Concept of Operations (ConOps) Documentation & Camera Pointing Evaluation Tool

Ian Brownstein, Aaditya Chaphalkar, Chris Zheng

Mentors: Tony Freeman and Dan Scharf

Concept of Operations (ConOps) Document

- Useful introduction to AAReST for incoming team members
- Centralized reference for current group members
- A way to make sure teams have a consensus on mission and subsystem goals and objectives, while also providing a space to record their progress
- 'Living' document to consolidate essential project information
 - Up to date mass and power budget, mission requirements, subsystem requirements, mission plan, etc.

Table of Contents

1		RODUCTION TO AAReST	3
		GOALS AND OBJECTIVES	
		MISSION OVERVIEW	
	1.3	DOCUMENT SCOPE	4
2	REI	FERENCE DOCUMENTS	4
3	AAl	ReST SPACECRAFT AND GROUND SUPPORT SYSTEMS	4
	3.1	SYSTEM LEVEL DESCRIPTIONS	4
	3.2	AAReST INTERFACES	į
	3.3	SPACE SEGMENT	6
	3.4	GROUND SEGMENT	1(
	3.5	USER DESCRIPTION	11
	3.6	FACILITIES	11
		D_CT CVCTEM ODED ATTONO	
4			11
		OPERATIONAL PHILOSOPHY	
		MISSIONS OPERATION SUPPORT TEAM	
		DATA OPERATION SUPPORT TEAM	
	4.4	MODES OF OPERATION	
			12
	4.6	GROUND OPERATIONS	
	4.7	FREQUENCY UTILIZATION	
		FLIGHT/GROUP TEST PROGRAM	
		CALIBRATION AND VALIDATION	
		ALGORITHM DEVELOPMENT PROCESS	
		CONTINGENCY OPERATIONS	
		SOFTWARE SUPPORT	
		CONFIGURATION MANAGEMENT	
	4.14	OPERATIONS TRAINING	2

If	Due to	Then (Consequence)	Likelihood of Occurrence	Pre-Flight Risk Reduction	Software Fix	Hardware Fix	Rescue Likelihood
		Preo	perational: Boom De		1		Lincillioon
Restraint strap does not burn	Insufficient power	ent power Boom does not deploy – mission failure	Unlikely	Test power intake		Turn off non- operational/non- essential parts, turn the spacecraft to get more power	Very likely
	Mechanical fault		Unlikely	Test durability			Unlikely
Hinges do not unfold	Insufficient strain	Boom does not deploy or boom does not stay in alignment, thus unable to align with mirrors and take an image – mission failure of some L1 goals (can still	Unlikely	Test chirability, do not store in folded configuration for too long		Shock the spacecraft to attempt to shake the boom loose by pulsing thrusters or reaction wheels	Very likely
	Hinges damaged reconfigure) Boom-CoreSat friction too great Boom-strap friction too great	Unlikely	Test durability (shake tests, etc)		If boom can still stay stiff, attempt to shock the boom to deploy; otherwise no fix	Unlikely	
		Unlikely	Test deployment with mock CoreSat		Shock the spacecraft	Likely	
			Unlikely	Test deployment with strap		Shock the spacecraft	Likely
Frangibolt fault	Insufficient power	Boom does not deploy – mission failure	Unlikely	Test power intake		Turn off non- operational/non- essential parts, turn the spacecraft to get more power	Likely
	Mechanical fault	Unlikely	Test durability			Unlikely	
Boom not stiff enough	Hinges damaged	Boom does not stay in alignment — mission failure of some L1 goals	Unlikely	Test durability under non- ideal conditions		Shock the spacecraft	Unlikely
	Hinges not fully deployed (can still reconfigure)	(can still reconfigure)	Unlikely	Test effectiveness under non-ideal conditions		Shock the spacecraft	Unlikely
		Preoperat	ional: Boom Deployn	nent Continued			

If	Due to	Then (Consequence)	Likelihood of Occurrence	Pre-Flight Risk Reduction	Software Fix	Hardware Fix	Rescue Likelihood
		Preo	perational: Boom Dep	loyment			
Hinges do not unfold P	hase –	Preopera	ationa	l: Boon	n Depl	the boom loose by	nt

