space structures laboratory

CoreSat Systems Engineering

Fabien Royer September 11th, 2017

Outline

- 1) Overview of high level requirements
- 2) Orbit and lifetime analysis
- 3) On-orbit maximum power collection
- 4) Mass budget
- 5) Communication analysis
- 6) Mission Scenario
- 7) Open Issues and Planned Work

High Level Requirements

High level requirement flow-down:

• Subsystem requirements will be presented in dedicated presentations

Potential Scenarios:

- 1) Boom does not deploy
- worst configuration: narrow configuration, undeployed, side

2) MirrorSats separations do not occur

worst configuration: narrow configuration, side

3) 1 MirrorSat separate and do not redock

worst configuration: narrow L, side or tumbling MirrorSat alone

4) 1 MirrorSat separate and redock

worst configuration: L configuration, side or tumbling MirrorSat

5) 2 MirrorSats separate and do not redock

worst configuration: CoreSat side or tumbling MirrorSat

6) 2 MirrorSats separate and redock

worst configuration: I configuration, side

Hypotheses:

- AAReST mass: 24 kg
- Solar cycles and atmospheric density model: Jacchia 1970
- Solar pressure is negligeable
- Drag coefficient: 2.2
- Orbit considered: noon/midnight sun-synchronous orbit (worst case for power collection)

Framework:

Software: AGI STK

Results:

Results:

Conclusion:

- Worst case lifetime scenario corresponds to nominal wide configuration:
- Limit orbit: 560 km altitude
- Mitigation technique to decrease lifetime:
- Make wide AAReST configuration tumbling at the end of the mission Limit orbit for Z axis tumbling: 614 km altitude Limit orbit for 3 axes tumbling: 598 km altitude
- Ideal PSLV scenario:
- Direct launch to 550 km altitude (or less) sun-synchronous orbit (separation before primary payload)

or

> Upper stage goes down to 550 km altitude sun-synchronous orbit after launching primary payload

On-orbit Power Collection

Optimal charging phase:

- Altitude: 600 km
- Noon / midnight SSO
- Attitude: Sun pointing (-X)
- Solar panel efficiency: 0.30

Mass Budget

Subsystem Component		Max Mass (g)	Contingency (%)	Max Mass + contingency (g)
ADCS	Docking Units	1700	20	2040
ADCS	ADCS Stack + Reaction wheels	1106	10	1216.6
ADCS	Star Camera	166	20	199.2
ADCS	Payload Interface Board	200		200
Avionics/Comms	Transceiver	78	10	85.8
Avionics/Comms	Antenna	100		
Power	Solar Panels	520	30	676
Power	EPS + Batteries	675	10	742.5
Power	Mounting board	270	20	324
Structures	Chassis	1350	20	1620
Structures	Surface Structural Panels	140	10	154
Structures	Launch Interface	600	10	660
Structures	Launch Interface plate	860	15	989
Structures	HDRM - Frangibolts (2 for antennas and 2 for MirrorSats)	400		440
Structures Circuit Boards (c.6-8)		560 8725		⁷²⁸ 8907.1
Core Sat Total				
From January 2017	Wiring	436		566.8
	MirrorSat (incl. propulsion)	8000		9200
	Camera	2700		2700
	Rigid Mirror Box	1900		1900
	Deformable Mirror Box	1200	0	1200
	Boom + Camera Interface + CoreSat Interface	600	0	600
Total S	ystem Mass	23561		24507.1

11

Contingency scale:

- 0 = verified
- 10 = COTS
- 15 = COTS + fab
- 20 = fab only
- 30 = very rough

Data Budget:

- Max data rates:
 - UHF: 9.6 kbps
 - VHF: 1.2 kbps
- Downlink over UHF required (435 438 MHz)
- Assume 8 min passes; max. time between passes is 10 hrs.
- Docking video taken and downlinked over several passes

Mode	Health data [kbps]	Ops data [kbps]	Data rate required for single pass [kbps]	Notes
Nominal	0.31	0	0.31	
Debug	8.86	0	8.86	
Docking data	0.31	0.27	0.58	ADCS and health data
Star imaging	0.31	1.4*	1.71	2 windowed SHWS images, 1 windowed star image
Earth/Moon imaging	0.31	5.1*	5.41	PNG image (no windowing)

* Computed from image size from flight detectors

Hypothesis:

AAReST side

- Focus on UHF downlink: 438 MHz
- Data rate: 9.65 Kbps
- Antenna modeled as dipole: 0.17 m length
- Modulation scheme: FSK
- -X face pointing at the Sun
- Noon/midnight sunsynchronous orbit

Framework: AGI STK

Ground Station side

- Single ground station Guildford, UK
- 2.5 m diameter antenna
- Tracking AAReST
- System noise temperature: 135 K
- 85° cone visibility

Access intervals:

Statistics over 1 year

Max duration	14.1 min	
Min duration (min)	0.15 min	
Average duration (min)	10.8 min	
Average passes per day	8	

Access intervals (one day):

Link Margin:

C/N (dB)

Docking Maneuver:

Open Issues and Planned Work

Open issues:

- Need to develop docking maneuver requirements
- Need to develop complete CONOPS documentation

Planned work

- Develop Integrated STK model for full mission scenario simulation
- Develop (and revisit) full AAReST integration and testing

space structures laboratory

AAReST Attitude Determination and Control (ADC) System Design

Michael Marshall September 11th, 2017

Outline

Design overview

- Driving requirements
- Operational modes
- Additional requirements
- Primary design criteria
- ADCS architecture block diagram
- Overview of CubeSpace ADCS
- Requirements Verification

ADCS Integration and Interfaces

• Future Work

Driving Requirements

Detumble:

 Reduce body angular rates < 0.3°/s in 4 orbits or less

Science:

- Pointing accuracy error < 0.1° 3σ per axis
- Attitude stability jitter < 0.02°/s 3σ for 600s during science operations

Rendezvous and Docking (RDV):

 Rotate 90° in 60s about boom axis

Operational Modes

caltech.edu 11 September 2017 AAReST ADCS

Operational Modes – Safe Mode ACS Flow

Overlap with Mission Chronology

caltech.edu 11 September 2017 AAReST ADCS

ADCS Operational Modes

ADCS Generated Requirements

Operational Mode	Additional Requirements	Rationale
Ground Testing	• n/a	• n/a
Idle	• n/a	• n/a
Detumble (Safe)	• n/a	• n/a
Slew	 Reorient spacecraft to within 1° of desired attitude 	 Required to change operational mode
Rendezvous and Docking (RDV)	• n/a	• n/a
Science (Fine Pointing)	• n/a	• n/a
Sun Pointing (Course Pointing)	 Maintain attitude within ± 10° of optimal charging angle 	 Maximize power generation
Ground Track	 Maintain commanded antenna orientation with TBD degrees 	 Maintain proper antenna orientation during pass
All	 Have capability to desaturate reaction wheels 	 Required to maintain control of spacecraft

