconstrained, we rewrite the

problem as a least-squares minimization:

q̄∗ = arg min
q̄

Neq∑
k=1

f2k (q̄) = arg min
q̄

‖f(q̄)‖2 (33)

where f(q̄) = [f1(q̄), ..., fNeq
(q̄)]T .

5.2 Solution of Overconstrained System

In order to solve the least-squares problem defined in

equation (33), a locally optimal solution, given an ini-

tial guess can be found using the Levenberg-Marquardt

method in MATLAB [34].

This iterative algorithm starts with an initial guess

q̄0 (for which details are provided in section 6.5) , finds
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increments of the unknown vector, δq̄k, such that at

the next step, q̄k+1 = q̄k +δq̄k. The increment at each

step solves the equation:(
JTJ + λkI

)
δq̄k = −JTf(q̄k) (34)

where J = ∂f
∂q̄ is the jacobian of the system and λk is a

non-negative damping factor that is optimized at each

step to maximize the decrease in the residual. If λk = 0

this algorithm is equivalent to the Gauss-Newton al-

gorithm (GNA). It is however more robust than GNA

when the initial guess is far from the solution. When

λk →∞, the algorithm tends to the gradient descent al-

gorithm. As a result, the Levenberg-Marquardt method

is a hybrid of the two algorithms.

The Levenberg-Marquardt algorithm stops when the

increment is smaller than a prescribed tolerance , i.e.

when:

‖δq̄k‖ < ε (35)

It is important to note that since the system is

over-constrained and the stopping criterion involves the

norm of the increment, the scaling of the equations (31)

matters. This will be shown through examples in the

next section.

5.3 Rank Deficiencies

The jacobian of the system can be calculated as the

vertical concatenation of the jacobian studied in sub-

section 3.2 and 4.2. In order to use the Levenberg-

Marquardt algorithm, the jacobian needs to be full rank,

i.e., its columns need to be independent.
A first requirement is to have more equations than

unknowns: Neq = 3N̂uN̂v − N̂u − N̂v + 2NS > 3NuNv.

This is only a necessary condition, observations from

sub-sections 3.2 and 4.2 show that the jacobian remains

singular under certain motions.

All equations are invariant for rigid-body rotations

around the origin. Without loss of generality, we con-

strain 3 coordinates among the control points to be

fixed. For instance, one point is restrained from mov-

ing along the x-axis and y-axis, and another point is

constrained from moving along the x-axis.

Additionally, the inextensibility conditions can have

up toNuNv singularities as explained in sub-section 3.2.

These are mutually exclusive with the singularities of

the angle equations. As a result, a minimum of NuNv
angle measurements are needed to have a full rank jaco-

bian, i.e. at least as many angle measurements as con-

trol points.

It is important to notice that when the distance

from the origin to the surface becomes large, another

Light Source

Fig. 8: 2D representation of the spherical singularity of

the system of equations. The black and red lines have

the same length and angles to the light source but their

shapes are different.

numerical singularity emerges. It corresponds to a spher-

ical motion. Figure 8 shows a schematic of this singu-

larity in 2D. A line perpendicular to the light source

can conform to any circle, hence there are infinitely

many solutions. In 3D, this is not a singularity as its

associated singular value is not exactly 0: conforming

a section of a sphere to a sphere of different radius is

an extensible deformation. This singularity is however

orders of magnitude lower than the next higher which

causes numerical issues. We call this singularity a spher-

ical singularity.

To remedy this issue, the distance of a point on the

surface to the origin can be fixed or bounded. This

would ensure that the solution remains at a relative

distance from the light source, removing the effect of

the spherical singularity which allows large translation

with relative small shape deformations.

In the case where the direction of the angle measure-

ment is fixed (equations (27) and (28)), this numerical

singularity becomes an actual singularity correspond-

ing to the rigid-body translation along that direction.

Fixing a point in 3D space can be done without loss of

generality.

6 Simulation Results

A set of simulations is performed to better understand

the performance of the proposed method and highlight

its limitations.