If	Due to	Then (Consequence)	"Then" is the consequ	ence from			
Restraint strap does not burn	Insufficient power	Preo Boom does not deploy – mission failure	the fault	Turn off non- operational non- essential parts, turn the spacecraft to get			
	Mechanical fault		Unlikely Test durability				
Hinges do not unfold	Insufficient strain	Boom does not deploy or boom does not stay in alignment, thus unable to align with mirrors and	Example:				
	Hinges damaged	take an image – mission failure of some L1 goals (can still reconfigure)	Boom does not deploy or boom				
			does not stay in alignment, thus				
	Boom-CoreSat friction too great Boom-strap friction too great		unable to align with mi	rrors and			
Frangibolt fault	Insufficient power	Boom does not deploy – mission failure	take an image – missi	on failure of			
	Mechanical fault		L1 goals (cannot imag				
Boom not stiff enough	Hinges damaged. Hinges not fully deployed	Boom does not stay in alignment – mission failure of some L1 goals (can still reconfigure)	reconfigure)				
		Preoperal	non-ideal conditions onal: Boom Deployment Continued				

If	Due to	Then (Consequence)	Likelihood of Occurrence	"Likelihood" is the risk
		Pred	perational: Boom Depl	yment.
Restraint strap does not burn	Insufficient power	Boom does not deploy – mission failure	Unlikely	Categories: Very likely,
	Mechanical fault		Unlikely	Likely, Unlikely
Hinges do not unfold	Insufficient strain	Boom does not deploy or boom does not stay in alignment, thus unable to align with mirrors and	Unlikely	est durability, do not store Shock the spacecraft Very likely to folded configuration for to attempt to shake to long the boom loose by
	Hinges damaged	take an image – mission failure o some L1 goals (can still reconfigure)		Example: pulsing thrusters or reactions wheels if booms can still stary unlikely
			Unlikely	tc) stiff attenue to shock
				Hinges having insufficient
	Boom-CoreSat friction too great		Unlikely	est deployment with mock Shock the spacecraft Likely
	Boom-strap friction too great		Unlikely	strain is "Unlikely" because
Frangibolt fault	Insufficient power	Boom does not deploy – mission failure	Unitikely	we will have done testing to
				prove this.
	Mechanical fault		Unlikely	
Boom not stiff enough	Hinges damaged	Boom does not stay in alignment – mission failure of some L1 goals	Unlikely	Test durability under non- ideal conditions Shock the spacecraft Unlikely
	Hinges not fully deployed	(can still reconfigure)	Unlikely	Test effectiveness under Shock the spacecraft Unlikely non-ideal conditions
	1	Preoperal	tional: Boom Deplayme	Need to validate "likelihood"

"Pre-flight Risk Reduction" are Pre-Flight Risk Reduction tests, design changes, etc. to lovment Test power intake determine likelihood and make the fault less likely Test durability, do not store in folded configuration for too long Test durability (shake tests, Example: Hinges should be tested for Test deployment with mock CoreSat Test deployment with strap deployment in nominal cases, l'est power intake and also off nominal cases, such Test durability as after heavy launch vibrations Test durability under nonideal conditions Test effectiveness under non-ideal conditions nent Continued

"Software Fix" and "Hardware Fix" are contingency operations for during the mission

Mechanical fault

Example:

Software Fix Hardware Fix Reduction of Hardware Fix Reduction operational non-essential parts, turn the spacecraft to game more power to attempt to shake the foliate of some LI goals (can still be some LI goals (can still be

 If boom does not deploy due to friction, then shock the spacecraft with its thrusters and reaction wheels to force a boom deployment.

 If boom does not deploy due to a crack, then we have not developed a contingency plan.

Turn off non- operational/non- essential parts, turn the spacecraft to get more power	Very likely
	Unlikely
Shock the spacecraft to attempt to shake the boom loose by pulsing thrusters or reaction wheels	Very likely
If boom can still stay stiff, attempt to shock the boom to deploy; otherwise no fix	Unlikely
Shock the spacecraft	Likely
Shock the spacecraft	Likely
operational non- essential parts, turn the spacecraft to get more power	Likely
	Unlikely
Shock the spacecraft	Unlikely
Shock the spacecraft	Unlikely

No contingency plan: red flag!