Primary Design Criteria

- Meets system and ADCS requirements
- Integrated solution that includes all sensors, actuators, and software
- Reaction wheels with sufficient torque and angular momentum storage to:
 - Execute z-axis slew maneuver for RDV
 - Reject worst-case disturbance torques during science operations (with continuous momentum dumping from torque rods)
- Low cost, (relatively) short lead time
- Solution: CubeSpace 3-Axis ADCS w/Star Tracker

Overview of CubeSpace 3-Axis ADCS

- Integrated 3-axis ADCS capable of providing accurate and precise pointing for CubeSats
- Advertises pointing and estimation accuracies in excess of 0.1° 3σ per axis (during eclipse with star tracker)
 - Lower performance in sun
- Includes ADCS software and CubeComputer OBC
- Flight heritage for most components (via QB50)
- 5 month lead time

CubeSpace 3-Axis ADCS Components

• Includes:

- CubeComputer radiation tolerant on-board computer (OBC) that doubles as AAReST OBC
- CubeControl sensor and actuator interface board w/3-axis rate gyros
- CubeSense fine earth and sun sensors
- 3x Large CubeWheels mounted separately from stack on orthogonal body axes
- 10x coarse sun sensors for coarse attitude determination (e.g. during detumbling)
- 2x CubeTorquer Rods + 1x CubeTorquer Coil magnetic torque rods for detumbling and momentum desaturation
- CubeStar star tracker for quaternion and angular rate estimation during fine pointing/science operations

ADCS Sensors

- CubeStar star tracker
 - 3σ estimation accuracy 0.03° 3σ yaw/pitch, 0.09° roll (about boresight)
 - Typically averages 3-10 star vector measurements per second using Extended Kalman Filter (EKF)
- CubeSense fine Earth and sun sensors
 - Earth sensor 1σ estimation accuracy 0.1° (with full earth in FOV)
 - Sun sensor 1σ estimation accuracy 0.1°
- CubeControl MEMs rate gyros
 - 10 milli-deg/s RMS noise
- Magnetometer
 - 0.5° RMS accuracy in roll, pitch, yaw

alte

ADCS Actuators

- Large CubeWheel reaction wheels
 - Speed range ±6000 rpm
 - Maximum torque 2.3 mN-m
 - Maximum angular momentum storage 30.7 mN-m-s
 - 220g/wheel
- CubeTorquer magnetic torque rods
 - 0.4 A-m² saturation magnetic moment

Requirements Verification Overview

- Developed Simulink tool to analyze ADCS performance in each operational mode
- Conducted Monte Carlo analyses to assess ADCS
 performance over a wide range of attitudes
 - Typically consider 100 random attitudes in a nominal 550 km sun-synchronous orbit
 - Consider all *relevant* spacecraft configurations (but will only present representative results from a single configuration)
 - Analyses conducted to asses pointing accuracy and stability and system's capability to desaturate reaction wheels, all during science operations
- Separate analysis to show feasibility of z-axis slew maneuver for RDV

Requirements Verification Tool

- Dynamics
 - 2 body orbit dynamics
 - Full 3D nonlinear Euler equations for rotational motion
 - Quaternions for attitude propagation
 - Reaction wheel model with static and dynamic imbalances
 - Simple magnetorquer model
 - Models for gravity gradient, magnetic and drag disturbance torques

Requirements Verification Tool (cont.)

Control

- B-dot detumble controller
- Momentum dumping controller
- Nonlinear PD controller (slew, trajectory tracking, pointing)
- Estimation
 - Rate gyro model
 - Star tracker model
 - Kalman filter (fine pointing)
 - Extended Kalman filter (EKF)

Pointing Accuracy and Stability Analysis

- Applicable requirements:
 - Pointing accuracy error < 0.1° 3 σ per axis
 - Attitude stability jitter < 0.02°/s 3σ for 600s (10 min) during science operations
- Assumptions:
 - Inertially-fixed attitude (to simulate science operations)
 - Modeling dominant environmental disturbance torque (gravity gradients), reaction wheel disturbances, process noise
 - Estimated dynamics (from Kalman filter estimate attitude and angular velocity from star tracker measurement)
- Results shown for wide configuration

Pointing Accuracy – Wide, Wide

Caltech

Pointing Stability – Wide, Wide

Camera Frame Visualization - Slewing

Camera Frame Visualization - Slewing

video @ 10x actual

Camera Frame Visualization - Pointing

Camera Frame Visualization - Pointing

video @ 10x actual

Desaturation Analysis

- Applicable requirement: ADCS shall have the capability to desaturate the reaction wheels
- Assumptions:
 - Continuous desaturation with magnetic torque rods (max magnetic moment 0.4 A-m²)
 - Inertially-fixed attitude (to simulate science operations)
 - Modeling dominant environmental disturbance torque (gravity gradients), reaction wheel disturbances
 - Truth dynamics
- Results shown for *wide* configuration

Desaturation Analysis – Wide, Wide

Z-Axis Slew Maneuver

- Applicable requirement: rotation 90° in 60s about boom (z) axis
- Assumptions:
 - Idealized slew maneuver no disturbances, noise, etc.
 - Truth dynamics
- Maneuver simulated open-loop via precomputed control trajectory

• **Takeaway:** z-axis slew maneuver completed in 60 seconds with large angular momentum margins

Z-Axis Slew Analysis – Empty, Narrow

Z-Axis Slew Analysis – Wide, Empty

Requirements Verification Matrix

Requirement	Requirement Met?
Detumble:	
 Reduce body angular rate < 0.3°/s in 4 orbits or less 	Yes*
Science:	
 Pointing accuracy – error < 0.1° 3σ per axis 	Yes**
 Attitude stability – jitter < 0.02°/s 3σ for 600s during science operations 	Yes
Rendezvous and Docking (RDV):	
Rotate 90° in 60s about boom axis	Yes
All	
Have capability to desaturate reaction wheels	Yes
*Droliminary roculto	

*Preliminary results **Some caveats

caltech.edu 11 September 2017 AAReST ADCS

ADCS Integration into CoreSat

- CubeComputer, CubeSense, and CubeControl in central PC104 stack
 - Fine earth and sun sensors mounted separately from CubeSense board
- 3x Large CubeWheels (reaction wheels) located near center of mass in central stack, mounted on orthogonal body axes
 - Mechanical interfaces TBD
- Star tracker mounted to maximize field of view (FOV) given other constraints (e.g. optical system)
- Interfaces over I2C

(Notional) ADCS Interfaces Diagram

Legend: Primary

•

caltech.edu 11 September 2017 AAReST ADCS

Future Work

- Detailed (Monte Carlo) detumble analysis
- Higher fidelity z-axis slew maneuver simulation
- Quantification of pointing constraints (e.g. star tracker cannot be pointed at the sun)
- Algorithm for real-time execution of z-axis slew maneuver?
- Hardware acquisition
- Component testing
- Subsystem integration, assembly, and testing

Open Issues/Discussion Topics

- ConOps during rendezvous and docking (RDV) maneuver (including z-axis slew maneuver)
- Docking system magnetic modeling
 - Updates/models for remnant magnetic moments, torques on spacecraft during RDV, etc.