The surface to reconstruct is a piece of paper of size

A4 (297×210 mm2).The sheet is initially flat (reference

configuration). It is deformed to a conical shape located

1 m away from the light source. It is assumed that the
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sensors have a 90◦ field of view so that the surface can

bend to large angles relative to the light. They are also

assumed to be small so that they do not constrain the

deformation of the sheet otherwise.

Unless specified, a grid of 7×5 control points is used

to generate the Lagrange shape functions. An identical

grid is used for the inextensible grid and each vertex is

the location of a sensor. Each sensor has gaussian noise

which is assumed identical for all sensors and set to a

standard deviation of 10 arcminutes (3σ of 0.5◦). The

effect of the noise on the reconstructed shape will be

studied. A total of 500 measurements is generated in

order to get statistically accurate results.

Reconstruction accuracy. The error of the recon-

struction is calculated as the norm of the vector joining

the points with equal coordinates (u, v) in the recon-

structed and exact shapes:

Error(u, v) = ‖r(u, v)− r̃(u, v)‖ (36)

To characterize the accuracy of the method over

the whole surface for many different reconstructions,

the mean error, which corresponds to the average dis-

tance between the reconstructed and true shapes is cal-

culated:

e =
1

|A|

∫
A

‖r(u, v)− r̃(u, v)‖ dudv (37)

where A is the surface area of the sheet of paper.

Inextensibility. The isometry of the surface deforma-

tion is evaluated by plotting the error of the 3 elements

of the metric tensor from their nominal values defined

in equations (10) - (12). Note that in this case, M0 = I,

the 2× 2 identity tensor (developable surface).

To better understand the elements of the tensor, we

plot the Lagrangian normal and shear strains of the

surface [35]. They are given by:

εu =
1

2
(M11 − 1) (38)

εv =
1

2
(M22 − 1) (39)

γuv = M12 (40)

6.1 Reconstruction Errors

Figure 9 shows the average reconstructed shape from

the 500 generated measurements of the angle sensors

as well as the actual conical shape. They agree well

qualitatively as little to no difference can be seen.

To further understand the accuracy of the method,

the RMS error of the reconstructed shapes along the

(a) Actual conical shape of the structure.

(b) Reconstructed shape of the structure. The isometry grid
is shown. Each vertex also corresponds to the location of the
control points and light sensors.

Fig. 9: Actual and reconstructed conical shapes viewed

from the light source located 1 m in front of the struc-

ture.

Fig. 10: RMS error of reconstructed conical shapes

based on 500 simulated sensor measurements.

curvilinear coordinates is calculated and shown in fig-

ure 10. Note that rigid-body motions between the re-

constructed and actual shapes were removed. The er-

ror is maximum towards the top of the sheet which is

where the curvature is maximum. This is due to the
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fact that polynomial shape functions cannot perfectly

reconstruct circular segments, which introduce errors in

the reconstruction. The mean error of the reconstruc-

tions is equal to 0.3±0.03 mm (standard deviation from

all the reconstructed surfaces).

To analyze the effect of the inextensibility constraints,

the normal and shear strains are plotted in figure 11.

The values correspond to the average strains over the

500 reconstructed shapes.

The normal strains are close to 0 on average along

each segment of the inextensibility grid. However, they

still vary across the surface. A similar observation can

be made for the shear strains that are also close to 0 at

each node of the inextensibility grid but are non-zero

elsewhere.

The normal strain in the u-direction is dominant

and increases as the curvature increases. Since Lagrange

polynomials cannot perfectly reconstruct circular seg-

ments, the algorithm needs to stretch the surface in

order for the measured angles to better match their set

values. More precisely, the algorithm does a tradeoff be-

tween slightly stretching the surface and adding some

bias to the measured angles.

The shear strain variation is related to the normal

strains: the small non-uniform accumulated strain dis-

places the points of the surface forcing it to shear.