"Rescue Likelihood" is how likely we will Rescue Likelihood recover from the fault Categories: Very likely, Likely, Unlikely Very likely Example: Unlikely If boom does not deploy due to friction, then Likely Likely shocking the spacecraft is a "very likely" fix If boom does not deploy due to a crack or Julikely Unlikely mechanical failure, then we are "unlikely" to Unlikely fix it

If	Due to	Then (Consequence)	Likelihood of Occurrence	Pre-Flight Risk Reduction	Software Fix	Hardware Fix	Rescue Likelihood
		Preo	perational: Boom De				Likelinood
Restraint strap does not burn	Insufficient power Boom does not deploy – miss failure	Boom does not deploy – mission	Unlikely	Test power intake		Turn off non- operational non- essential parts, turn the spacecraft to get more power	Very likely
	Mechanical fault		Unlikely	Test durability			Unlikely
Hinges do not unfold	Insufficient strain	Boom does not deploy or boom does not stay in alignment, thus unable to align with mirrors and take an image – mission failure of some L1 goals (can still	Unlikely	Test durability, do not store in folded configuration for too long		Shock the spacecraft to attempt to shake the boom loose by pulsing thrusters or reaction wheels	Very likely
	Hinges damaged reconfigure) Boom-CoreSat friction too great Boom-strap friction too great	Unlikely	Test churability (shake tests, etc)		If boom can still stay stiff, attempt to shock the boom to deploy; otherwise no fix	Unlikely	
		Unlikely	Test deployment with mock CoreSat		Shock the spacecraft	Likely	
			Unlikely	Test deployment with strap		Shock the spacecraft	Likely
Frangibolt fault	Insufficient power	Boom does not deploy – mission failure	Unlikely	Test power intake		Turn off non- operational/non- essential parts, turn the spacecraft to get more power	Likely
	Mechanical fault		Unlikely	Test durability			Unlikely
Boom not stiff enough	Hinges damaged	Boom does not stay in alignment – mission failure of some L1 goals	Unlikely	Test durability under non- ideal conditions		Shock the spacecraft	Unlikely
	Hinges not fully deployed	(can still reconfigure)	Unlikely	Test effectiveness under non-ideal conditions		Shock the spacecraft	Unlikely

Recommendations

- Continue to identify and reduce risks and incorporate them into the document maintaining a centralized record
 - Reduce number of single point failures
- Prioritize robust launch simulation tests for all hardware in its launch configuration (shake tests)
- Consider utilizing the boom inspection camera to measure the relation between the camera and spacecraft positions over time
- Develop better configuration management to help address the issues of workers separated temporally (year to year turnover) as well as spatially (Pasadena and Surrey)

15

Camera Pointing Capability **Evaluation**

- Goal: Develop an evaluation tool to assess camera jitter due to reaction wheels disturbances incorporating the relevant flexible modes of the boom
- Camera Requirements:
 - Jitter: <0.02°/s
 - Pointing accuracy: <0.10°

17

– Duration: ≥600s

Overview of Tool

Developed close-looped Simulink model of entire spacecraft

- Allocator using pseudo-inverse
- Comprehensive reaction wheel model
- Reaction wheel disturbance model with variable phasing capability
- Spacecraft dynamics based on simplified FE model
- Jitter determination through performance output
- Second order sensor transfer function