Questions?

caltech.edu 11 September 2017 AAReST ADCS

Backup Slides

caltech.edu 11 September 2017 AAReST ADCS

Notes on Gravity Gradient Torques

- Largest disturbance torque acting on AAReST by 1+ orders of magnitude
- For a given orbit, maximum gravity gradient torque is proportional to maximum difference between principal inertias

•
$$T_{gg,max} = \frac{3\mu}{2r^3} |J_{xx} - J_{zz}| \cong 15 \ \mu N - m$$

- Function of attitude relative to *orbit* and inertias
- Independent of roll

Note on Gravity Gradient Torques (cont.)

• Approximately 1/3 of sky with $T_{gg} > 0.75 T_{gg,max}$

Pointing Accuracy and Stability Analysis – Additional Results

caltech.edu 11 September 2017 AAReST ADCS

Pointing Accuracy – Empty, Narrow

Pointing Stability – Empty, Narrow

Pointing Accuracy – Narrow, Narrow

Pointing Stability – Narrow, Narrow

Pointing Accuracy – Wide, Empty

Pointing Stability – Wide, Empty

Desaturation Analysis – Additional Results

caltech.edu 11 September 2017 AAReST ADCS

Desaturation Analysis – Empty, Narrow

Desaturation Analysis – Narrow, Narrow

Desaturation Analysis – Wide, Empty

Desaturation Analysis – Wide, Narrow

space structures laboratory

AAReST CoreSat Power System

Ashish Goel Chris Bradley Charlie Dorn Juliane Preimesberger

Outline

- Power sub-system requirements
- Power budget
- Proposed solution
 - Solar cells
 - EPS and batteries
 - Solar panel mounting and fabrication
 - Power generation and depth of discharge analysis
 - System diagram with voltages and currents
- Interfaces
- Outstanding issues/concerns

Power Sub-System Requirements

- Provide sufficient power to all subsystems in all operating modes for proposed mission lifetime of 6 months
- Meet nominal, peak and inrush current requirements of all components
- Provide up to 5 W of power to MirrorSats (5V, 1A)
- Provide sufficient power for frangibolt (28 V, 0.9 A) and burn wire (~2 V, 2.5 A) actuation
- Solar panels must accommodate coarse sun sensors, thermistors and not interfere with the docking process
- Solar cell arrangement must deal with likelihood of shadowing from the boom and other deployables
- Batteries must carry sufficient capacity to power the satellite during detumbling phase
- Batteries must incorporate heaters to keep them within operating temperature range (0-40 C)
- EPS must incorporate safety inhibits (RBF), kill switch and separation detection switches

Power Budget

	Operating mode	Burn wire	Detumble	Actuator release	Nominal	Ground comm	Science	Docking	Mirrorsat Charging	· ·
	Configuration	Narrow	Narrow	Narrow	Both	Both	Both	Both	Both	Both
Power	Battery Heater									e
	EPS	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
ADCS	CubeComputer	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	CubeSense	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
	CubeControl	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
	CubeWheel - Large	1.5	6.6	1.5	1.5	1.5	1.5	3.2	1.5	1.5
	Star Camera						0.9	0.9		
Avionics	UHF Transceiver					2				
	Payload Interface Computers						5	5		
Docking	WiFi						1	1		
	Electromagnets							13		
	LEDs							1		
Other	Boom Deployment	4								
	Rigid Mirror Payload						6			
	Mirrorsat Charging								10	
	Camera						5			
	Release Actuators			25						
	Misc (health monitoring sensors)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	Total Power (W)	9.51	10.61	30 51	5.51	7.51	23.38	28.08	15.51	11.51
	Total Power with 30% Margin (W)	12.36	13.79	39.66	7.16	9.76	30.40	36.51	20.16	14.96
	3.3 V bus peak current (A)	0.56	0.56	0.56	0.56	0.56	0.83	0.83	0.56	0.56
	5 V bus peak current (A)	1.23								0.43
	16 V bus peak current (A)	0.34		1.66						0.47
	Max Mode Duration	< 2 min	< 2 orbits	seconds	N/A	< 8 min	< 10 min	2 min	< 4 hours	5 min

Good estimate Subject to change

EPS – GomSpace NanoPower P60

- P60 dock
- Array conditioning unit (ACU)
 - 6 PV input channels
 - 16 V, 2A max per input
 - Individual MPPT on each input
 - Current and voltage measurements on each input

Power distribution unit (PDU)

- 9 switchable, overcurrent protected outputs
- All outputs through PC 104 header, 6 outputs also through discrete connector
- 1-2 A programmable current limits (not PC104)
- Current, voltage and overcurrent diagnostics on each output

Caltech

Solar Cell Selection

- Commercial panels vs in-house
- Coverglass Interconnected Cell options (includes tabs, bypass diode)

	Efficiency	Surface area (cm²)	Lead time (weeks)
Spectrolab XTJ Prime	30.7%	27.2	3-4
Spectrolab UTJ	28.3%	26.6	5-6
Azurspace 3G30A	29.3%	30.2	8-12

Spectrolab XTJ Prime

Spectrolab UTJ

Azurspace 3G30A

Solar Cell Selection

- Commercial panels vs in-house
- Coverglass Interconnected Cell (CIC) options

	Efficiency	Surface area (cm²)	Lead time (weeks)
Spectrolab XTJ Prime	30.7%	27.2	3-4
Spectrolab UTJ	28.3%	26.6	5-6
Azurspace 3G30A	29.3%	30.2	8-12

Spectrolab XTJ Prime

Spectrolab UTJ

Azurspace 3G30A

Panel Assembly Procedure

- Modified CU Boulder procedure
- Fabricated and tested three functioning panels
- Finalized procedure steps:
 - Cut tabs
 - Laser cut double-sided Kapton tape
 - Vacuum bagging
 - Solder and add conductive epoxy

Add epoxy

Caltech

Align tape

Vacuum bagging

Panel Testing

Illumination

	Pre-assembly	Post-assembly
Cell A	6.7 mA, 0.51 V	9.7 mA, 0.63 V
Cell B	5.3 mA, 0.79 V	10.6 mA, 0.78 V
Solar panel	-	11.37 mA, 1.46 V