These results are similar to some monocular template-

based surface reconstruction algorithm such as Second

Order Cone Programs (SOCP) [6]. Some algorithms

out-perform the one presented in this paper as denser

meshes can be used to represent the surface since more

measurement data is available.

6.2 Effect of Sensor Noise

Figure 12 shows the evolution of the mean error across

the surface in function of the 3σ noise of the sensors.

For the studied structure and shape, the error rapidly

increases with the noise of the sensor. For sufficiently

low noise, the error does not vary significantly as it is

limited by the efficiency of the shape functions to accu-

rately represent the shape of the surface. In this case,

the minimum error considering perfect sensors is 0.26

mm. This sets a bound on the accuracy of the sensors.

There is no need for very accurate sensors (3σ noise be-

low 0.1◦) as they do not provide significantly better re-

sults. More accurate shape functions (such as NURBS)

could decrease this minimum error and justify the use

of more precise sensors.

The uncertainty of the reconstructed shape shown in

figure 12 by the gray area which represents the standard

deviation of the mean error also increases as the noise of

(a) Average normal strain in the u-direction, equation (38).

(b) Average normal strain in the v-direction, equation (39).

(c) Average shear strain, equation (40).

Fig. 11: Average strains of reconstructed conical shapes.
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Fig. 12: Mean error of reconstructed conical shapes.

the sensors increase: not only the accuracy gets worse,

it is also less predictable.

6.3 Convergence of Solution

To verify the convergence of the solution, the number

of control points was increase effectively increasing the

order of the Lagrange polynomials. To avoid rank defi-

ciencies, the number of sensors needs to be increased.

The same grid was used for the interpolation points

of the Lagrange polynomials, inextensibility constraints

and angle measurements. Its size was increased using

the following sequence: 5×3, 7×5, 9×7, 11×7, 13×9,

15× 11, and 17× 13.

Fig. 13: Variation of the mean error between recon-

structed and actual shapes by varying the grids size.

The convergence results for the conical shape are

shown in figure 13. The x-axis shows the size of the grid

while the y-axis shows the mean error (solid line) and

standard deviation (gray area) from 500 sensor mea-

surements. It can be seen that, as the grid gets more

refined, the accuracy of the algorithm is improved, as

expected.

Note that convergence issues arise for denser grids.

The initial shape is modified to be close to the solution

by positioning each control points at its location on the

conical shape (figure 9a). More details are presented in

sub-section 6.5. Sparse grids do not show convergence

issues based on the initial shape.

6.4 Variation of Algorithm Parameters

For a fixed number of control points, the solution de-

pends on three sets of parameters: the number and po-

sition of the angle sensors, the coordinates of the inex-

tensibility grid, and the weight of each equation of sys-

tem (31). By changing these parameters, the algorithm

converges to different solutions that will have different

errors. All parameters were varied for a fixed 7× 5 grid

of control points, and their impact on the mean error of

the reconstructed cone have been studied. The results

are shown in figure 14.

The size of the inextensibility grid was varied from

5 × 5 to 17 × 13. The minimum grid size was dictated

by the minimum number of equations needed in order

to have a well-posed problem. The results of varying

this grid size are shown in figure 14a. The curve is not

monotonic and there exists an optimum grid size that

provides the lowest mean error.

Varying the number of angle measurements was per-

formed by spreading the sensors on a uniform grid whose

size ranges from 5× 5 to 15× 11 while using fixed 7× 5

control points and inextensibility grids. The results are

shown in figure 14b. Similarly, an optimal grid of sen-

sors provides the lowest mean error.

As stated in sub-section 5.2, the weight of each equa-

tion of the system is important. We investigate the dif-

ference of weight between the first 3 equations, which

relate to the inextensibility of the surface and the last

two, which impose constraints on the measured angles.

Note that the first two equations of system (31) were

made adimensional by dividing by the length of the

edges of the inextensibility grid in the reference config-

uration. The other constraints are properly scaled and

do not depend on the size of the grids. Figure 14c shows

the influence of scaling the constraints. The inexten-

sibility conditions were multiplied by a scaling factor

λI = 1 and the angle constraints by λA which varies

from 10−2 to 102. An optimal gain (λA = 1) yields an

optimal reconstruction.
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(a) Mean error of reconstructed shapes while varying the size
of the inextensibility grid.

