Outline

2:00 pm: Introduction & Welcome

- 2:15 pm: Systems Engineering
- 2:45 pm: Power
- 3:15 pm: Avionics & Comms
- 3:45 pm: ADCS
- 4:15 pm: Structures

Mission Overview

Maria Sakovsky

caltech.edu

Building Large Space Telescopes

- Mirror dia. of current and planned space telescopes limited by constraints of a single launch
 - Hubble (1990): Ø 2.4 m
 - JWST (2018): Ø 6.5 m
 - HDST (2030+): Ø 11.7 m
- New paradigms needed for Ø 30 m+ segmented primary:
 - Autonomous assembly in orbit
 - Active ultralight mirror segments
- Active mirrors relax tolerances for assembly and manufacturing, correct thermal distortions
- Modular, robust, low-cost architecture

Building Large Space Telescopes

- Mirror dia. of current and planned space telescopes limited by constraints of a single launch
 - Hubble (1990): Ø 2.4 m
 - JWST (2018): Ø 6.5 m
 - HDST (2030+): Ø 11.7 m
- New paradigms needed for Ø 30 m+ segmented primary:
 - Autonomous assembly in orbit
 - Active ultralight mirror segments
- Active mirrors relax tolerances for assembly and manufacturing, correct thermal distortions
- Modular, robust, low-cost architecture

Caltech

AAReST Objectives

- Demonstrate key technologies:
 - Autonomous assembly and reconfiguration of modular spacecraft carrying mirror segments
 - Active, lightweight deformable mirrors operating as segments in a primary
- Operate for as long as necessary to accomplish the objectives (~90 days)
- Gather engineering data to enable development of the next system

caltech.edu Ae105 Final Presentations 6

CoreSat

Power, Comm., Telescope ADCS *Caltech*

Mission Requirements

- Minimum mission
 - 1. Produce one focused image from a deformable mirror
 - 80% encircled energy radius from point source < 25 μ m
 - 2. Perform at least one in-flight autonomous spacecraft reconfiguration maneuver to demonstrate space assembly capability
- Extended mission
 - 1. Produce one focused image from a deformable mirror after reconfiguration
 - 2. Coalign images to improve SNR and demonstrate precursor to co-phasing
 - 3. Produce at least two images of other sources (e.g. Earth and Moon) for outreach purposes

1.	2.	3.	4.	5.	6.
Launch	Telescope Deployment	Telescope Calibration & Imaging	Reconfiguration	Telescope Recalibration & Imaging	Extended Mission

Launch in a compact, stowed volume

• 46 cm × 34 cm × 30 cm

1.	2.	3.	4.	5.	6
Launch	Telescope Deployment	Telescope Calibration & Imaging	Reconfiguration	Telescope Recalibration & Imaging	Extende Missio

- Satellite health check, detumble, antenna deployment
- Deploy boom in two stages
- Uncage deformable mirrors

1.	2.	3.	4.	5.	6.
Launch	Telescope Deployment	Telescope Calibration & Imaging	Reconfiguration	Telescope Recalibration & Imaging	Extended Mission

- - Telescope points to a bright reference star
 - Calibrate:
 - Segment tip/tilt/piston
 - Deformable mirror surface figure
 - Camera provides feedback for segment calibration

Caltech

1.	2.	3.	4.	5.	6.
Launch	Telescope Deployment	Telescope Calibration & Imaging	Reconfiguration	Telescope Recalibration & Imaging	Extended Mission

- MirrorSats release from CoreSat using electromagnets ٠
- Fly out ~30 50 cm ٠
- Re-dock into "wide" configuration •

1.	2.	3.	4.	5.	6.
Launch	Telescope Deployment	Telescope Calibration & Imaging	Reconfiguration	Telescope Recalibration & Imaging	Extended Mission

- Calibrate:
 - Segment tip/tilt/piston
 - Deformable mirror surface figure
- Camera provides feedback for segment calibration

Caltech

1.	2.	3.	4.	5.	6.
Launch	Telescope Deployment	Telescope Calibration & Imaging	Reconfiguration	Telescope Recalibration & Imaging	Extended Mission

- Co-align star images from different segments to improve SNR
 - Pre-cursor to co-phasing
- Produce images of extended sources (e.g. Moon, Earth) for outreach

AAReST History

2008 November: Large Space Apertures KISS workshop

2010 June: Ae105

 Initial mission design; mission requirement definition

2012 September: Mission Concept Review

2013 September: Preliminary Design Review

2014 September: Detailed Design Review

2015 September: Complete Design Review

2016 June: Ae105

- Environmental testing of telescope systems
- Electronics and software design

2017 January: Telescope Complete Design Review

2017 June: Ae105

- Preliminary design of CoreSat
- Hardware selection, spacecraft modelling & analysis

2017 September: Complete Design Review of three satellites

caltech.edu Ae105 Final Presentations 20

CoreSat Overview

Acknowledgement

The AAReST project is supported by:

- The Keck Institute for Space Studies
- Division of Engineering and Applied Science
- Provost's Innovation in Education Fund

Outline

- 2:00 pm: Introduction & Welcome
- 2:15 pm: Systems Engineering
- 2:45 pm: Power
- 3:15 pm: Avionics & Comms
- 3:45 pm: ADCS
- 4:15 pm: Structures

Systems Engineering Team

Team: Adrian Costantino Kate Davies Mohit Malik Talia Minear Bryan Sinkovec

Mentor: Fabien Royer

Systems Engineering Team Goals

- Orbit determination modeling
 - Lifetime estimate
 - Communications analysis
 - Power collection validation
- Docking maneuver
 - Kinematic analysis and orbital visualization
- Calibration targets and science targets
- CoreSat requirements, mass budget

Orbit Determination Modeling

- Polar Satellite Launch Vehicle (PSLV)
 - Noon / midnight Sun-synchronous polar orbit
 - Inclination ~ 98°
 - Altitude 500 800 km
- Analysis tool: AGI STK

PSLV

Credit: Indian Space Research Organisation (ISRO)

Lifetime Estimate

Lifetime Estimate

Ae105 Final Presentation caltech.edu

Communications Access Range

- One ground station
 - Guildford, U.K. (University of Surrey)
 - 170° total field of view
- Assumption: AAReST can control attitude to point at ground station at all times when within field of view

Access Time in 6-Month Time Interval

 Communications Team initially estimated 3 passes / day with 8 minutes of visibility / orbit ~ access of 24 min / day

500-km Altitude				
Average Passes / Day	5.1			
Maximum Duration (min)	9.3			
Minimum Duration (min)	0.2			
Average Duration (min)	7.3			
Passes Over 8 min / Day	2.7			
Access Time (min / day)	36.8			

600-km Altitude				
Average Passes / Day	5.5			
Maximum Duration (min)	10.5			
Minimum Duration (min)	0.6			
Average Duration (min)	8.3			
Passes over 8 min / Day	3.6			
Access Time (min / day)	45.5			

- Worst-case scenario (500-km altitude) is sufficient
- First iteration of link budgets generated based on assumptions and design choices made by Communications Team

On-orbit Power Collection

- Import CoreSat model into STK
- Estimate power collection

On-orbit Power Collection

Parameters:

- Altitude: 600 km
- Noon / midnight SSPO
- Attitude: Sun pointing (-X)
- Solar panel efficiency: 0.30

Refinement:

 Chose optimal charging attitude, so need to extend to other mission phases

On-Orbit Visualization

Power collection

- Docking maneuver
- Goals
 - Implication on power consumption during rendezvous
 - Validation of kinematics analysis

Docking Maneuver Analysis

Goals:

- Minimize torque on satellite
- Maximize probability of successful docking procedure
- Inputs: Rotation angle and separation distance
- Accomplished by minimizing redocking distance, offset angle, and separation distance between MirrorSat and CoreSat

Docking Maneuver Visualization

caltech.edu Ae105 Final Presentation 35

Starts in Full-Narrow Configuration

caltech.edu Ae105 Final Presentation 36
First MirrorSat Separation

First Rotation

First MirrorSat Re-docks

caltech.edu Ae105 Final Presentation 39

Second MirrorSat Separation

Second Rotation

caltech.edu Ae105 Final Presentation 41

Ends in Full-Wide Configuration

caltech.edu Ae105 Final Presentation 42

Docking Maneuver Summary

Docking Numerical Optimization

• Score = C1*(offset distance) + C2*(misalignment angle) + C3*(re-docking distance)

Caltech

- C1, C2 qualitatively assigned based on input from discussion with ADCS
- C1 > C2 >> C3
- C1:C2 sensitivity is low
- C3 was iterated upon so local minimum fell within the constrained region
- For this analysis: C1 = 3, C2 = 1, C3 = 0.035

Docking Constraints

Docking Constraints Visualized

Docking Maneuver Plots

Red dot: optimal separation distance and rotation angle

Caltech

Optical Calibration Targets

- Repeated calibration of deformable mirrors needed throughout mission
- Maneuver as little as possible to point at calibration stars
- Limited range of star magnitude (-2 to 2) due to science camera sensitivity
 - 49 candidate stars (e.g. Sirius: -1.46)
- Use STK to determine visible stars

Example Analysis for One Day

- Many candidate stars available, must determine when to point at them
- May be limited to eclipse phases

Caltech

CoreSat Requirements Eye Chart

cana 🖗 2			Ø	iir 0	AAReST CoreSat Suba	vitem Requirements Document
9	AAReST CoreSat Subsystem Requirements Document		1.12	Need protocols to ensure telemetr transmitted and received in a secu-	y, data, and commands are its, error-free way	AAReST must have an protocol that is can stand up to disturbances of levels
			1.13	Interference between CoreSat and e.g. composite boom and ADCS ind	antenna? Think materials luced magnetic fields	Must ensure that the antenna is not interfered with by other components of the CoreSat
1 CoreSat Engineering Requirements Tables			1.14	Antenna deployment requirement	s	Any deployable attention and the second state of the second state second state of the
1.1 Avionics and Telecoms						Must enable interfaces (FC, UART, etc.) specified by each subsystem
					stem from ground	Next monitor safety of satellite and manage safe mode
Numbering Needs		me		come		Must provide interface code between ground messages and subsystems
Avionics and Telecoms		113		COILIS	ailure points)	Must operate on-board software on ADCS computer
1.1	AAReST must use frequency ra					Must integrate beacon message
12	AAReST must have an antessa					Must provide beaces debugging protocol online for public use
1.3.1 1.3.1 1.3.2 5 atellite needs to communicate with the ground 1.4	Allerate next save since-corrections reactions proverse Addreft much two a COTS suscement Preceiver operating at UHJ /VH# Transmitter/receiver much at interface avec D E Transmitter/receiver much at at Interface avec D E Machime In the lises from transmitter to asterna		1.2 ADCS			

AAReST must have a COTS transmitter/receiver operating at UHF/VHF

Pointing accuracy: error $< 0.1^{\circ} 3\sigma$ all axes

Vertical clearance of Launch Vehicle Interface, with respect to the MirrorSats, must be 5 cm

The batteries must be able to power the satellite during tumbling phases

Telescope must point away from the sun, at a minimum of 20° angular separation of the sun

mbering	Needs	Requirements
ractures		
3.4	Launcher/CoreSat Interface	Launch interface must be compatible with PSLV
3.2	Withstand deployment	YBD - need information on load of boom deployment
3.3	Withstand reaction wheel torque	TBD - Need information on reaction wheels (ADCS)
3.4	Depently robust	Needs to withstand launch (most critical situation)
3.5	EM compatibility	See requirement 1.9 from Avionics and Communications
3.6	Guarantee alignment of optical elements: precision and robustness	TBD - Need to have information on the optical precision (talk to Serena/Steve)
3.7	Radiation shielding? Protect electronics	Provide panels on the outside for radiation protection
3.8	AAReST must fit in the PSLV [max dimensions]	TBD (need information from rocket) - should not be a problem Envelope at launch (inc. att. ftc.) within 40 cm x 40 cm x 60 cm [RD-7]
3.9	Max mass for best chances for launch	Max Mass = 40kg [RD-7]
3.10	Inertia properties	TBD - Inertias will be calculated once the design is done
3.11	Natural frequencies - surviving launch	TRD
3.12	Outgassing	Use space compatible materials with no outgassing
3.13	Cold soldering	Must consider potential cold soldering effects
3.14	Thermal expansion interfaces - docking ports	YBD - Need information on docking requirement (Surrey) I think the most critical thing is the optical algoment which might be affected by thermal expansions (related to requirement 3.6)
3.15	Torsional stiffness - mounting accuracy and repeatability	Stiffness will be calculated / estimated soon Pm not sure what the mounting accuracy and repeatability have to do with the stiffness
3.16	Thermal cycling inside structure - insulation needed?	Provide panels on the exterior to ensure enough thermal isolation
3.17	Easy of assembly	Assembly of internal components should not interfere in the optical alignment

3.23	Clearance for RDV and docking	Vertical clearance: Scm (for now)
.4 Power	,	
umbering	Needs	Requirements
ower.	•	
6.1	Provide enough power for requirements of AAReST	Provide sufficient power to all the sub-systems in each operating mode. Provide power for Mirrorfars up to $\mathcal{W}(SV; LA)$ until their batteries are fully charged. Power should be provided for the mixing lifetime of 6 in outly.
4.2	Solar panels to not interfere with docking or other components e.g. star camera	Sun sensors, thermopiles etc. on the solar panels must not interfere with the dacking process.
43	Current type	Meet average and peak current requirements of various subsystems
4.4	Voltage types	Provide 3.8 V, 5V, 28 V and voltage needed for burn wire actuation
4.5	Environmental temperature for batteries etc.	Batteries should operate during sunlight and eclipse for expected spacecraft temperature range between -50°C and +50°C. Heaters should keep batteries within 0+40°C
4.6	Effects of heat generation from batteries on other components and the system as a whole	Must perform analysis on heat generated by the batteries and how that will effect the surrounding components - are fans needed?
4.7	Number of ports	The EPS should provide access port for charging before launch and RBF and separation ewitches
4.8	Wiring configuration	Must work with Structures team to determine a valid wiring configuration
4.9	Redundancy	Must trade-off the benefits of redundancy with the cost that it will impose on the mass
4.10	Smooth/consistent power supply	Must prevent power surges
4.11	Power storage	The batteries should be able to power the satellite for the anticipated detambling period
4.12	Safe hatteries - no up in racket without catching on fire	Must ensure batteries are approved for many flight - preferably use batteries with flight