Electroluminescence

Vacuum

IR imaging

Caltech

Solar Cell Placement: +X Face

General approach: Place cells wherever possible, even undesired orientations

Caltech

Solar Cell Placement: +/-Y Face

Not shown/unknown

- LIDAR/LEDs/Optical camera for docking
- Access panel

-X	+X	-Y	+Y	RMB	Total
23	23	7	7	12	72

Total Power Available

	Spectrolab XTJ Cells		
Orientation	CoreSat OAP (W)	Total OAP (W)	
Narrow optimal $(\theta_x = 27.4^\circ)$	25.7	29.5	
Wide optimal $(\theta_x=0^\circ)$	24.6	33.8	
Detumble	7.9	12.3	

¹Noon-midnight sun synchronous orbit, 600 km ²Temperature, design and assembly-related losses: 20% ³BOL numbers due to short mission duration

Battery Selection

- GomSpace NanoPower BPX
 - 77 Whr
 - 500 g
 - Integrated heater
 - 8 weeks lead time

- GomSpace BPX battery (77 Whr) provides sufficient storage
- Detumbling mode is the largest strain on the battery

Solar Cell Wiring Schematic

- Possible shadowing due to • folded antennas, boom
- Inefficient wiring of shadowed • cells leads to large power losses

System Diagram

Caltech

Pre-Launch Interface from Gomspace

- USB charging
- CAN Interface to communicate with
 - EPS
 - BPX battery
- Battery voltage sensing pins
- RBF pins, kill switch
- Board dimensions: 32 mm X 32 mm

Inhibit Scheme (Separation Detection)

2 DPDT switches in series

Legend S = Slave University of Surrey _M = Master Caltech

AAReST CoreSat - System Diagram

Unresolved Issues/Future Work

- MirrorSat charging interface
- Dimensions and locations of docking-related sensors
- Number and location of separation switches
- Functionality of payload switchboard
- Location of access port
- Finalizing cabling scheme
- PC104 header compatibility checks

space structures laboratory

Thank you

Questions?

CoreSat Structures

Christophe Leclerc Mélanie Delapierre Federico Bosi

September 11 2017

caltech.edu

Outline

- 1. CoreSat Design
 - Requirements
 - Structural Design
 - Internal Configuration
 - Interfaces
- 2. FEM: Launch Survivability
 - Model Description
 - Results
- 3. Future Work

Main Structural Requirements

- Withstand launch environment, with critical acceleration of 11 g
- Natural frequencies must be higher than (TBC):
 - 90 Hz (longitudinal mode)
 - 45 Hz (lateral mode)
- Provide accurate positioning of optical systems:
 - Mirror boxes
 - Boom support
 - Docking ports
- Provide mechanical support for all subsystems
- Use CubeSat standards for subsystem components (96 mm x 96 mm PCBs)
- Provide vertical clearance of 50 mm for MirrorSat docking maneuvers

CoreSat Structural Design

Internal Module Assembly

- Mount internal components in CubeSat standard PCBs
- Group internal components in modules
- Modules are mounted between +X and -X faces contributing to the stiffness and stability of the CoreSat

Modular design allows for modules to be assembled, tested, and replaced individually

CAD source: Gomspace

Optical System Assembly

- -X face
- Top and bottom frames

caltech.edu

(2)Add docking ports

(3) Add corner

rails

- (4)
- Add remaining optical system
- Optical system can be aligned independently of other subsystems

Complete Assembly

CG Location (Launch)

21 mm (in front of the CoreSat)

8 mm (from the center of the LVI)

LVI Adapter Plate

- Indian Space Research Organisation (ISRO) IBL230 separation device used in PSLV
 - · CoreSat must attach to this ring
- Dimensions and properties
 - 8 M6x1 mounting holes, clearance on ring
 - Pitch Circle Diameter (PCD) of 230 mm
 - 0.6 kg retained on satellite after separation

230 mm PCD

8 equally spaced mounting holes

Part of ring that remains on launch vehicle after separation

Caltech

Image Source: IBL230 datasheet

LVI Adapter Plate

- Must withstand peak accelerations during launch without failure (yield)
- Must place center of mass (COM) of AAReST in its stowed configuration over center of LVI ring
- Should utilize all 8 mounting holes on LVI ring
- Should distribute launch loads evenly
 - Concentration of loads in one location could result in failure

LVI Adapter Plate

- Parameters: 25g steady, 27kg, yielding 505MPa (preliminary study done with NASA standard)
- Latest mass: 980g
- Safety factor 2+ (except at screws)
- Loading at CG: 6 directions + corner

caltech.edu

List of Components

- ADCS
- Reaction wheels
- Power
 - EPS
 - Batteries
- HDRM
 - MirrorSats separation devices (x2)
 - Camera separation device
- Docking ports
- Star camera
- Sun sensor (x2)
- Payload Interface Computer (x3)
- Interface board (x3)
- Antenna release mechanism (x2)
- Radio transceiver

Priority for Central Stack:

- 1. HDRM (camera)
- 2. Wheels
- 3. Payload Interface Computer
- 4. Components using PC/104 (ADCS and EPS)
- 5. Batteries
- 6. Transceiver

Other decision drivers:

- Optical alignment
- CG management
- PIC should be close to the mirror boxes
- Sun sensors and star camera must have sufficient field of view
- (Thermal management)

Positioning of Components

Positioning of Components

Positioning of Components

Interfaces

- The CoreSat has deployable interfaces with 2 components:
 - MirroSats
 - Camera
- A study led to the selection of the TiNi FC2 Frangibolt as the Hold Down and Release Mechanism (HDRM) for both types of separation
 - Compatible with power system
 - Sufficient load capacity
 - Small enough to integrate inside the current design

TiNi FC2 Frangibolt

Standard way of using a Frangibolt is with a single cup and cone interface

TiNi FC2 Frangibolt

- A new architecture was designed to integrate the Frangibolt in the CoreSat
- Release load: 4 448 N

TiNi FC2 Frangibolt

Interface to Camera

Interface to MirrorSats

Goal:

- Preload docking ports for launch, gap needed at HDRM
- Contact at HDRM for release loading

Open Issues

- · Location of the separation switch
 - Can we have anything reaching through the LVI ring?