(b) Mean error of reconstructed shapes while varying the size
of the grid of angle measurements.

(c) Mean error of reconstructed shapes while varying the weight
of the angle constraints to the inextensibility constraints.

Fig. 14: Mean error of reconstructed shapes while vary-

ing different parameters of the algorithm using a 7× 5

grid of control points.

All graphs show similar results. The error evolves

as a function of the parameters. It gets higher for more

sparse and denser grids and reaches a minimum in-

between. This can be explained by the fact that the

shape is approximated by Lagrange shape functions.

Because of this approximation, the reconstructed shape

is neither perfectly inextensible, nor it perfectly matches

the angle measurements. Some relaxation of the con-

straints is needed. As a result, increasing the size of the

grids leads to many constraints that cannot be met by

the approximated shape. Inversely, smaller grids gives

more weights to the other equations. Varying the scal-

ing of the equations forces the algorithm to enforce con-

straints more or less tightly.

An optimization program could be developed to op-

timize the parameters of the algorithm to minimize the

mean error of its solution to desired shapes. Results

presented in this paper show that matching the inex-

tensibility grid with the control points and the angle

sensors leads to a near optimal scheme.

6.5 Influence of the Initial Shape

As mentioned in the previous section, the initialization

of the algorithm may affect the results as the cost func-

tion is non-convex. To illustrate this point, we study

the case of 9× 7 grids for control points, inextensibility

grids and sensor locations. It was noticed that all initial

shapes for sparser grids lead to a converged solution. We

study the result of the algorithm from different initial

shapes ranging from a flat one (used as the initial shape

in sub-section 6.1) to the solution (figure 9a):

Initial Shape = α [Flat] + (1− α) [Conical Solution]

(41)

where α ranges from 0 to 1.

Results are shown in figure 15. The algorithm does

not converge for high values of α (close to the flat shape)

but eventually converges when the initial shape is close

enough to the solution. Note that the curve is not mono-

tonic which may be due to the non-convexity of the

problem.

To circumvent this issue, a simple solution obtained

from a small number of control points can be solved first

as it appears to be more reliable and less dependent

on the initial shape. This solution can be used as a

starting point for denser grids of control points. This

can be done recursively. Once converged, the algorithm

does not appear to have problems following changes in

sensor inputs.
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Fig. 15: Mean error of reconstructed shapes using 9× 7

grids depending on the initial shape.

6.6 Computation Time

The computation time is dependent on the number of

constraints and control points. Both influence the size of

the jacobian matrix used in the Levenberg-Marquardt

algorithm which eventually has to be inverted. No par-

ticular effort was made to optimize the speed of the

algorithm except pre-computing the values of the La-

grange shape functions and its derivatives at the differ-

ent locations on the surface (the different integrations

used in the isometry constraints were performed using

Simpson’s rule).

Having the initial shape relatively far also increases

the computation time as many iterations need to be

performed. Once converged, the reconstructed shape

can be used as the initial point for the next reconstruc-

tion using a new set of measurements. This next itera-

tion of the algorithm becomes much quicker.

To compute the reconstructed shapes shown in fig-

ure 9b, the algorithm was run using MATLAB on an

Intel Core i5-6200 CPU. The first iteration of the al-

gorithm takes about 5 s to run as the initial shape is

far from the solution. The subsequent steps take 50 ms

on average as only a couple loops of the Levenberg-

Marquardt method are needed.

7 Comparison to the State-of-the-Art

To the knowledge of the authors, no other methodology

exists to reconstruct the shape of a surface with em-

bedded local angle measurements such as light sensors.