Mass Budget

Contingency Scale:

- 0 = verified
- 10 = COTS
- 15 = COTS + fabrication
- 20 = Fabrication only
- 30 = Very rough estimate

ADCS Docking Units 1700 20 2040 ADCS ADCS Stack + Reaction wheels 1106 10 1216.6 ADCS Star Camera 166 20 199.2 ADCS Payload Interface Board 200 200 200 Avionics/Comms Transceiver 78 10 85.8 Avionics/Comms Antenna 100 20 100 Power Solar Panels 520 30 676 Power Batteries 675 10 742.5 Power Mounting board 270 20 324 Structural Chassis 1350 20 1620 Structural Surface Structural Panels 140 10 154 Structural Launch Interface mount 860 15 989 Structural Launch Interface mount 860 160 1000 Structural HDRM - 2 for antennas, 2 for MirrorSats, 1 for Camera 400 10 440 Stru	Team		Component	Max Mass (g)	Contingency (%)	Max Mass + contingency (g)	Change since 5.31.2017 (g)
ADCS ADCS Stack + Reaction wheels 1106 10 1216.6 ADCS Star Camera 166 20 199.2 ADCS Payload Interface Board 200 200 200 Avionics/Comms Transceiver 78 10 85.8 Avionics/Comms Antenna 100 20 100 Power Solar Panels 520 30 676 Power Bolar Panels 675 10 742.5 Power Mounting board 270 20 324 Structural Chassis 1350 20 1620 Structural Surface Structural Panels 140 10 154 Structural Launch Interface 600 10 660 Structural Launch Interface mount 860 15 989 10075g Structural HDRM - 2 for antennas, 2 for MirrorSats, 1 400 10 440 440 Structural KirrorSat (incl. propulsion) 8000 15	ADCS	Docking Unit	S	1700	20	2040	0
ADCS Star Camera 166 20 199.2 ADCS Payload Interface Board 200 20 200 Avionics/Comms Transceiver 78 10 85.8 Avionics/Comms Antenna 100 20 100 Power Solar Panels 520 30 676 Power EPS + Batteries 675 10 742.5 Power Mounting board 270 20 324 Structural Chassis 1350 20 1620 Structural Surface Structural Panels 140 10 154 Structural Launch Interface 600 10 660 Structural Launch Interface mount 860 15 989 Structural HDRM - 2 for antennas, 2 for MirrorSats, 1 for Camera 400 10 440 Structural/ Power Circuit Boards (c.8) 560 30 728 MirrorSat (incl. propulsion) 8000 15 9200 23206.7	ADCS	ADCS Stack + Reaction wheels		1106	10	1216.6	0
ADCS Payload Interface Board 200 20 200 Avionics/Comms Transceiver 78 10 85.8 Avionics/Comms Antenna 100 20 100 Power Solar Panels 520 30 676 Power EPS + Batteries 675 10 742.5 Power Power EPS + Batteries 675 10 742.5 Power Structural Chassis 1350 20 1620 Structural Structural Surface Structural Panels 140 10 154 Structural Launch Interface 600 10 660 Structural Launch Interface mount 860 15 989 Structural Launch Interface mount 860 10 440	ADCS	Star Camera		166	20	199.2	0
Avionics/Comms Transceiver 78 10 85.8 Avionics/Comms Antenna 100 20 100 Power Solar Panels 520 30 676 Power EPS + Batteries 675 10 742.5 Power Mounting board 270 20 324 Structural Chassis 1350 20 1620 Structural Surface Structural Panels 140 10 154 Structural Launch Interface 600 10 660 Structural Launch Interface mount 860 15 989 15 Structural Launch Interface mount 860 10 440 440 Structural HDRM - 2 for antennas, 2 for MirrorSats, 1 400 10 440 440 Structural/ Power Circuit Boards (c.8) 560 30 728 100075g From January 2017 MirrorSat (incl. propulsion) 8000 15 9200 200 200 200	ADCS	Payload Inter	face Board	200	20	200	0
Avionics/Comms Antenna 100 20 100 Power Solar Panels 520 30 676 10 Power EPS + Batteries 675 10 742.5 10 Power Mounting board 270 20 324 100 Structural Chassis 1350 20 1620 1620 Structural Surface Structural Panels 140 10 154 140 Structural Launch Interface 600 10 660 15 989 140 Structural Launch Interface mount 860 15 989 140 10 440 10 440 10 440 10 440 10 440 10 440 10 10 440 10 10 440 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10	Avionics/Comms	Transceiver		78	10	85.8	0
Power Solar Panels 520 30 676 Power EPS + Batteries 675 10 742.5 742.5 Power Mounting board 270 20 324 742.5 Structural Chassis 1350 20 1620 742.5 Structural Chassis 1350 20 1620 742.5 Structural Chassis 1350 20 1620 742.5 Structural Surface Structural Panels 140 10 154 742.5 Structural Launch Interface 600 10 660 75 Structural Launch Interface mount 860 15 989 7400 Structural HDRM - 2 for antennas, 2 for MirrorSats, 1 400 10 440 728 Structural/ Power Circuit Boards (c.8) 560 30 728 728 From January 2017 MirrorSat (incl. propulsion) 8000 15 9200 7400 7400 7400 7400 </td <td>Avionics/Comms</td> <td>Antenna</td> <td></td> <td>100</td> <td>20</td> <td>100</td> <td>0</td>	Avionics/Comms	Antenna		100	20	100	0
Power EPS + Batteries 675 10 742.5 Power Mounting board 270 20 324 Structural Chassis 1350 20 1620 Structural Surface Structural Panels 140 10 154 Structural Launch Interface 600 10 660 Structural Launch Interface mount 860 15 989 Structural Launch Interface mount 860 10 440 Structural HDRM - 2 for antennas, 2 for MirrorSats, 1 for Camera 400 10 440 Structural/ Power Circuit Boards (c.8) 560 30 728 Structural/ Power Circuit Boards (c.8) 560 30 728 Wiring 436.25 30 0 0 0 Gamera 3206.7 0 3206.7 10007.5g 0 From January 2017 MirrorSat (incl. propulsion) 8000 15 9200 0 Boom + Camera Interface 600	Power	Solar Panels		520	30	676	0
Power Mounting board 270 20 324 Structural Chassis 1350 20 1620 Structural Surface Structural Panels 140 10 154 Structural Launch Interface 600 10 660 Structural Launch Interface mount 860 15 989 Structural Launch Interface mount 860 10 440 Structural HDRM - 2 for antennas, 2 for MirrorSats, 1 for Camera 400 10 440 Structural/ Power Circuit Boards (c.8) 560 30 728 Core Sat Total 8725 10075g 10075g Wiring 436.25 30 0 10 From January 2017 MirrorSat (incl. propulsion) 8000 15 9200 2 From January 2017 Rigid Mirror Box 1900 0 1900 1200 Boom + Camera Interface + CoreSat Interface 600 0 600 600	Power	EPS + Batter	ies	675	10	742.5	0
Structural Chassis 1350 20 1620 Structural Surface Structural Panels 140 10 154 Structural Launch Interface 600 10 660 Structural Launch Interface mount 860 15 989 Structural Launch Interface mount 860 10 440 Structural HDRM - 2 for antennas, 2 for MirrorSats, 1 for Camera 400 10 440 Structural/ Power Circuit Boards (c.8) 560 30 728 Core Sat Total 8725 100775g 10075g Wiring 436.25 30 0 10 From January 2017 MirrorSat (incl. propulsion) 8000 15 9200 Camera 3206.7 0 3206.7 1900 1900 Deformable Mirror Box 1900 0 1900 1200 1200	Power	Mounting boa	ard	270	20	324	0
Structural Surface Structural Panels 140 10 154 Structural Launch Interface 600 10 660 Structural Launch Interface mount 860 15 989 Structural HDRM - 2 for antennas, 2 for MirrorSats, 1 for Camera 400 10 440 Structural HDRM - 2 for antennas, 2 for MirrorSats, 1 for Camera 400 10 440 Structural/ Power Circuit Boards (c.8) 560 30 728 Structural/ Power Circuit Boards (c.8) 8725 10075g Viring 436.25 30 0 10 MirrorSat (incl. propulsion) 8000 15 9200 10 Camera 3206.7 0 3206.7 1900 1900 Deformable Mirror Box 1900 0 1900 1200 1200 1200	Structural	Chassis		1350	20	1620	60
StructuralLaunch Interface60010660StructuralLaunch Interface mount86015989StructuralHDRM - 2 for antennas, 2 for MirrorSats, 1 for Camera40010440Structuralfor Camera56030728Core Sat Total872510075gWiring436.2530Core Sat TotalMirrorSat (incl. propulsion)8000159200Core Sat TotalMirrorSat (incl. propulsion)8000159200Core Sat TotalMirrorSat (incl. propulsion)8000159200Core Sat TotalBirrorSat (incl. propulsion)8000159200Core Sat TotalBirrorSat (incl. propulsion)8000159200Comera3206.703206.7Bigid Mirror Box190001900Deformable Mirror Box120001200Boom + Camera Interface + CoreSat Interface6000600600	Structural	Surface Strue	ctural Panels	140	10	154	0
StructuralLaunch Interface mount86015989StructuralHDRM - 2 for antennas, 2 for MirrorSats, 1 for Camera40010440Structural/ PowerCircuit Boards (c.8)56030728Core Sat Total872510075gWiring436.2530Core Sat TotalMirrorSat (incl. propulsion)8000159200Camera3206.703206.7Rigid Mirror Box190001900Deformable Mirror Box120001200600Boom + Camera Interface + CoreSat Interface6000600	Structural	Launch Interface		600	10	660	0
Structural HDRM - 2 for antennas, 2 for MirrorSats, 1 for Camera 400 10 440 Structural/ Power Circuit Boards (c.8) 560 30 728 Core Sat Total 8725 100775g Wiring 436.25 30 500 MirrorSat (incl. propulsion) 8000 15 9200 Camera 3206.7 0 3206.7 Rigid Mirror Box 1900 0 1900 Deformable Mirror Box 1200 0 1200 Boom + Camera Interface + CoreSat Interface 600 0 600	Structural	Launch Interf	ace mount	860	15	989	40.25
Structural/ Power Circuit Boards (c.8) 560 30 728 Core Sat Total 8725 10075g	Structural	HDRM - 2 for for Camera	r antennas, 2 for MirrorSats, 1	400	10	440	88
Core Sat Total 8725 10075g Wiring 436.25 30 000000000000000000000000000000000000	Structural/ Power	Circuit Board	s (c.8)	560	30	728	182
Wiring 436.25 30 MirrorSat (incl. propulsion) 8000 15 9200 Camera 3206.7 0 3206.7 Rigid Mirror Box 1900 0 1900 Deformable Mirror Box 1200 0 1200 Boom + Camera Interface + CoreSat Interface 600 0 600		Core S	at Total	8725		10075g	370.25
MirrorSat (incl. propulsion)8000159200Camera3206.703206.7Rigid Mirror Box190001900Deformable Mirror Box120001200Boom + Camera Interface + CoreSat Interface6000600			Wiring	436.25	30	J	19.825
From January 2017Camera3206.703206.7Rigid Mirror Box190001900Deformable Mirror Box120001200Boom + Camera Interface + CoreSat Interface6000600			MirrorSat (incl. propulsion)	8000	15	9200	-6900
From January 2017Rigid Mirror Box190001900Deformable Mirror Box120001200Boom + Camera Interface + CoreSat Interface6000600			Camera	3206.7	0	3206.7	0
Deformable Mirror Box 1200 0 1200 Boom + Camera Interface + CoreSat Interface 600 0 600	Erom Janur	ary 2017	Rigid Mirror Box	1900	0	Max Mass + contingency (g) since 5.31.20 (g) 2040 0 1216.6 0 199.2 0 200 0 85.8 0 100 0 676 0 742.5 0 324 0 1620 60 154 0 660 0 989 40.23 440 88 728 182 10075g 370.2 9200 -690 3206.7 0 1200 0 600 0 9200 -690 3206.7 0 1900 0 1200 0 600 0	0
Boom + Camera Interface + CoreSat Interface 600 0 600		ary 2017	Deformable Mirror Box	1200	0		0
			Boom + Camera Interface + CoreSat Interface	600	0	600	0
Total System Mass 24067.95 267490 6		Total Sys	tem Mass	24067.95		26749a	6509.925