Open Issues

- Unknown location/dimensions of some subsystems (ADCS, docking ports, flight preparation panel, sensors for docking, etc.)
- Is there LIDAR on the CoreSat?
- Interface between CoreSat and MirrorSat
 - The preloading scheme must be improved
 - We must verify that the stored energy will not eject the MirrorSats

Launch Survivability Analysis

- Static loading at maximum accelerations
- Focus on CoreSat frame

FEM Model in Abagus/Standard

AAReST

CoreSat Frame

Abaqus Model

	Pro	perties	Failure criteria				
Material	Density (Kg/m ³⁾	Poisson's ratio	Young's Modulus (GPa)	Yield point (MPa)	Requirement (von Mises (MPa))		
Aluminum	2700	0.34	70	240	120		
Delrin	1420	0.34	2.4	62	31		
caltech.edu					Caltech		

Docking Mount & Frangibolt Models

• Frangibolt:

Frangibolt plate: rigid

caltech.edu

Mass Attachments to CoreSat

MirrorSat:

- Distributing coupling on
- 5 surfaces
- No pre constraints

Camera:

Distributing coupling on4 surfaces

Other masses:

Distributing coupling on
4 surfaces

Caltech

Results: von Mises Stress Distribution 6 g 6 g von Mises (Pa) Aluminum +1.200e+08 **Yield Point** +1.100e+08+1.000e+08 +9.000e+07 +8.000e+07 +7.000e+07 +6.000e+07 +5.000e+07 +4.000e+07 Delrin +3.000e+07 **Yield Point** +2.000e+07 +1.000e+07 11 g +3.424e+02 Clamped Caltech

Updated Design

- Additional brackets
- Filled bottom holes
- Front frame thickness from 1mm => 2 mm
- Updated docking mount

caltech.edu

Results: von Mises Stress Distribution

Future Work

- Finalize internal configuration
 - Substitute the actual subsystems
 - Add all missing elements
 - Design internal structures for wheels
- Solve the interface issues (MirrorSats and Camera)
- Detailed model of MirrorSat and Camera attachment to CoreSat in FEM
- Finalize the structural design
- Integrate the separation switch inside the design
- Manufacturing, integration and testing

space structures laboratory

AAReST Communications

Antonio Pedivellano Eduardo Placentia Maria Sakovsky

The content of these slides is preliminary or provisional and is subject to revision. Not for general distribution.

Communications Requirements

- 1. Comms must use VHF/UHF amateur frequency band
- 2. Antennas should minimize required pointing for comms
- 3. Antennas should minimize losses
- 4. Transceiver must be COTS and conform to CubeSat form factor
- 5. Transceiver must not interface over I2C
- 6. Must be able to downlink live telemetry (ADCS and health data) during separation and docking
- 7. Must be able to downlink the following data:
 - a) Critical health data since last pass
 - b) 2 SHWS images, 1 science image during science ops
 - c) Full earth/moon images

The content of these slides is preliminary or provisional and is subject to revision. Not for general distribution.

Outline

- 1. Data Budgets
- 2. Component Selection
- 3. EM Simulations
- 4. Design and Test

Outline

1. Data Budgets

- 2. Component Selection
- 3. EM Simulations
- 4. Design and Test

Data Budget – Nominal Operations

- Spacecraft and instrument health variables recorded every 5 mins for nominal operation
- Health data since last pass downlinked
 - Worst case: 8 min pass to downlink 10 hrs of data (max time between passes)
- Total health data = 150.72 kb/pass; data rate = 0.31 kbps

Subsystem	Component	# of sensors	# measurements /pass	Data rate [kb /pass]
Camera	Temperature	6	720	5.76
	State Variables	4	480	3.84
Def mirrors	Voltages	82	9840	78.72
Derminuts	Temperatures	10	1200	9.6
	Picomotors	6	720	5.76
Ref mirrors	Temperatures	2	240	1.92
	Picomotors	6	720	5.76
MirrorSats	Temps	6	720	5.76
CoreSat	Temperature sensors	5	600	4.8
ADCS	Quarternions	4	480	7.68
	Rates	3	360	5.76
500	Solar Panels Voltages	6	720	5.76
EPS	Solar Panel Currents	6	720	5.76
	Battery voltages	2	240	1.92
	Battery currents	2	240	1.92

The content of these slides is preliminary or provisional and is subject to revision. Not for general distribution.

Data Budget – Reconfiguration

- ADCS readings at 1 Hz for 8 min pass + health data
- Total maneuver data = 128.55 kb/pass; data rate = 0.27 kbps

Class	Component	# of sensors	Frequency [#/hr]	# measurements /pass	Data rate [kb /pass]
Camera	Temperature	6	12	9.6	0.0768
	State Variables	4	12	6.4	0.0512
Def mirrors	Voltages	82	12	131.2	1.0496
	Temperatures	10	12	16	0.128
	Picomotors	6	12	9.6	0.0768
Ref mirrors	Temperatures	2	12	3.2	0.0256
	Picomotors	6	12	9.6	0.0768
MirrorSats	Quarternions	4	3600	1920	30.72
	Rates	3	3600	1440	23.04
	Temps	6	12	9.6	0.0768
SC	Temperature sensors	5	12	8	0.064
ADCS	Quarternions	4	3600	1920	30.72
1200	Rates	3	3600	1440	23.04
	Sensors	5	3600	2400	19.2
EPS	Solar Panels Voltages	6	12	9.6	0.0768
	Solar Panel Currents?	6	12	9.6	0.0768
	Battery voltages	2	12	3.2	0.0256
	Battery currents	2	12	3.2	0.0256

The content of these slides is preliminary or provisional and is subject to revision. Not for general distribution.

Data Budget

- Max data rates:
 - UHF: 9.6 kbps downlink
 - VHF: 1.2 kbps uplink
- Assume 8 min passes; no overhead included
- Docking video taken and downlinked over several passes

Mode	Health data [kbps] Ops data [kbps]		Data rate required for single pass [kbps]		Notes	
Nominal	0.31	0	0.31	19		
Docking data	0.31	0.27	0.58	35	ADCS and health data	
Star imaging	0.31	1.4*	1.71	103	2 windowed SHWS images, 1 windowed star image	
Earth/Moon imaging	0.31	5.1*	5.41	325	PNG image (no windowing)	

* Computed from image size from flight detectors

The content of these slides is preliminary or provisional and is subject to revision. Not for general distribution.

Outline

- 1. Data Budgets
- 2. Component Selection
- 3. EM Simulations
- 4. Design and Test

Transceiver Selection

- All options are compatible with CubeSat form factor and have SMA/MCX connections for antenna
- Astrodev helium radio is the top choice due to low cost and UART interface

Product	Cost	Mass (g)	Max Downlink Bit Rate (kbps)	Bus Interface	Data Protocol
AstroDev Helium Radio	+	78	9.6	UART	AX.25, HDLC
ClydeSpace CPUT VUTRX	++	90	9.6	I2C (UART/C AN @ extra \$)	AX.25
ISIS UHF Down/VHF Up Transceiver	++	75	9.6	I2C	AX.25, HDLC

The content of these slides is preliminary or provisional and is subject to revision. Not for general distribution.

Transceiver Selection

- All options are compatible with CubeSat form factor and have SMA/MCX connections for antenna
- Astrodev helium radio is the top choice due to low cost and UART interface

Product	Cost	Mass (g)	Max Downlink Bit Rate (kbps)	Bus Interface	Data Protocol
AstroDev Helium Radio	+	78	9.6	UART	AX.25, HDLC
ClydeSpace CPUT VUTRX	++	90	9.6	I2C (UART/C AN @ extra \$)	AX.25
ISIS UHF Down/VHF Up Transceiver	++	75	9.6	I2C	AX.25, HDLC

The content of these slides is preliminary or provisional and is subject to revision. Not for general distribution.