However, related research has used another type of sen-

sor, Inertial Measurement Units (IMUs), which measure

the direction of Earth’s gravity and magnetic field, not

by measuring angles but by measuring the coordinates

of these vectors along the 3 axes of the sensor which

correspond to the 3 local axes of the surface. The mea-

surement equations are similar to equations (27) and

(28) which can be re-written to express the unit vector

collinear with the light direction in the local reference

system of the sensor:

zS =


tanαS√

1+tan2 αS+tan2 βS

− tan βS√
1+tan2 αS+tan2 βS

1√
1+tan2 αS+tan2 βS

 =


z ·

∂r
∂u (uS ,vS)

‖ ∂r
∂u (uS ,vS)‖

z ·
∂r
∂v (uS ,vS)

‖ ∂r
∂v (uS ,vS)‖

z · n(uS ,vS)
‖n(uS ,vS)‖


(42)

This expression is equivalent to equations (27) and (28)

as it carries two independent pieces of information since

all vectors are unit vectors (including z). In the case of

an IMU, two directions are measured directly:

gS =


g ·

∂r
∂u (uS ,vS)

‖ ∂r
∂u (uS ,vS)‖

g ·
∂r
∂v (uS ,vS)

‖ ∂r
∂v (uS ,vS)‖

g · n(uS ,vS)
‖n(uS ,vS)‖

 (43)

BS =


B ·

∂r
∂u (uS ,vS)

‖ ∂r
∂u (uS ,vS)‖

B ·
∂r
∂v (uS ,vS)

‖ ∂r
∂v (uS ,vS)‖

B · n(uS ,vS)
‖n(uS ,vS)‖

 (44)

where gS (resp. BS) is Earth’s gravity (resp. magnetic

field) measured by the sensor and g (resp. B) is the

direction of Earth’s gravity (resp. magnetic field) in the

global reference system (all unit vectors).

Equations (43) and (44) were used instead of the

previously introduced angle measurements (equations
(27) and (28)). They are very similar in nature except

that two non-collinear directions are measured instead

of one and the measurement is better behaved as coor-

dinates stay bounded, unlike the tangent function.

These new measurement equations were integrated

in the algorithm and simulations based on this approach

were used to evaluate the performance of the presently

proposed method. The results are compared to two state-

of-the-art algorithms [11] and [14]. The same size of

surface, location of sensors, noise of sensors, inextensi-

bility grid and control points as the simulation in the

previous section are used.

Hermanis et al. [11] propose a linear algorithm to

reconstruct the shape. The two measured vectors (gS
andBS) are used to compute the tangent vectors of the

surface at each sensor location without ambiguity. It is

then assumed that the sensors are connected by means

of rigid bars. The position of each sensor is then cal-

culated by integrating the tangent vectors, effectively

using a midpoint integration rule. The position of each
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sensor is calculated as the average result from two dif-

ferent integration schemes: 1. the position of the sen-

sors placed on the central row is calculated by integrat-

ing along u and using the central sensor as a reference

(clamped to the origin of the coordinate system). The

position of the other sensors are calculated by integrat-

ing along v using the position of the sensors on the

central row as reference. 2. The position of the sensors

on the central column are calculated first then the ones

on each row. The rest of the surface is calculated from

the position of each sensor using a bilinear interpolation

scheme.

Saguin-Sprynski et al. [14] use a more complex in-

tegration scheme. The tangent vectors at each sensor

location are also inferred from the measurements. Then

the bottom and left edge of the surface (aligned with

the bottom left sensor) are calculated by integrating

the tangent vector which is interpolated from the sensor

data using cubic splines on the sphere [36]. The location

of the other sensors is calculated iteratively from a con-

strained minimization problem that enforces isometry

along the curves between sensors while matching the

sensor data. The surface is finally reconstructed using

a partially bi-cubically blended Coons process [37].

7.1 Reconstruction Errors

The shapes reconstructed by each algorithm are shown

in figure 16. Each method is able to capture the overall

shape of the structure. Figure 17 shows the RMS er-

ror of the reconstructions across the surface. Different

amounts of error between algorithms are clearly visible.