caltech.edu Ae105 Final Presentation 51

Mass Properties

Caltech

Systems Team Summary

- Lifetime framework established
- Communications access determined
- Validation of power collection framework set up
- Optimal docking maneuver parametric framework developed
- Calibration star access modeled
- CoreSat requirements document draft completed
- Mass budget template generated

Future Work

- Adapt lifetime estimate for future structural modifications
- Continue developing link budget
- Extend power analysis to complete mission scenario
- Extend docking to include disturbances and complete STK modeling
- Select calibration and science targets
- Continue tracking mass budget

Questions?

caltech.edu Ae105 Final Presentation 55

Outline

- 2:00 pm: Introduction & Welcome
- 2:15 pm: Systems Engineering

2:45 pm: Power

- 3:15 pm: Avionics & Comms
- 3:45 pm: ADCS
- 4:15 pm: Structures

AAReST CoreSat Power System

Team: Chris Bradley Charlie Dorn Juliane Preimesberger

Mentor: Ashish Goel

caltech.edu

Power Team Goals

- Analyze power consumption and generation
- Design power system solution
 - Commercial EPS, battery, and solar cell selection
 - Solar panel fabrication
 - Wiring and solar cell arrangement
 - Develop testing procedures

High Level Requirements

- Power each subsystem, including MirrorSats, for all operating modes
- Meet average and peak voltage and current requirements for each subsystem
- Allocate enough energy storage for detumble and eclipse