Astrodev Helium Radio

- Modulation: FSK
- Power
 - Output transmit power: 100 mW 7W
 - Power usage: receive < 200 mW; transmit
 < 16 W
- Interfaces
 - Input voltages: 3.3 V logic; 5-13 V transceiver
 - Serial interface: 3.3 V UART
- Mechanical
 - Operating temperature: -30 70°C
 - CubeSat form factor
 - MCX connectors at right angle
- Sold with breakout board, software to configure radio

The content of these slides is preliminary or provisional and is subject to revision. Not for general distribution. Caltech

Antenna Type Tradeoff

- COTS solutions unreliable in deployment
- Design considerations
 - Large beamwidths
 - Large gains
 - Ease of packaging/deployment
 - Size
- Monopole antenna selected
 - Small, easy to deploy solution
 - Acceptable electromagnetic performance
 - Common solution for CubeSats

Monopole

- **Pros**: good gain, cheap, easy to manufacture
- **Cons**: Linear polarization, ground plane required

Dipole

- Pros: good gain, no ground plane
- Cons: very long

Crossed monopoles

- Pros: cross polarization
- Cons: space limitations

Inverted F monopole

- Pros: compact, easily tunable
- Cons: Less efficient than monopole, difficult to deploy

Helical antenna

- Pros: circular polarization
- Cons: Quite massive, difficult to manufacture

Spiral antenna

- Pros: Circular polarization
- Cons: Large, difficult to manufacture

Antenna Positioning

- Antennas mounted on –Z face at corners
 - +Z (mirror boxes)
 - +/-Y, +X (reserved for MirrorSat docking)
 - -X face (reduces space available for solar panels)
- Electromagnetic analysis required to understand effect of LVI ring

The content of these slides is preliminary or provisional and is subject to revision. Not for general distribution.

Outline

- 1. Data Budgets
- 2. Component Selection
- 3. EM Simulations
- 4. Design and Test

Antenna Electromagnetic Simulations

- Software: CST Student Edition
 - max 30,000 elements
- Model elements:
 - CoreSats, MirrorSats, mirror boxes, camera: 1 mm thick AI shells
 - LVI ring: Al cylinder
 - Boom: carbon fiber; isolated from spacecraft
 - Antenna: steel, tape measure profile
 - 50 Ω discete ports
 - Entire spacecraft used as RF ground
 - Narrow configuration
- Missing from model: cutouts in boom and chassis
- Simulation parameters:
 - Antenna length + angle

The content of these slides is preliminary or provisional and is subject to revision. Not for general distribution.

142 Caltec

VHF Antenna Performance

- Performance metric: reflection coefficient s₁₁ < -10 dB
- Presence of boom significantly affects
 antenna performance
- 0° configuration (antennas point along zaxis)
 - Boom resonates at λ corresponding to L/2

Full Model – 0°

150

Frequency (MHz)

= 46 cm

= 47 cm

L = 48 cm L = 49 cm

200

 Boom resonance not seen in 90° configuration

0

-5

-15

-20

S11 (dB)

Caltech

143

The content of these slides is preliminary or provisional and is subject to revision. Not for general distribution.

100

The content of these slides is preliminary or provisional and is subject to revision. Not for general distribution.

VHF Antenna Performance

- Radiation pattern (145 MHz) for tuned antenna length (L)
- Expected radiation pattern is doughnut shaped around antenna axis
 - LVI ring tilts axis of doughnut
 - Presence of boom results in additional lobes

Full Model -0° (L = 48 cm) 3.4 2.98 2.55 2.13 1.7 1.28 0.851 0.425 0 -4.57 -9.15 -13.7 -18.3 -22.9 -27.4 -32 -36.6 Full Model -90° (L = 46 cm)

2.39 2.09 1.8 1.5 1.2 0.898 0.599 0.299 0 -4.7 -9.4-14.1 -18.8 -23.5 -28.2 -32.9 -37.6

Model w/out Boom (L = 48 cm)

144 Caltech

VHF Antenna Performance – 90° Configuration

- 90° antenna configuration closest to expected performance
- Deviation from theory due to ring, boom, and finite ground plane
- Radiation pattern shows good gains (2.83 dB) and large beamwidths (~90°)
 Y-Z Plane X-Y Plane

Frequency = 145 MHz Main lobe magnitude = 2.81 dB Main lobe direction = 34.0 deg. Angular width (3 dB) = 69.0 deg.

Frequency = 145 MHz Main lobe magnitude = 0.969 dB Main lobe direction = 196.0 deg. Angular width (3 dB) = 98.5 deg.

145

Caltech

180

Phi / Degree vs. dB

field Realized Gain Abs (Theta=90

UHF Antenna Performance

- **Performance metric: reflection** coefficient $s_{11} < -10 \text{ dB}$
- No boom resonance seen in desired • UHF downlink frequency
- Performance in 90° configuration wideband

146

VHF Antenna Performance

- Radiation pattern (365.5 MHz) for tuned antenna length (L)
- UHF radiation pattern significantly affected by LVI but not boom
 - Effects of LVI minimized in 90° configuration
 - 0° configuration has a significant number of addition lobes

The content of these slides is preliminary or provisional and is subject to revision. Not for general distribution.

Full Model – 90° (L = 14.6 cm)

147

UHF Antenna Performance – 90° Configuration

- 90° antenna configuration closest to expected performance
- Deviation from theory due to ring, boom, and finite ground plane
- Radiation pattern shows good gains (4.2 dB) and large beamwidths (~55°)

The content of these slides is preliminary or provisional and is subject to revision. Not for general distribution.

Caltech

EM Simulations Summary

- Antenna performance deviates from theoretical doughnut shape
 - LVI and finite ground plane tilts pattern and introduces extra lobes
 - Boom resonates at VHF when parallel to antennas
- Best performance seen in 90° configuration
- VHF operation
 - S11 ~ -40 dB at 46 cm length, 145 MHz
 - Close to expected monopole radiation pattern
 - Gain = 2.83 dB; 3-dB Beamwidth = ~90°
- UHF operation
 - S11 ~ -20 dB at 14.6 cm length, 436.5 MHz
 - Close to expected monopole radiation pattern with additional side lobes
 - Gain = 4.2 dB; 3-dB Beamwidth = \sim 55°

Outline

- 1. Data Budgets
- 2. Component Selection
- 3. EM Simulations
- 4. Design and Test

Antenna Folding Sequence

Deployment Mechanism Design

- Connection to CoreSat: epoxy filled slot to hold antenna
 - Isolates antenna from ground (chassis)
- One release mechanism per antenna (reused from mirror boxes)
- Vectran wire restrains each antenna against launch vibrations
 - Threaded through holes in antennas to prevent antenna sliding during launch
- Non-conductive spacers between antenna and -X face of CoreSat
 - Preserve functionality in case of failed deployment