The one from Hermanis et al. [11] is the less accurate

with a mean error of 2.01 ± 0.01 mm. While the error

on the curves between sensors is relatively small, the

simple filling method creates large errors when the cur-

vature increases. The algorithm from Saguin-Sprynski

et al. [14] yields a mean error of 1.3± 0.06 mm. While

smoother, this method reconstructs the surface from

the bottom left corner to the top right while strictly

enforcing inextensibility on the curves between sensors.

As a result, the error is maximal on the top right cor-

ner as the noise of the sensors and errors in the inte-

gration method propagates. One can see in figure 16c

that the surface slightly shears to the right which is a

consequence of the strict length constraints. Finally our

proposed method has a mean error of 0.26± 0.01 mm.

Note that this value is a bit lower than the mean er-

ror of 0.3± 0.03 obtained from light sensors, quoted in

section 6.1, because each IMU provides four pieces of

information instead of two. Also note that the overall

pattern of the RMS error, in figure 17a, is very simi-

lar to figure 10. Overall, this result is better than the

(a) Actual conical shape of the structure.

(b) Reconstructed shape using algorithm presented in this pa-
per.

(c) Reconstructed shape using algorithm from Saguin-Sprynski
et al. [14].

(d) Reconstructed shape using algorithm from Hermanis et al.
[11].

Fig. 16: Actual and reconstructed conical shapes using

IMUs and different algorithms.
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(a) RMS error of reconstructed shapes using algorithm pre-
sented in this paper.

(b) RMS error of reconstructed shapes using algorithm from
Saguin-Sprynski et al. [14].

(c) RMS error of reconstructed shapes using algorithm from
Hermanis et al. [11].

Fig. 17: RMS error of reconstructed shapes based on

500 simulated measurements using IMUs and different

algorithms.

state-of-the-art by almost an order of magnitude under

the same conditions.

Figures 18, 19, and 20 show the average strain com-

ponents of the reconstructed shapes. The normal strains

are similar in terms of amplitude and overall shape for

all different algorithms. They are largest at the top

where the curvature is largest as the parameterization

of the shapes cannot perfectly capture this effect. The

main difference occurs for the shear strain. Our method

outperforms the other by a factor of 2.5 or more. This is

to be expected as our method includes the shear strains

in the inextensibility formulation of the surface. This

limits the propagation of an in-plane shift that can be

seen in the reconstructed shape in figure 16c.

7.2 Effect of Sensor Noise

As in the previous section, the mean error of each algo-

rithm is studied as a function of the noise of the sensors.

The results are shown in figure 21 in logarithmic scale

to compare the shape of each curve while the results

are an order of magnitude different. The accuracy of

each method is monotonic with the noise of the sen-

sor, eventually reaching a plateau for low noise which

corresponds to the minimum error possible with per-

fect sensors. This number is intrinsic to each algorithm

and characterizes the efficiency of the method. In this

respect, our algorithm does a much better job, as its

asymptote is about an order of magnitude lower than

the other ones. However, the error increases faster when

the 3σ noise is greater than 1◦ which shows the impor-

tance of using precise sensors for our proposed method.

7.3 Convergence of Solution

The convergence of each method is studied by increas-

ing the number of sensors. The results are shown in

figure 22. For our method, we also increase the num-

ber of control points and size of inextensibility grid

such that they all coincide as in sub-section 6.3. The

mean error of the reconstructed shape using the algo-

rithm presented in this paper decreases more rapidly as

the density of sensors increases compared to the other

methods. This means that adding even a few sensors has

a much greater impact on the error, which can be very

beneficial in practical applications. The error of the two

other methods remains higher and eventually the two

methods converge, as the linear integration along the

curves between sensors used in Hermanis et al. [11] is

a good approximation for the higher-order integration

method in Saguin-Sprynski et al. [14].
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(a) Average normal strain in the u-
direction using algorithm presented in
this paper.

(b) Average normal strain in the u-
direction using algorithm from Saguin-
Sprynski et al. [14].

(c) Average normal strain in the u-
direction using algorithm from Hermanis
et al. [11].