PID Controller

Allocator

Reaction wheel model

Reaction wheel disturbances

Rigid body plant

Flexible modes transfer function

Camera jitter evaluation

Sensor Noise Sensor transfei function

PID Controller

Allocator

Reaction wheel model

Reaction wheel disturbances

Rigid body plant

Flexible modes transfer function

Camera jitter evaluation

Sensor Noise
Sensor transfer
function

PID Controller Allocator

Reaction Wheel Model

Reaction wheel disturbances

Rigid body plant

Flexible modes transfer function

Camera jitter evaluation

Sensor Noise Sensor transfei function

PID Controller

Allocator

Reaction wheel model

Reaction wheel disturbances

Rigid body plant Flexible modes

transter function

Camera jitter evaluation

Sensor Noise

Sensor transfer function

PID Controller Allocator

Reaction wheel disturbances

Reaction wheel model

Rigid body plant

Flexible modes transfer function

Camera jitter evaluation

Sensor Noise
Sensor transfer
function

PID Controller

Allocator

Reaction wheel disturbances

Reaction wheel model

Rigid body plant

Flexible modes transfer function

Camera jitter evaluation

Sensor Noise
Sensor transfer
function

PID Controller

Allocator

Reaction wheel disturbances

Reaction wheel model

Rigid body plant Flexible modes

Camera jitter evaluation

Sensor Noise
Sensor transfer
function
Caltech

PID Controller

Allocator

Reaction wheel disturbances

Reaction wheel model

Rigid body plant

transfer function

Camera jitter evaluation

Sensor Noise

Sensor transfer function

PID Controller

Allocator

Reaction wheel disturbances

Reaction wheel model

Rigid body plant

Flexible modes transfer function

Camera jitter evaluation

Sensor Noise

Sensor transfer function Caltech

Major Unit Tests Preformed

- Reaction wheel model
- Disturbance model output check
- Sensor transfer function comparison to manufacturer data

Simulation Verification

Unit test system feed reaction wheel disturbance sinusoid to flexible modes and seek to match analytic predication

$$\sum T(\omega; t) = \sum A(\omega) \cdot \sin(\omega t + \varphi)$$

Flexible Modes, $G(j\omega)$

$$\psi(\omega;t) = B(\omega) \cdot \sin(\omega t + \theta)$$

Simulation Verification

Simulation Verification

$$\omega_o = 7.1 \text{Hz}$$
 $N=4$
 $|T(\omega_o, t)| = 0.54 \text{ mNm}$
 $\beta = 56.31^\circ$
 $|G(j\omega)| = -2.55 \text{dB}$
 $\therefore |\psi(\omega_o, t)| = 1.3 \text{ mrad}$

Results are as

expected

$$|\psi(\omega_o, t)| = N \cdot |T(\omega_o, t)| \cdot \sin(\beta) \cdot |G(j\omega_o)|$$

Sample Results

Sample Results

Moving Forward

- Develop model and implement reaction wheel isolation transfer function
 - Work currently being performed by Surrey
- Obtain and update the reaction wheel disturbance model
 - Current data was taken on a unbalanced wheel
- Deterministic sweep of reaction wheel speeds with random disturbance phasing to determine wheel speeds where camera requirements met

Questions?

Boom Subsystem

Sandra Fang, Arturo Mateos, Yuchen Wei, Michael Williamson Mentor: Lee Wilson

What is the Boom?

38.1 mm

Lay-up consists of

- Plain-weave AstroQuartz
- Unidirectional carbon fiber

Lay-up sequence

- General: $[\pm 45_{AQ}/0_{3CF}/\pm 45_{AQ}]$
- At hinges: [±45_{AQ} / 0_{3 CF} / 90_{CF} / ±45_{AQ}]
- Locally reinforced at hinges with [90] plies to ensure proper deployment

Hinges

What does it do?

Stage 1 deployment

Stage 2 deployment

Stowed configuration

Deployed configuration

What does it did we do?

- 1. Characterize boom deployment with **experiments** and **simulations**
- 2. Design **restraints** and **interfaces** (boom/camera/CoreSats)

Stage 1 deployment

Stage 2 deployment

Stowed configuration

Deployed configuration

What does it did we do?

1. Characterize boom deployment with experiments and simulations

2. Design **restraints** and **interfaces** (boom/camera/CoreSats)

Critical Tasks

- 1. Characterize boom deployment with **experiments** and **simulations**
- 2. Design **restraints** and **interfaces** (boom/camera/CoreSats)

Coresat Boom Camera

Single-hinge characterization tests

FEM Simulation

Restraints and Interfaces

Stage 2 Deployment Test

Objective

- Characterize large-displacement behavior of the boom
- Study accelerations during boom deployment

Method

- Prepare an experimental setup modeling end masses and inertias
 - Simulate deployment in space via gravity offload

Stage 2 Deployment Test - Setup

→ X

- Gravity offload system suspends boom and end masses from J-rail with rollers
 - Displacement constrained in y-axis
- Boom has manufacturing defects affecting accelerations

Stage 2 Deployment Test

Results: low accelerations

Low accelerations compared to those experienced during launch.