Power Budget

				Actuator		Ground			Mirrorsat	Battery
	Operating mode	Burn wire	Detumble	release	Nominal	comm	Science	Docking	Charging	heating
	Configuration	Narrow	Narrow	Narrow	Both	Both	Both	Both	Both	Both
Power	Battery heater									6
	EPS	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
ADCS	CubeComputer	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	CubeSense	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
	CubeControl	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6
	CubeWheel - Large	1.5	6.6	1.5	1.5	1.5	1.5	3.2	1.5	2.5
	Star Camera						0.9	0.9		
Avionics	UHF/VHF Transceiver					5.4				
	Payload Interface Computer						3			
Docking	WiFi						1	1		
	Electromagnets							13		
	LEDs							1		
Payload	Rigid Mirror Payload						7			
	MirrorSat Charging								10	
	Camera						5			
Others	Boom Deployment	4								
	Actuators			25						
	Misc (health monitoring sensors)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	Total Power (W)	9.73	11.04	30.94	5.94	11.34	22.81	23.51	15.94	12.94
	Total Power with 30% Margin (W)	12.65	14.35	40.22	7.72	14.74	29.65	30.56	20.72	16.82
	3.3 V bus peak current (A)	1.74	3.35	1.80	1.80	3.44	2.06	2.58	1.80	3.92
	5 V bus peak current (A)	0	0	0	0	0	3.2	3	2	0
	16 V bus peak current (A)	0.25	0	1.56	0	0	0	0	0	0
					-				-	
	Max Mode Duration	<2 min	<2 orbits	30 sec	free	<8 min	<10 min	2 min	free	5 min

Good estimate Subject to change

EPS Selection

- Considered several CoTS options
- Three finalists
- **Deciding factors**
 - Power limit
 - Number of input channels
 - Compatibility with other systems

Gomspace NanoPower P60

	# Input Channels	Max Current In (A)	Max Voltage In (V)	# Output Channels	Max Current Out (A)	Max Voltage Out (V)	Power (W)	Comms	Cost
Astro Dev	4	2	9 - 22	9	2	3.3,5	16	12C	
NanoPower P60	6	2	32	9	2	3.3,5,8,12,18	64	CAN/I2C	\$19,000
NanoPower P31u	3	2	16	6	2.5	3.3,5	30	I2C	\$5,25 0
caltech.edu A	e105 Final P	Presentation	70				С	alte	ch

Ae105 Final Presentation caltech.edu 70

https://gomspace.com/Shop/subsystems/power-supplies/nanopower-p60.aspx

Solar Cell Selection

- Commercial panels versus cells -\$24,000 versus \$6,000 (for 20 cells)
- CIC: coverglass-interconnected-cell
- Three finalists for commercial CICs:

	Efficiency	Surface area (cm²)	Price per cell	Lead time (weeks)	
Spectrolab XTJ	30.7%	27.2	\$285-310	10-12	
Spectrolab UTJ	28.3%	26.6	\$300	5-6	
Azurspace 3G30A	29.3%	30.2	\$302	8-12	

Caltech

Example Panel Fabrication

- Modified CU Boulder procedure
- Finalized procedure steps:
 - Cut tabs
 - Laser cut double-sided Kapton tape
 - Vacuum bagging
 - Solder and add conductive epoxy

Add epoxy

Caltech

Align tape

Vacuum bagging

Example Panel Testing Example panel

Fabricated and tested three functioning panels

Electroluminescence

Vacuum

Illumination

	Before fabrication	After fabrication
Cell A	6.7 mA, 0.51 V	9.7 mA, 0.63 V
Cell B	5.3 mA, 0.79 V	10.6 mA, 0.78 V
Solar panel	-	11.37 mA, 1.46 V

IR imaging

Caltech

caltech.edu Ae105 Final Presentation 73

Solar Cells +X Face

Configuration Analysis

- Azurspace and XTJ are final candidates
- UTJ cells hold no advantages

	-X	+X	-Y	+Y	Total	Power per Cell (W)
Azurspace	18	24	7	7	56	1.21
ХТЈ	19	27	8	8	62	1.14
UTJ	19	27	8	8	62	0.95

Power Generation

XTJ cells are best option

		Spectrolab >	(TJ Cells	Azurspace 3G30A Cells		
	Orientation	CoreSat (W)	Total (W)	CoreSat (W)	Total (W)	
	Narrow optimal $(\theta_x=35^\circ)$	18.3	22.6	18.1	22.0	
	Wide optimal $(\theta_x=0^\circ)$	24.6	35.6	23.2	34.8	
	Detumble	7.9	12.3	7.6	12.3	
u	Ae105 Final Presentation	78	-	Ca	altech	

Battery Pack Selection

- GomSpace NanoPower BPX
 - 77 Whr
 - 500 g
 - \$8,250
 - Integrated heater
 - 8 week lead time

https://gomspace.com/Shop/subsystems/batteries/nanopower-bpx.aspx

Representative Battery Voltage Profile

- GomSpace BPX battery (77 Whr) provides sufficient storage
- Noon-midnight sun synchronous orbit, 600 km
- Detumble is largest strain on battery (needs further analysis)

caltech.edu A0105 Final Presentation

Solar Cell Wiring and Shadowing

- Inefficient wiring of shadowed cells leads to large power losses
- Shadowing due to folded antennas, boom
- Folded antenna shading analysis

P60 EPS System Diagram

• EPS output current requirements can be met for the P60

Summary

- Analyzed power generation and consumption
- Selected components: P60 EPS, BPX battery, XTJ solar cells
- Developed fabrication procedure
- Designed optimal solar cell layout
- Created EPS wiring diagram

Future Work

- Order power system components
- Finalize solar cell mounting configuration
- Fabricate flight solar panels
- Finalize system wiring scheme
- Test components and systems

Questions?

caltech.edu Ae105 Final Presentation 85

Outline

- 2:00 pm: Introduction & Welcome
- 2:15 pm: Systems Engineering
- 2:45 pm: Power
- 3:15 pm: Avionics & Comms
- 3:45 pm: ADCS
- 4:15 pm: Structures

Avionics and Telecoms Team

Nishant Desai Jorge Llop Antonio Pedivellano Eduardo Plascencia

Mentors

Thibaud Talon Maria Sakovsky

Team Goals

- Design, build, and test communications system capable of establishing data transmission between AAReST and ground station
 - Uplink
 - Downlink
- Develop CoreSat telemetry structure
- Use FlatSat to begin testing avionics

Caltech

Driving Requirements Avionics

- Need protocols to ensure telemetry, data, and commands are transmitted and received in a reliable, error-free way
- Must use real-time and interrupt-driven software within satellite
- Implement specified On-Board Computer (OBC) interfaces:
 - I²C
 - UART
- Monitor safety variables of satellite and engage safe mode if needed

Driving Requirements Communications

- Satellite needs to communicate with the ground station using amateur band radio (VHF uplink / UHF downlink)
- Power consumption must stay within the capabilities of the power system
- Antennas must be folded during launch and deployed once in orbit
- Must find an optimal position for the antenna in order to reduce losses due to pointing and EM interference with the CoreSat