Antenna Structural Testing

- Test setup built with ISIS 3U CubeSat Kit and waterjet panels
- Test plan
 - Mechanical design check
 - Deployment reliability
 - Launch vibration survivability

Deployment Testing

- Antenna tested with CubeSat positioned vertically (deployment against gravity) and horizontally
 - 2 A, 1.2 V; deployment ~ 12 s
 - 3 tests total, successful deployment in all cases
- Tests will be repeated to verify repeatability of antenna deployment trajectory

Antenna Electrical Connections

- Objective: test connection reliability
- Procedure:
 - Sand paint from antenna
 - Tin the PCB and inner face of antenna with solder
 - Using kapton tape, tape PCB and antenna assembly on hot plate
 - Stack weights on assembly
 - Heat at 200°C for 15 min

Electromagnetic Test Plan

- Build representative model
 - CoreSat chassis, mock LVI, COTS MirrorSats, boom, camera
- Antenna length tuning
 - Reflection coefficient measurements using network analyzer on campus
- Radiation pattern measurements
 - Measurements with power meter
- EM compatibility testing

Summary and Open Issues

Subsystem specs:

- Downlink over UHF, uplink over VHF
- Astrodev Helium transceiver
- Deployable monopole antennas

Subsystem analysis:

- UHF sufficient to transmit health data, debug data, and camera images in a single 8 min pass
- 90° configuration minimizes boom interference
 - VHF and UHF radiation patterns close to theoretical
 - Acceptable gains and wide beamwidths
- Antenna structural design complete and testing in progress

Open issues

- Boom interference with antenna performance
- Vibration testing
- Frequency allocation

Backup

space structures laboratory

Combined Simulation Data

9/10/17

Overall model – VHF, no boom + camera

• text

Overall model – VHF, with boom + camera

Overall model – VHF, with boom + camera

• text

Overall model – VHF, with boom + camera

Overall model – UHF, no boom + camera

• text

Overall model – UHF, no boom + camera

The content of these slides is preliminary or provisional and is subject to revision. Not for general distribution. Frequency = 436.5 MHz Main lobe magnitude = 2.52 dB Main lobe direction = 131.0 deg. Angular width (3 dB) = 240.6 deg. Side lobe level = -2.6 dB

Frequency = 436.5 MHz Main lobe magnitude = 0.901 dB Main lobe direction = 91.0 deg. Angular width (3 dB) = 311.0 deg.

Overall model – UHF, with boom + camera

• text

Overall model – UHF, with boom + camera; 14.6 cm

and is subject to revision. Not for general distribution.

Overall model – VHF, 90 deg

• text

Overall model – VHF 90 deg

and is subject to revision. Not for general distribution.

Overall model – UHF, 90 deg

• text

Overall model – UHF 90 deg 14.6 cm Farfield Realized Gain Abs (Phi=90)

Simulations w/out boom

Simulation Setup

- CST Student Edition max 30,000 elements
- Satellite (including mirror boxes): 1 mm thick Aluminum shell
 - CoreSat: 40 X 30 X 10 cm
 - MirrorSats: 10 X 10 X 37 cm
- LVI ring: AI cylinder, 1 cm thick, 12.4 cm OD, 6 cm height
- LVI plate: 1 cm thick plate
- Antenna: steel, tape measure profile
 - Variable length, angle relative to CoreSat
- All components assumed to be in electrical contact

UHF antenna, $\alpha = 0^{\circ}$ – Reflection Coefficient

- Antenna operating frequencies shift with changing configurations
- L = 15 cm a compromise between two configurations (close to expected $\frac{\lambda}{4}$)

UHF antenna, narrow, $\alpha = 0^{\circ}$, L = 15 cm (437.5 MHz)

UHF antenna, wide, $\alpha = 0^{\circ}$, L = 15 cm (437.5 MHz)

The content of these slides is preliminary or provisional and is subject to revision. Not for general distribution.

3.2 dB

UHF antenna, $\alpha = 90^{\circ}$ – Reflection Coefficient

- Resonance shifted to higher frequencies but still good performance
- L = 16 cm compromise between configurations

UHF antenna, narrow, $\alpha = 90^{\circ}$, L = 16 cm (437.5 MHz)

and is subject to revision. Not for general distribution.

UHF antenna, wide, $\alpha = 90^{\circ}$, L = 16 cm (437.5 MHz)

Caltech

VHF antenna, $\alpha = 0^{\circ}$ – Reflection Coefficient

- Antenna operating frequencies unaffected by changing configurations
- L = 48 cm for operation in amateur band (close to expected $\frac{\lambda}{4}$)

The content of these slides is preliminary or provisional and is subject to revision. Not for general distribution.

Caltech

VHF antenna, narrow, $\alpha = 0^{\circ}$, L = 48 cm (145 MHz)

VHF antenna, wide, $\alpha = 0^{\circ}$, L = 48 cm (145 MHz)

and is subject to revision. Not for general distribution.

Conclusions

- VHF operation acceptable with antenna at 0° in both configurations
 - S11 ~ -17 dB (VSWR ~ 1.35) at 48 cm length, 145 MHz
 - Expected monopole radiation pattern
 - Narrow: 2.34 dB; Wide: 2.48 dB
- UHF operation affected by LVI ring but still acceptable at 0° in both configurations
 - S11 ~ -20-30 dB (VSWR ~ 1.0 1.1) at 15 cm length, 437.5 MHz
 - Radiation pattern highly affected, non-isotropic, expecially in wide configuration
 - 3dB beamwidths of 80 deg

space structures laboratory

AAReST CoreSat OBSW

Thibaud Talon Antonio Pedivellano

Outline

Requirements

Design / Architecture

- Hardware abstraction layer
- TCT handler / queue
- Modules / Tasks

State of the OBSW

- Currently implemented code
- Software to write

Communications protocols

- TCTM protocol
- File Transfer protocol
- Example
- Future Work
- Questions

Requirements

Requirements

Needs	Requirement				
Communicate with the ground	Receiving data from ground should be interrupt-driven				
	TCTM protocol must have limited overhead				
Communication protocol for	File transfer protocol must allow transmission of files over multiple passes				
large data transmission	Protocols must include error-detecting code				
	Must send beacon message with critical data				
Obtain live telemetry for docking	Must be able to downlink live telemetry data during separation and docking: a) ADCS parameters b) MirrorSat and CoreSat critical health data				
Control each subsystem from the on-board computer	Architecture must enable interfaces (I2C, UART, etc.) specified by each subsystem				
the on-board computer	Must provide interface code between ground messages and subsystems				
Automatically control	Software must be real time				
subsystems	Software must be able to read scripts of commands				
	Must monitor safety of satellite periodically				
Ensure safety of spacecraft	Must manage safe mode by only preserving critical systems				
	Must save critical data to non-volatile memory				
Reprogram in-flight	Must include Bootloader to self program the OBC				

and is subject to revision. Not for general distribution.