For reference:

Delta IV rocket axial load factors: [-2g, 6g] lateral load factors: [-2g, 2g]

Stage 2 Deployment Simulation

Motivation

- Limitation of ground testing facility to simulate micro-G environment
- Examine material thermal effects on in-orbit deployment

Objective

- Develop high fidelity finite element model
- Capture whole deployment process in detail

Hinge Characterization

<u>Objective</u>: Provide quantitative comparison between **simulations** and **measured** behavior of hinge to validate model

- Perform quasi-static deployment experiments
- Develop finite element model for single-hinge experiments
- Compare moment-angle profiles
- Design and calibrate new apparatus with better boundary conditions

Experiment - deployment [32x speed]

Simulation - folding [1x speed]

Hinge Characterization

front

back

Manufacturing

Refects

- Hinges locked before reaching deployed configuration
 - Quasi-static + Manufacturing Defects = prevented deployment
 - Manufacturing process has been improved
- Estimated moment-angle profile for this boom/hinge design
 - Steady-state moment region (0.1 Nm)
 - High snap-back moment to overcome (~0.7 Nm)
 - Small peak at ~30 degrees (0.3 Nm)

Ae105 Final Presentation

caltech.edu

When hinge is latched, it is in a highly stable configuration

Restraints and Interfaces

Objective: Secure boom to spacecraft during launch and and in-orbit

- Design kinematic mounts to allow for camera adjustment relative to the coresat
 - Corrects for misalignments in the construction satellite
- Design release mechanism for Stage 1 deployment

Kinematic Mount

- Cone and 3 flat configuration
- contact points with four 100 tpi ball tipped screws
 - Allows rotation of the adjustable plate around x, y, and z axes

Kinematic Mount

Key Features

- Three pre-load springs maintain contact during adjustment
- Clamp down nuts provide holding force after adjustment

Kinematic Mount

Key Features

- Three pre-load springs maintain contact during adjustment
- Clamp down nuts provide holding force after adjustment

Release Mechanism

- Vectran cable ties down boom in stowed configuration
- Nichrome wire looped around tie down cable between pairs of terminals
- When heated, nichrome wire cuts through the vectran cable due to spring preload

Completed Tasks

Boom deployment tests

- Modeled masses with accurate weights and intertias
- Assembled test rig
- Performed Stage 2 deployment experiment

Single-hinge characterization

- Improved experimental set-up with boundary conditions
- Estimated moment-angle profile

FEM Simulation

- Developed full-boom and single-hinge simulations
- Obtained preliminary results for stage-2 deployment

Restraints and Interfaces

- Designed kinematic mounts
- Designed burn wire release mechanism

Future Work

Boom deployment tests

- Perform Stage1/Stage2 deployment experiments
- Analyze acceleration for all degrees of freedom

Single-hinge characterization

- Perform multiple-folding experiments
- Perform storage experiments

FEM Simulation

- Expand boom & single-hinge simulation to deployment phase
- Modify FEM model according to experimental results
- Incorporate thermal properties of material into model

Restraints and Interfaces

- Prototype kinematic mounts and burn wire release mechanism
- Integrate prototypes into deployment tests

Questions?

Mirror Team: Vibrational and Thermal Testing

Erin Evans, Christian Kettenbeil, Akshay Sridhar, Yuchen Wei Mentor: John Steeves

Motivation

Lightweight, Deformable Mirrors

Acoustic / Vibration

Thermal

Acoustics

 Analysis showed that launch survivability is a concern with current configuration

Delta IV Rocket (Potential Carrier)

Delta IV Sound Pressure Curve

Mirror Subjected to Acoustic Loading

Acoustic Experiments

Vibrometer

Analog Signal

Test-Bed Validation

Mirror Restraint System – Concept

- Break the Symmetric Mode of the Mirror
- Pillars act as damping element in restraint system

Mirror Restraint System – Analysis & Design

Analysis

 Analysis has predicted that restraint system can inhibit the acoustic vibration greatly (reduce 90% of the peak deflection magnitude)

Design

 Developed (with Mirror Test Team) mirror package prototype & test bed with restraint system