FlatSat

caltech.edu Ae105 Final Presentation 95

FlatSat Introduction

• FlatSat setup mimics spacecraft electronics for testing

Caltech

FlatSat Introduction

• FlatSat setup mimics spacecraft electronics for testing

FLATSAT IN LAB

OBC Software Architecture

• Software design follows hardware

All tasks are controlled in real-time: RTOS

Example of a Successful Temperature Read

Temp 1 sec	erature task told to check temperature every (e.g.) cond	
	Temperature task tells I ² C task to send message to sensor and read data	
	I ² C task sends message, reads data, gives data to temperature task	
	Test: Retrieves room temperature 23.8° C	
	Test: With finger on sensor, increases to 27.5° C	

Challenges and Results

Challenges:

- Compatibility: getting I²C functions to work with RTOS
- Timing between RTOS and EFM32
- Memory allocation of RTOS

Results:

- Wrote example software to retrieve temperature over I²C
 Can be replicated to any I²C-interfacing component
- Tested software and demonstrated that it works

Telemetry/Telecommand and File Transfer

Saratoga File Transfer Protocol

File Transfer Protocol:

- Saratoga protocol is the best fit for the mission: fast, scalable, simple, and robust
- Saratoga protocol has heritage from Surrey missions

Telemetry/Telecommand Protocols

Telemetry protocols:

- HDLC protocol
 - After looking at options like AX.25 and HDLC, we selected HDLC
 - Robust and compact
- Data Scrambler:
 - G3RUH modem design to encode data packet
 - Heritage from Surrey missions

Data packet design:

2 Bytes	5 Bytes		3 Bytes	1 Byte	1 Byte	Variable Length	1 Byte
Decoder Flag	Callsign (AAReST)	Length of Message	Number of Increments	Group ID	Message ID	Payload Channels	Decoder Flag

Example:

ADCS Telemetry, spacecraft velocity (v_x , v_y , v_z).

Telemetry: End-to-End Test

- MATLAB code receives Telemetry/Data packet
- This code parses the packet and decodes the Telemetry information

On Board Computer (EFM32):

- Telemetry/Data packet builder program is integrated in the OBC
- The OBC (EFM32) sends the Telemetry/Data packet to the antenna

Caltech

Telecommand: End-to-End Test

PC/MATLAB code:

- MATLAB code builds Telecommand packet using the protocol formatting
- A MATLAB code places the packet on the machine port

105

caltech.edu Ae105 Final Presentation

On board computer (EFM32):

UART

 The Telecommands are received and parsed

OBC /

EFM32

Caltech

Communications

Downlink Data Budget

Assumptions

- Downlink at 450 MHz
- Maximum data rate: 9.6 kbps
- Average daily communication time: 36.8 min

Mode	Description
Nominal	Critical state variables
Debug	Log history from subsystem
Star imaging	Windowed images from SD* + SHWS**
Earth/Moon imaging	Full resolution images from SD* + SHWS**

* Science Detector

** Shack Hartmann Wavefront Sensor

Conclusions

- Data exceeding the threshold can still be sent in multiple days
- UHF will be considered for frequency allocation filing

Transceiver Selection Criteria

- Transmit at UHF (400-450 MHz) and receive at VHF (100-150 MHz)
- Conforms to CubeSat size format
- Data protocol (HDLC) and bus interface (not I²C) requirements

Transceiver Selection Results

- Surveyed suppliers on Cubesat.org and AstroDev contact 7 options considered
- Selected AstroDev Helium transceiver

Product	Transmit Frequency Range (MHz)	Receive Frequency Range (MHz)	Max Downlink Bit Rate (kbps)	Bus Interface	Data Protocol	Flight Heritage
AstroDev Helium Radio	400-450	120-150	38.4	UART	HDLC	Y
SatCOM UHF Digital Radio	433-440	433-440	>9.6	UART, CAN	Modified AX.25	
ISIS UHF Down/VHF Up Transceiver	420-450	140-150	>9.6	H ² C	AX.25, HDLC	Y

Caltech

Antenna Tradeoff

Design considerations

- Large beamwidth
- Minimize losses
- Space-saving
- Light-weight
- Deployable

Monopole offers a lowcost, light-weight, space-saving and highgain solution

• Cons: Quite massive, difficult to manufacture

Spiral antenna

- Pros: Circular polarization
- Cons: Large, difficult to manufacture

Antenna Positioning

Solar panels

Bottom plate seems the best location for the antennas

Pros

- Available space
- Far enough from the MirrorSats' magnets

Cons:

- Close to the LVI ring
- EM analyses required to understand its effect on the radiation pattern

Antenna Simulations

- Ran EM simulations to determine antenna properties

 Used CST Studio Suite
- Two properties measured
 - S-Parameter $S_{1,1}$, how well antenna accepts electrical power
 - Antenna radiation patterns
- Assume operating frequencies of 150 MHz for VHF and 450 MHz for UHF

CoreSat & UHF Antenna Model with LVI Ring

Antenna EM Simulations S-Parameter, UHF

S-Parameters [Magnitude in dB]

- Requirement to operate with S-Parameter < -10 dB not satisfied here for any antenna length at the operating frequency, 450 MHz.
 - Options include angling antenna, placing it on -X face

Antenna EM Simulations S-Parameter, VHF

S-Parameters [Magnitude in dB]

 Requirement to operate with S-Parameter < -10 dB satisfied for desired operating frequency for antenna lengths between 50-55 cm

Antenna EM Simulations Pointing Accuracy, VHF, Theta Plane

- Completely isotropic radiation pattern in plane, good gain
 - Max gain 2.15 dBi

caltech.edu Ae105 Final Presentation 115

Caltech

Antenna EM Simulations Pointing Accuracy, VHF, Phi Plane

- Symmetric radiation pattern, smaller, dual beamwidths
 - 3 dB beamwidth of 83.9° (symmetric), max gain 2.18 dBi

caltech.edu Ae105 Final Presentation 116

Antenna EM Simulations Conclusions

VHF: 150 MHz

- Antenna satisfies S-Parameter requirement for lengths between 50-55 cm
- Antenna has large beamwidth, performance close to isotropic

UHF: 450 MHz

- Best operating lengths between 17-20 cm, but does not satisfy S-Parameter requirement
- Some pointing required to send/receive data
- Low resolution modeling due to limitations of software license; lab EM testing necessary to validate results

Structural Design

Requirements

- 1. Antenna must be stiff and electrically conductive
- Antenna must be insulated from ground plane and not flattened
- 3. Antenna must be connected to coaxial cable from transceiver
- 4. Hold antenna in folded configuration
- 5. Cut Vectran wire to deploy
- 6. Optimize space on external surface

on bottom plate

Deployment Tests

Test Goals

- Deploy against gravity
- Survive vibrations
- Test reliability of the separation device

Status

- Deployment tests in progress
- Vibration tests to be started

Deployment Test

Test Parameters

- 2 A
- 1.2 V
- Deployment time ~22 s

Direction	Number of tests
Horizontal	1
Vertical	2

- Antenna successfully deployed
- Test results used to improve second iteration
- Tests in other directions to be performed soon

Future Work

Avionics:

- Add UART low-level task to RTOS
 - Get Telemetry & Telecommands running in real-time
- Fully integrate EPS on I²C bus
- End-to-end test: sensor read to telemetry receive

Communications:

- Design electrical connection between antenna and transceiver
- Run vibration tests in folded configuration
- Test antenna EM performance to solve S_{1,1} issues

Caltech
Conclusions

Avionics:

- Using FlatSat, wrote example software to retrieve temperature over I²C with real-time control
 - Demonstrated that the program works
- Protocols defined for Telemetry, Telecommand, and file transfer
 - Data packet design completed
- Demonstrated downlink communications in the lab. Uplink telecommand communications requires debugging
- Beacon list needs to be completed

Communications:

- Downlink data budget completed
 - More details about debug mode may be required
 - Uplink data budget to be done
- Chosen COTS transceiver
- Completed preliminary EM analyses
- Completed second iteration of structural design for UHF/VHF antennas
- Deployment procedure designed and tested

Caltech

Thank you!