Design / Architecture

Design / Architecture

Microcontroller

- EFM32 on CubeComputer (CubeSpace)
- Interfaces available: I2C (x2), UART (x2), CAN, SPI
- Real Time Software
 - FreeRTOS
 - Wide user base, flown on previous missions ⁽¹⁾, available on EFM32 programming software

Software Architecture

- Generously given by Surrey
- Based on tasks for each subsystem and critical functions
- Contains TCT handler / queue for message transfer between tasks
- Interface with Hardware via a Hardware Abstraction Layer

(1) Duke, R., Bridges, C., Stewart, B., Taylor, B., Massimiani, C., Forshaw, J.L. and Aglietti, G., 2016, September. Integrated Flight & Ground Software Framework for Fast Mission Timelines. In *Proceedings of 67th International Astronautical Congress 2016*.

Design / Architecture

Hardware Abstraction Layer

- List of functions for each interface
 - Transfer message over each interface
- Functions directly implemented in each task
 - No specific task for each interface
 - Except UART which is interrupt driven (used for Ground comms)
- Functions include Semaphore Mutex to prevent two tasks to access the same interface at the same time

TCT Handler / Queue

• Manages transfer of information between Tasks

Messages are structures

- Source ID
- Reply ID
- Return value
- Destination ID
- Message ID
- Message type
- Packet length
- Packet (array)

TCT Handler / Queue

• Example: Beacon sending voltages and currents from EPS

Source ID	UART TX (38)
Reply ID	
Return value	
Destination ID	GomspaceEPS (41)
Message ID	81
Message type	request
Packet length	4 (default)
Packet (array)	

Source ID	GomspaceEPS (41)
Reply ID	
Return value	Result (from I2C communication)
Destination ID	UART TX (38)
Message ID	81
Message type	ack
Packet length	21
Packet (array)	(Voltages and currents)

EPS task

Task infinite loop:

The content of these slides is preliminary or provisional and is subject to revision. Not for general distribution.

List of Housekeeping values:

- Voltages
- Currents (In and Out)
- Temperatures (including battery)
- Battery modes
- Latch-ups
- Watchdog timers state
- Errors
- Etc.

List of commands / messages

- Read housekeeping values
- Set outputs
- Read/Set configuration
- Reset
- Etc.

OBC task

Task infinite loop:

List of commands / messages

- Check health (safe mode)
- Trigger safe mode, reset, etc.
- Set/Read unix time
- Test I2C, CAN lines
- Suspend/Resume tasks
- Change flight code (through bootloader)
- Manage watchdog timers

UART tasks

RX task infinite loop:

Process byte:

- Look for Start of Message
- Look for End of Message
- Add byte to correct structure field
 - Destination ID
 - Message ID
 - Packet

TX task infinite loop:

Beacon task

Task infinite loop:

List of Beacon values:

- **ADCS** (position and rates)
- **OBC** (safe mode, battery, power, reboot counts, AMRAD message)
- **EPS** (Voltages, currents, WDT info, temperatures)
- **Transceiver/Receiver** (Voltage, currents, temperatures, reception times, message counts, transfer times
- Payload values

List of commands / messages

Change beacon parameters

Automation task

Task infinite loop:

Scripts:

Automated list of commands

- Saved in SD card
- Each command has a start time, etc.
- Many scripts can be executed in parallel

List of commands / messages

- Schedule scripts
- Stop/Restart scripts
- Get status of scripts
- Write scripts

Mirror Box

Task infinite loop:

- Mirror Boxes are mainly controlled by the Telescope Camera
- The CoreSat only needs to interface with Box if Camera link is lost

List of commands / messages

- Read housekeeping values (register values)
- Set picomotor position
- Debug commands
- Etc.

State of OBSW

State of OBSW

- Hardware Abstraction Layer (from Surrey)
 - I2C
 - CAN
 - UART
 - Flash
 - GPIO
 - SD card
 - MCU
 - Time
 - Watchdog
- Fully implemented

State of OBSW

- Tasks (from Surrey)
 - File Transfer
 - OBC
 - UART comms
 - Beacon
 - Automation
- Fully implemented / minor updates

- Tasks (to implement)
 - EPS
 - ADCS
 - Transceiver/Receiver
 - Antenna deployment
 - MirrorSat
 - Docking/Undocking
 - Mirror boxes
 - Camera
 - Boom Delpoyement
 - Frangiblot

Communications protocols

TCTM Protocol (Jorge Llop)

HDCL protocol

- Less overhead on each message
- Robust (flown before)

TCTM Protocol

2 Byte	2 Bytes 5 Bytes		3 Bytes	1 Byte	1 Byte	Variable Length	1 Byte
Decoder Fla	Callsign (AAReST)	Length of Message	Number of Increments	Group ID	Message ID	Payload Channels	Decoder Flag

• Example:

• ADCS Telemetry, spacecraft velocity (v_x, v_y, v_z) .

Calte

204

File Transfer Protocol

Saratoga protocol

- Fast, scalable, simple, and robust
- Has heritage from Surrey missions

Example

• Format message on Ground

2 Bytes	rtes 5 Bytes		3 Bytes	1 Byte	1 Byte	Variable Length	1 Byte
Decoder Flag			Number of Increments		Message ID	Payload Channels	Decoder Flag

• And send to spacecraft

- The transceiver decodes the message.
- Only the data part of the message is transmitted to the OBC
- The reception of a byte creates an interrupt

The content of these slides is preliminary or provisional and is subject to revision. Not for general distribution.

Voltages and currer

The UART task reads and parses the data and creates a TCT message

The content of these slides is preliminary or provisional and is subject to revision. Not for general distribution.

Caltech

The EPS task creates a TCT message

Source ID	GomspaceEPS (41)
Reply ID	
Return value	Result (from I2C communication)
Destination ID	UART TX (38)
Message ID	81
Message type	ack
Packet length	21
Packet (array)	(Voltages and currents)

The UART task reads the message and creates the downlink data

Source ID	GomspaceEPS (41)	41	81	Result	Packet
Reply ID			01	hesuit	Tucket
Return value	Result				1
Destination ID	UART TX (38)		\sum		
Message ID	81				
Message type	ack				
Packet length	21				
Packet (array)	(Voltages and currents)				

The transceiver format the message to the ground

0xC010

Packet Router (TCT HANDLER)

Open Issues

• Actions during Docking operations?

- What data / telemetry is transferred
 - Telemetry to ground
 - Data from CoreSat to Surrey
- Separate actions from Surrey and CoreSat

Automatically generated code?

- From Excel sheets
- Creates code and documentation
- How expensive is your Python Script?

Future Work

- Define lists of updates
- Progressively compile the code
 - Hardware Abstraction Layer
 - Tasks that don't require hardware communication
- Write task code and test as hardware is available