Implementation

 Performed mirror acoustic loading experiment with restraint system

Mirror Restraint System – Analysis & Design

Analysis

 Analysis has predicted that restraint system can inhibit the acoustic vibration greatly (reduce 90% of the peak deflection magnitude)

Design

 Developed (with Mirror Test Team) mirror package prototype & test bed with restraint system

Implementation

 Performed mirror acoustic loading experiment with restraint system

Mirror Test Bed

Restraint System Test

W/O Restraint

Restraint System Test

Summary & Future Work

- Design, Manufacturing, Assembly and Validation of an acoustic test-bed
- Observed high deflections in current configuration
- Designed a restraint system that reduces the deflections by <u>an order of magnitude</u>
- Measurement of surface curvatures for different restraint configurations using optical techniques
- Increase SPL capability by use of an enclosure

100

Mirror Thermal Stability Testing

- Problem: Mirror deformation sensitive to temperature changes
- Goal: Build test platform that can operate at -50°C and 10⁻⁵ torr
- Method: Set up vacuum chamber, build mirror cooling circuit, set up optical array for data collection

Cooling System Layout

Cooling System Performance

- Vacuum: 10⁻⁵ torr in 3.5 hours.
- Water cooled heat sink can reach 10°C.
- Cooling plate temp of -20°C in 20 min.
- Reached 0°C on mirror surface with TEC temp of -20°C.

Data Acquisition

- Need to characterize mirror deformation as function of temperature
- Lens array set up to use point source to illuminate mirror
- Reflected waveform captured using Shack Hartmann wavefront sensor

Preliminary Results

Wavefront Error Plot

Y-Coordinate [mm]

Measured Wavefront Error (µm)

Zernike Coefficient – **De-focus Metric**

Caltech

X-Coordinate [mm]

Wavefront error: Comparison of mirror shape with that of a flat surface (processed into curvatures)

Summary and Future Work

- ✓ Designed, commissioned experimental setup to test deformable mirrors at -20°C and 10-5 torr.
- Confirmed ability to capture mirror deformations with temperature
- Concept secondary radiation shield to improve mirror temperature profile if necessary
- Characterise mirror deformation as a function of temperature
- Compare different mirror designs layer thickness specifications

106

Questions?

AAReST Camera Design

Spencer Freeman, Maria Sakovsky Mentor: Manan Arya

Overview

- 1. System Definition
- 2. Requirements
- 3. Prototype
- 4. Flight Camera Design
- 5. Future Work

System Definition

Task Overview

- Camera Prototype
 - SHWS mount prototype
 - SHWS alignment
 - Imaging and collimator groups

- Flight camera design
 - Mount optics
 - Package camera hardware and electronics

Requirements

Functional

- Work with reconfigurable primary mirror
- Provide feedback during primary mirror calibration
- Science imaging

Performance

- 80% encircled energy radius < 90% diffraction-limited EE radius
- 0.3° full field-of-view
- Bandwidth: 465 615 nm
- SNR > 100

Constraints

- Mass < 4kg
- Volume (excluding boom interface) < 10cm × 10cm × 35cm
- Power < 5W

Prototype: SHWS

- Consists of a microlens array (MLA) and CMOS detector
- Objective: Develop procedure for aligning MLA and detector (tip, tilt, piston)

Boston Micromachines Corporation. (2013). Wavefront Sensor and Control System, Deformable Mirrors [Online]. Available: http://www.bostonmicromachines.com/wavefront-sensor.htm

Prototype: SHWS Mount

 Solution: Off the shelf kinematic mount + design modifications to hold 2 components rigidly in place

Prototype: SHWS Alignment

- Point source and collimating lens to generate plane wavefront for alignment
- Alignment verified with off-the-shelf SHWS

Prototype: SHWS Alignment

- Threshold and clean up image
- 2. Extract spot locations(x)
- 3. Compute location of reference grid (o)
- 4. Wavefront slope is the difference between the two locations
- 5. Plot slopes to correct misalignment

Prototype: SHWS Alignment

Misaligned

Adjusted for tip and tilt

Prototype: SHWS Conclusion

- Alignment process developed (know effects of tip, tilt, piston)
- 2. SHWS currently coarsely aligned
- 3. Interferometer needed for fine alignment