Questions?

caltech.edu Ae105 Final Presentation 123

Outline

- 2:00 pm: Introduction & Welcome
- 2:15 pm: Systems Engineering
- 2:45 pm: Power
- 3:15 pm: Avionics & Comms
- 3:45 pm: ADCS
- 4:15 pm: Structures

Attitude Determination and Control System (ADCS)

Team: Carmen Amo Alonso Patrick Hsu Michael Marshall Victor Venturi

Mentor: Daniel Pastor

caltech.edu

Term Goals

- Requirements development
- Hardware selection (reaction wheels, sensors, etc.)
- Magnetic disturbance modeling (during docking and science operations)
- Simulator development
 - Orbital and attitude dynamics, disturbance torque models
 - Controller and estimator
- Detumble analysis
- Hardware test plan

ADCS Driving Requirements

Detumble:

Reduce body angular rate < 0.3°/s

Science:

- Pointing accuracy error < 0.1° 3σ per axis
- Attitude stability jitter < 0.02°/s 3σ for 600s during science operations

Rendezvous and Docking (RDV):

 Rotate 90° in 60s about boom axis

Caltech

Operational Modes

• Detumble is Safe Mode

ADCS Generated Requirements

Operational Mode	Additional Requirements	Relevant Team(s)
Testing	 Achieve expected torque values and directions (ground console control) 	 ADCS – Double check hardware functionality
Detumble	 Body angular rate < 0.3°/s Complete this within 4 orbits 	 ADCS – Reduce angular rate to be manageable by reaction wheels
Slew	 Bring satellite within 1° of desired pointing attitude 	 Telecomm – Reorient for antenna Power – Reorient for charging ADCS – Reorient for star pointing
Ground Track	 Track ground station to TBD degrees 	 Telecomm – Point antenna to ground station
Rendezvous and Docking (RDV)	• N/A	• N/A
Sun Pointing	 Maintain ± 10° of optimal charging angle 	 Power – Allow for most efficient charging
Science	• N/A	• N/A

Hardware Selection Criteria

- Meets ADCS requirements (e.g. accuracy during science operations)
- Want integrated solution that includes all sensors and actuators (e.g. reaction wheels, star tracker, computer, etc.)
- Reaction wheels:
 - Need to consider different operational modes and spacecraft configurations
 - Capable of rejecting worst-case disturbance torques and executing required slew maneuver during RDV

Reaction Wheel Sizing

Science:

- Requirements
 - Accuracy 0.1° pointing accuracy
 - Drift 0.02°/s for 600s
- Disturbance Torques
 - Gravity gradient: ~ 10 µN-m
 - Magnetic: ~ 1 µN-m
 - Drag: ~ 1 μN-m
- Configurations –

RDV:

- Requirements
 - Rotate 90° in 60s
- Slew Maneuver –

Configurations –

Hardware Options

CubeSpace 3-Axis	Blue Canyon XACT-50	Maryland Aerospace
ADCS	ADCS	ADCS
Size: < 0.7 U	Size: 0.75 U	Size: 0.52 U
Pointing accuracy: < 0.1 ^o	Pointing accuracy:	Pointing accuracy: 0.1°
RMS all axes	0.003° (x2) & 0.007°	all axes
Flight heritage in progress	Extensive flight heritage	Some flight heritage
\$52,000	\$145,000	~ \$?

- Maryland Aerospace eliminated due to insufficient angular momentum storage to meet requirements
- Blue Canyon eliminated due to excessive cost
- CubeSpace least expensive option that meets requirements

ADCS Simulator - Overview

Goal:

- Model the complete ADCS (in Simulink)
- Execute "day in the life" simulations

Importance:

• Simulator used to verify that ADCS requirements are met

Disturbance Torques (Drag, Gravity Gradient, Magnetic)

ADCS Simulator Models

Ae105 Final Presentation caltech.edu 144

Disturbance Analysis

Goal: Verify that CubeSpace reaction wheels do not saturate in one orbit**

Assumptions:

- Inertially pointing (fixed attitude)
- Truth dynamics
- CBE worst-case inertia matrix for stability and pointing
- Magnetic torque rods at max
- Solar radiation pressure (SRP) is negligible

** For an inertially pointed spacecraft, disturbance torques are periodic with each orbit (to first order)

caltech.edu Ae105 Final Presentation 145

Disturbance Analysis (cont.)

Analysis:

- Monte Carlo simulation with 1,000 runs in five nominal circular sun-synchronous orbits with altitudes between 500km and 600km
- Random variables spacecraft attitude, magnetic moment
- Models cumulative angular momentum buildup in reaction wheels required to maintain fixed attitude

Angular Momentum Buildup

Nominal Angular Momentum Buildup from Disturbance Torques

Nominal Angular Momentum Removed by Magnetic Torque Rods

 Nominally, no net angular momentum buildup on spacecraft if reaction wheels continuously desaturated with torque rods

Angular Momentum Buildup

Worst-Case Net Angular Momentum

 At least 1 reaction wheel saturates in 0.7% of simulations due to orientations that maximize gravity gradient torques

Detumbling Analysis

Importance:

- Satellite spinning after ejection from launch vehicle
 - Need to inertially point spacecraft to use telescope

Goal:

- Obtain an order of magnitude estimate for detumbling time Assumptions:
- With ~3 °/s initial tumbling rate, reaction wheels saturate after removing ~1/2 of the spacecraft's angular momentum
 - Cannot use reaction wheels alone to detumble
- Detumbled when angular velocity < 0.3°/s (star tracker)
- Only gravity gradient and magnetic torques modeled
- Truth dynamics

Detumbling Analysis

Magnetic torque rods with b-dot controller

Representative Detumbling Angular Velocity Time History

Initial Tumbling Rate vs. Time to Detumble

Caltech

- Detumble time increases approximately linearly with initial tumbling rate
- 3°/s initial tumbling rate detumbles in ~1 orbit
- No power concerns with initial tumbling rates up to 10°/s

Magnet Disturbance Analysis

- Goal: Develop refined magnetic force model to more accurately estimate the magnetic forces during rendezvous and docking (RDV)
- Developed discretized coil model with the Biot-Savart Law

$$F_{12} = \frac{\mu N_1 i_1 N_2 i_2}{4\pi} \oint \left(\oint \frac{dl_1 \times \hat{r}}{\|r\|^2} \right) \times dl_2$$

caltech.edu Ae105 Final Presentation 151

Isotorque Lines

 Worst-case (most conservative) scenario: electromagnets at full power during entire RDV maneuver