Fig. 18: Average normal strain in the u-direction using IMUs and different algorithms.

(a) Average normal strain in the v-
direction using algorithm presented in
this paper.

(b) Average normal strain in the v-
direction using algorithm from Saguin-
Sprynski et al. [14].

(c) Average normal strain in the v-
direction using algorithm from Hermanis
et al. [11].

Fig. 19: Average normal strain in the u-direction using IMUs and different algorithms.

(a) Average shear strain using algorithm
presented in this paper.

(b) Average shear strain using algorithm
from Saguin-Sprynski et al. [14].

(c) Average shear strain using algorithm
from Hermanis et al. [11].

Fig. 20: Average shear strain using IMUs and different algorithms.

7.4 Computation Time

Each algorithm was implemented following the explana-

tions given in the respective paper. No particular effort

was taken to optimize their speed.

Table 3 shows the time taken by each algorithm to

reconstruct a shape. Each shape is used to initialize

the next step, to accelerate the process. The method

proposed by Hermanis et al. [11] is the fastest by two

orders of magnitude as it is based on linear calculations.

The method proposed by Saguin-Sprynski et al. [14] is

the slowest as it has to solve a non-linear, constrained

minimization algorithm to compute the position of 24

out of the 35 sensor locations. The method proposed

in this paper involves a non-linear unconstrained mini-

mization, and yields faster results than [14] by a factor

of 3.
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Fig. 21: Mean error of reconstructed shapes using IMUs

and different algorithms.

Fig. 22: Variation of the mean error between recon-

structed and actual shapes by varying the grids size

using IMUs and different algorithms.

Algorithm Initial Converged

reconstruction time

This paper 800 ms 300 ms

Saguin-Sprynski
et al. [14]

20 s 850 ms

Hermanis et al.
[11]

1 ms 1 ms

Table 3: Computation time of different reconstruction

algorithms using 7× 5 IMU sensors.

7.5 Results for Multiple Reconstructions

To further show the net increase of performance of the

proposed solution against the current state-of-the-art,

each algorithm is used to reconstruct a set of random

paper deformations, generated from the algorithm de-

scribed in [38]. A set of 3 guiding rulings are randomly

placed on the sheet of paper. The rotation angles along

the rulings are randomly selected withing the ±10◦ in-

terval. This creates shapes with angular deformations

greater than 45◦. Ten extra rulings are used to create a

smooth surface. From this shape generation algorithm,

the position of each point on the paper as well as the

jacobian of the deformation at each sensor location are

retrieved. The latter is used to compute the sensor data

which also includes 0.5◦ noise. A total of 100 shapes are

generated and 10 sensors measurements are simulated

for each shape yielding 1000 different reconstructions

from each algorithm. All parameters used in the pre-

vious subsections remain identical. The error of each

method is shown in table 4. Similarly to the results

gathered from the reconstruction of a cone, the pro-

posed solution performed better on average. Note that

the algorithm from Saguin-Sprynski et al. [14] is much

less stable and resulted in a higher error overall.

Algorithm Mean
Standard De-
viation

This paper 0.42 mm 0.20 mm

Saguin-Sprynski
et al. [14]

2.1 mm 1.3 mm

Hermanis et al.
[11]

1.3 mm 0.59 mm

Table 4: Computation time of different reconstruction

algorithms using 7× 5 IMU sensors.

8 Surface Reconstruction with Real Data and

Small Deformations

An experiment was conducted to validate the proposed

solution method using real data.

Light sensors were developed using a quad-photodiode

(OPR5911) with a square aperture placed on top, ef-

fectively creating a 4-pixel pinhole camera [39,40]. A

total of 14 sensors were placed on a 50” x 10” (1.27 m

× 0.254 m) aluminum sheet in two rows of 7 separated

by 8” (20.32 cm) in all directions. The accuracy of the

sensors was 0.5◦ (3σ).