Prototype: Power Budget

Part	Peak (W)	Nominal (W)	MODE 1	MODE 2	MODE 3
Telescope CPU	0.600	0.450	0.600	0.600	0.600
Imaging Detector	0.735	0.300	0	0.735	0
SHWS	2.400 x 2	1.800 x 2	2.400 + 1.800	0	0
Boom inspection camera	0.218	0.150	0	0	0
Wireless module	0.144	~0	0.144	0.144	0.144
Mask	0.600	0.600	0	0	0.600
Total	7.097	5.100	4.944	1.479	1.344

- Mode 1: Wavefront sensing
- Mode 2: Imaging
- Mode 3: Mirror reconfiguration

Flight Camera Design

 Optical redesign required new mechanical design

– Mass: 4 kg

- Envelope: 10x10x30 cm

• Current best estimate: Collimator Group

- Mass: 2.94 kg

Envelope:9.8x9.5x26.5 cm

Lens Groups

- Designed tangential interfaces
 - Minimize stress concentrations
 - Radially self-centering
- Radial tabs prevent decenter due to shocks
 _{Radial Tab}

Prototype: Lens Groups

- Collimator and imaging groups assembled
- Point source at the prime focus of the collimator used for alignment
- See small spot at the end of the imaging lens as expected

SHWS

 MLA fixed, detector adjusts in tip/tilt and piston

 Alignment process based on prototype SHWS

Detector

Caltech

Beam Splitters

6 DoF constrained by flexures

Cannot bond due to CTE mismatch over large

surface area

Vertical Constraint

Flexure Tabs

Mask

 Two positions for Compact and Wide Configurations

 Actuated by off-axis motor and spur gear

 Controlled by limit switch and hard-stop

Stray Light/Electronics Shield

- Makes use of triple-bounce interface for stray light blocking
- Minimum 1 mm thick Aluminum radiation

Requirements

Functional

- Work with reconfigurable primary mirror Dynamic Mask
- Provide feedback during primary mirror calibration SHWS
- Science imaging Entire Subsystem

Performance

- 80% encircled energy radius < 90% diffraction-limited EE radius
- 0.3° full field-of-view
- Bandwidth: 465 615 nm
- SNR > 100

Constraints

- Mass < 4kg CBE < 3kg
- Volume (excluding boom interface) < 10cm × 10cm × 35cm Met
- Power < 5W CBE ~ 4.9 W maximum

Future Work

- Prototype
 - Fine SHWS alignment
 - Integration with testbed

- Flight Camera Design
 - Thermal analysis
 - Boom inspection camera
 - Design for manufacturability

Questions?

Optical Testbed

Garima Gupta, Manuel Martinez Mentor: Marie Laslandes

Overview

Primary Goal

 To provide a setup in which the different components of the telescope could be tested as a whole

Objectives

- To model the optical components of the spacecraft
- To simulate the observation of a distant star

caltech.edu

Basic Setup

Tasks

Design & Construct

Design & Construct

Design & Construct

Design & Construct

Design & Construct

Flat Mirror Mount

Purpose: to mount the large flat mirror (acquired from JPL) used for auto-collimation

Design & Construct Spacecraft Interface Plate

Purpose: to simulate the mechanical interface with the spacecraft

Design & Construct

Spacecraft Interface Plate

Wide Configuration

Design & Construct

Mirror Segment Mount

Purpose: to mount the reference and deformable mirrors to the spacecraft interface plate (with the ability to tip and tilt)

Integrate & Test Flat Mirror Calibration

Setup

- Newton Fringes
- Images taken at different positions on mirror

Integrate & Test Flat Mirror Calibration

Example Measurements

http://en.wikipedia.org/wiki/File:Optical_flat_interference_fringes.jpg

Measurements on **Studied Mirror**

Integrate & Test Flat Mirror Calibration

- Image Processing
 - Qualitative: All fringes look straight by eye
 - Quantitative
 - Detect edges, fit lines, measure deviation between edges and lines
 - Problem: Low contrast
 - Exploring Spatial Fourier Transform Approach

Integrate & Test Component Alignment

- Goal: Align the different breadboard elements
 - Numerous coupled degrees of freedom
 - Need to define protocol for an efficient and effective alignment
- Two different situations (protocols):
 - 1. Breadboard alignment with on-axis mirror
 - Define the optical axis
 - 2. Integrate segments in AAReST configuration