Unsaturated Region

• Zoom of isotorque lines past "torque saturation region" (~11 cm)

Undocking Analysis

- Issue:
 - Worst-case scenario: high magnetic torques from MirrorSat electromagnets can exceed maximum torque from reaction wheels
 - CoreSat may rotate

- Completed in-depth analysis
 - Computed rotation angle of CoreSat

Worst-Case Rotation Angle

- Worst-case scenario: electromagnets fully powered during entire undocking maneuver
 - Very conservative assumption
 - Needs refinement
- MirrorSat leaves torque saturation region in $\Delta t \approx 2.7s$
- Rotation angle: $\theta \approx 2.8^{\circ}$
- Angular velocity: $\dot{\theta} \approx 2.4^{\circ}/s$

ADCS Summary

- Generated ADCS requirements
- Selected hardware
- Developed ADCS simulator
- Completed disturbance and detumbling analyses
- Created high-fidelity magnetic model and analyzed forces and torques during RDV

Future Work

- Add controller and estimator to simulator
- Conduct detailed ADCS analysis with complete simulator → requirements verification and validation (V&V)
- Develop hardware test plans
- ADCS integration, assembly, and testing (IA&T)

Thank you!

Questions?

caltech.edu Ae105 Final Presentation 158

Outline

- 2:00 pm: Introduction & Welcome
- 2:15 pm: Systems Engineering
- 2:45 pm: Power
- 3:15 pm: Avionics & Comms
- 3:45 pm: ADCS
- 4:15 pm: Structures

Structures Team

Students: Cole Allen Ludovic Gil Stefan Lohaus Mayra Melendez

Mentor: Christophe Leclerc

Team Goals

- 1. Design the CoreSat structure
- Design the Launch Vehicle Interface (LVI) plate
- 3. Select a Hold Down and Release Mechanism (HDRM)

Main Structural Requirements

- Withstand launch environment, with critical acceleration of 25 g
- Provide accurate positioning of optical systems:
 - Mirror boxes
 - Boom support
 - Docking ports
- Provide mechanical support for all subsystems
- Use CubeSat standards for subsystem components (96 mm x 96 mm PCBs)
- Provide vertical clearance of 50 mm for MirrorSat docking maneuvers

CoreSat Structural Design

Design Guidelines

- Flexibility for components positioning
- Optical calibration independent
 of internal assembly
- Flexible clearance at the bottom

Frame Breakdown:

Internal Module Assembly

- Mount internal components in CubeSat standard PCBs
- Group internal components in modules
- Modules are mounted between +X and –X faces contributing to the stiffness and stability of the CoreSat

Modular design allows for modules to be assembled, tested, and replaced individually

Optical System Assembly

- -X face
- Top and bottom frames
- (2) Add docking ports

•

(3) dd co

 Add corner rails

- Add remaining optical system
- Optical system can be aligned independently of other subsystems

Complete Assembly

Latest Assembly

Caltech
Structural Analysis

Ae105 Final Presentation caltech.edu 180

Ae105 Final Presentation 182 caltech.edu

Ae105 Final Presentation 183 caltech.edu

LVI Ring

- Indian Space Research Organisation (ISRO) IBL230 separation device used in PSLV
 - CoreSat must attach to this ring
- Dimensions and properties
 - 8 M6x1 mounting holes, clearance on ring
 - Pitch Circle Diameter (PCD) of 230 mm
 - 0.6 kg retained on satellite after separation

230 mm PCD

8 equally spaced mounting holes

Part of ring that remains on launch vehicle after separation

Caltech

Image Source: IBL230 datasheet

LVI Plate Requirements and Considerations

- Must withstand peak accelerations of 25 g during launch without failure (yield)
- Must place center of mass (COM) of AAReST in its stowed configuration over center of LVI ring
- Should utilize all 8 mounting holes on LVI ring
- Should distribute launch loads evenly
 - Concentration of loads in one location could result in failure

LVI Plate

- Mass: 1.07 kg
- Webbing thickness: 5 mm
- Webbing height: 20 mm

This face connects to bottom of CoreSat

LVI Plate Structural Analysis

- Treat webs as beams, analyze effect of downward force on corners
 - 35 kg, 25 g, yield strength = 503 MPa, shortest beam length = 39 mm
 - Each corner has 3 beams supporting it
 - Critical moment: 168 Nm
 Max moment experienced: 112 Nm
- SolidWorks FEA
 - Fixed boundary condition at 8 mounting holes for LVI ring
 - 35 kg, 25 g acting at COM of CoreSat
 - Straight down onto rectangular portion of plate
 - At angles
 - Max stress experienced: 108 MPa

Caltech

HDRMs

- Hold Down and Release Mechanisms (HDRMs) required to hold down the MirrorSats and camera through launch
- Mount HDRM with limited internal and external accessibility

Caltech

HDRM Selection Criteria

HDRM Requirements: • Critical dimension: 2 cm (for MirrorSat)

190

• Critical load: MirrorSats 1.47 kN, Camera 0.98 kN

Power Guidelines:

Need deeper analysis

Requirements not met

caltech.edu Ae105 Final Presentation

- Max activation current: 2.0 A
 - Max activation power: 25 W

Name	Туре	Mass	Critical dim	Load support	Safety factor	Activation current	Activation power	- RUGA	TiNi FC2
TiNi FC2	Frangibolt	20 g	N/A	2.22 kN	1.51	0.90 A	25.2 W	E250 (Nominal Bocy Diamater) 1.25 (Length)	
TiNi FC3	Frangibolt	32 g	N/A	6.23 kN	4.23	1.75 A	49.0 W	· 6300	TiNi FC3
SP-5025 HOP Actuator	Paraffin Pin-Puller	80 g	2.54 cm	1.16 kN	0.789	0.54 A	15.0 W	(Nominal Body Diameter)	
NEA Model 9100	Bolt Release	70 g	N/A	8.00 kN	5.44	4.0 A	32.0 W -		
Requirements met									-let

SP-5025 HOP Actuator

NEA Model 9100

Image sources: www.tiniaerospace.com; www.neaelectronics.com; www.sncorp.com

Recommended HDRMs

The TiNi FC2

- Max load: 2.22 kN
- Safety factor: 1.51 ۲
- Advantage: light weight ٠
- Disadvantage: needs access to ۲ the CoreSat interior after assembly

SP-5025 HOP Actuator

Max load: 1.16 kN

- Safety factor: 1.58 (using two in parallel)
- Advantage: ease of final assembly
- Disadvantage: high volume, mass, and complexity

Summary

1. Design the CoreSat structure

- Functional and flexible frame design
- Assembly and optical alignment are independent
- Withstands launch loads
- Assembly proposal
- 2. Design the Launch Vehicle Interface (LVI) plate
 - LVI plate design
 - First structural analyses
- 3. Select a Hold Down and Release Mechanism (HDRM)
 - Trade-off analysis
 - Integration proposal

Future Work

- Finalize design depending on final choice of components
- Design fixation for selected HDRM
- Build, assemble, and test a prototype
- Improve structural analyses for the LVI plate and the frame

Questions

Caltech