A LED light source was placed about 2 m in front

of the aluminum sheet. A random black and white pat-

tern was painted on the sheet in order to measure its

shape with a precise Digital Image Correlation system

(DIC) from Correlated Solutions, as shown in figure

23. This system has an accuracy of about 50 µm, an

order of magnitude better than the expected accuracy

of the light sensor system. As a result, it can be used

as a ground truth to estimate the performance of the

proposed solution.
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Fig. 23: Photo of the experiment. The plate with a black and white Digital Image Correlation (DIC) pattern

holds 14 sensors placed on rigid supports. The plate is held by tensioned spring cables at each end and two linear

actuators in the middle (the actuator attached to the center of the structure is not visible).

(a) 20 mm deflected shape from DIC (b) 5◦ twisted shape from DIC

(c) Average reconstructed 20 mm deflected shape (d) Average reconstructed 5◦ twisted shape

Fig. 24: Results from the experiments.

(a) RMS error of 20 mm deflected shape (b) RMS error of 5◦ twisted shape

Fig. 25: RMS error of the reconstructed shapes
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Two different types of deformation are imposed on

the structure: a 2 cm deflection and a 5◦ twist. Figure

24 shows the deformation of the sheet in both cases,

as measured by the DIC and as computed by the pre-

sented algorithm using the light sensor data. The shape

retrieved from the DIC system only images the central

part of the sheet as the sensors and cables obstruct the

view of the pattern. Our method can however recon-

struct the whole surface and figures 24c and 24d show

an excellent qualitative agreement between shapes.

The RMS error between the two shapes is shown in

figure 25. A total of 1000 sets of measurements were

taken in order to generate 1000 reconstructed shapes

and thus provide statistically accurate results. The RMS

error is lower than 1 mm on average (0.6 mm for both

cases) and is localized to regions of the sheet that have

more localized deformations. The proposed methodol-

ogy can best reconstruct relatively smooth surfaces as

the errors increase when the deformation becomes more

localized. A finite-element based reconstruction algo-

rithm that is more accurate for such cases and also for

larger deformations, at the expense of much lengthier

solution times, is provided in [40].

Simulations were performed by first computing the

shape of the sheet from a mechanical model of the ex-

perimental setup using the commercial finite-element

software Abaqus. The same algorithm was then used to

estimate the accuracy of the sensor system, assuming

a zero-mean, 0.5◦ (3σ) gaussian noise for each sensor.

Such simulations predicted a 0.65 mm RMS error for

the 2 cm deflection case and 1.2 mm for the 5◦ twist

case. These results are very close to those of the exper-

iment.

9 Conclusion and Discussion

We have presented a mathematical model to recon-

struct the shape of a 3D surface based on a template

and the angle measurements from embedded sensors.

The template is a known configuration of the surface

and it is assumed that it deforms inextensibly to its

current configuration.

The performance of this method which is suitable

for situations where holding a camera in front of a

surface is not practical has been tested and validated

through simulations and experiment. The formulation

yields better results than the state-of-the-art using em-

bedded IMU sensors.

The formulation is similar to SfT-SfS algorithms

which also assume inextensibility of the deformation

from a template and integrate the shape from the com-

putation of the surface normal. More work could be

done to use the explicit measurement of the normal

from the embedded sensors together with these algo-

rithms which are usually energy-based.

Aerospace is one of the application areas for this

method. Sun sensors are already widely used in this

industry for attitude control, and together with this

algorithm, could be used to measure the shape of a

deployable or reconfigurable structure in space (such

as solar sails or large antenna arrays). Wearable tech-

nologies used for augmented reality, medical purposes

or robotics are other applications of this method using

such sensors (usually IMUs).

The choice of shape functions used to define the

shape of the surface can also limit the accuracy of the

algorithm. More work could be done to study a wider

range of functions such as NURBS or dense, mesh-based

functions.

Only developable surfaces have been considered in

this study. More work should be done to understand the

performance of the presented algorithm on more com-

plex shapes such as doubly curved surfaces and surfaces

with localized deformations like kinks or buckles.
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