Integrate & Test Component Alignment – Protocol 1

- Source & Beam Splitter
 - Illuminate the interface plate
- Mirror Segment & Flat Mirror
 - Adjust Piston/Tip/Tilt to have return spot focusing on initial source
- Camera
 - Position on the optical axis, at the focal plane

Integrate & Test

Component Alignment - Protocol 1

Integrate & Test

Component Alignment – Protocol 2

Integrate & Test

Component Alignment – Protocol 2

- After protocol 1
 - optical axis is defined
- Move mirror segment to a particular AAReST configuration
 - The other components previously aligned <u>must</u>
 <u>not</u> be moved
 - Adjust piston, tip & tilt to position the spot on the camera

Validate

- Ray-tracing software gives expected image based on mirror configuration
- Comparing the actual image to the expected image is used to validate configuration and alignment

Measured spot after alignment of the reference mirror

Conclusion

- All components needed to perform tests on the in-flight subsystems: manufactured and tested
- Alignment protocols have been developed
- Therefore, the testbed is ready to accommodate the different subsystems to analyze the overall behavior of the telescope
 - More precise alignment needed for the camera to be integrated

178

Questions?

Camera & Mirrors Hardware and Software

Ilana Gat, Casey Handmer, Yamuna Phal, Thibaud Talon

Mentors: Mélanie Delapierre, Heather Duckworth

Camera Hardware

Camera Hardware

Camera Hardware

- **UART to USB Converter**
- 2 x ZigBee

- **UART to USB Converter** with crystal oscillator

Camera Software

Q/ How do we go from an image to corrective commands to the mirrors?

- Compiled and works for a computer
- Compiled and works for the Camera CPU !!!

Raw image

Analyzed image

ZigBee Hardware

Requirements:

- Easy to use out of the box
 - Minimal programming needed
 - Minimal hardware to be designed for in-flight
- Used previously in space
- Performs well with radiation
- Low cost
- Low power

XBee satisfies all of these!!

XBee = hardware ZigBee = network protocol

Antenna Options:

- Chip: Bad because XBee inside metal box
- Wire Whip: Bad because attached to XBee inside metal box
- U.FL Connector: Fragile
- RPSMA: Just right!

ZigBee Communication

Requirements:

- Easy to use out of the box
 - Minimal programming needed
 - Minimal hardware to be designed for in-flight
- Used previously in space
- Performs well with radiation
- Low cost
- Low power

XBee satisfies all of these!!

XBee = hardware ZigBee = network protocol

XBee Communication: IT WORKS!!!

- XBees currently talk with both connected to computer
- Next step:
 - Connect End Device to mirror CPU
 - Connect Coordinator to Camera CPU
 - Program ZigBee network for in-flight

Mirror - HV board

How do you design a HV board which is NOT 14.9 kg and 680 W?

- ATMEL stamp from INSPIRE mission
- SPI-I²C-UART interfaces
- Digital output only DAC needed

TESTED

Mirror Picomotors

- Anticipate 'set and forget' usage
- Require 1kHz waveform at ~120V
- Attempt to leverage existing HVB architecture failed
- HVB latency/response time too slow under load
- Need picomotor-specific signal generator

Mirror Multiplexer

Multiplexing concept

Mirror Multiplexer

How does it work? Actuators behave as capacitors

Loop over all 41 channels in 1s (24 ms / channel)

Caltech

Mirror software

- Translated the former code
- Created low level functions to transfer data through I²C and SPI
- Developed feedback for testing
- Integrated and tested for all 41 channels with the HV board

Mirror

Summary

Camera

- In-lab CPU purchased
- Shack-Hartmann USB 3.0 compatibility implemented
- First image analysis programs designed tested

ZigBee

- XBee hardware selected
- Communication established

Mirror

HV board - lab breadboard complete

208

Lab prototype designed - implemented - tested

Future Work

Camera

- In-flight main-board design
- Continue writing software package for in-flight use

ZigBee

- Connect XBees to in-lab mirror and camera CPUs
- Program XBees to communicate with in-lab setup

Mirror

- HV driving picomotors
- Finalize in-flight design

Questions?

