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Future Large Space Telescopes 

• How to build aperture > 10 meters? 

– Segmented primary mirror 

– Many segments 

– Multiple launches 

– On-orbit autonomous assembly 

 

• Mirror segments 

– Lightweight 

– Identical (nominally spherical) 

• Lower cost 

• Redundancy 

• Ease of manufacture and test 

• BUT:  Curvature errors across 
array 

– Deformable capability 
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Team Responsibilities 
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• NanoSat and MirrorCraft  

• Docking system 

• Integrated spacecraft & 

mission ops 

• Deformable mirrors 

• Telescope system 

• Optical focus algorithm 

• Class Instructors 

• Mirror 

Manufacturing 

Facility 

• Launch 

• System integration & 

Testing 

• Mission operations 

 

TBD 



AAReST Mission Objectives 

• Accomplish two key experiments in LEO by 
demonstrating new technologies for 
– Autonomous rendezvous and docking with small 

spacecraft for telescope re-configuration 
– A low-cost active deformable mirror 

• Operate as long as necessary to accomplish the 
objectives (90 days) post commissioning 

• Accomplish the mission inexpensively for a 2015 
launch 

• Gather engineering data that enables the next 
system development 
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Mission Architecture 
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Primary spacecraft and payload ops will 
be run by Univ of Surrey 
• Existing comm and ops infrastructure 
• Includes spacecraft commanding and 

health monitoring 
• Outreach 

Caltech 

Univ of Surrey 

UHF 

<650km orbit, TBD inclination 
≈4-6 passes per day 
9.6kbps DL data rate/1.2 kbps UL 

Bordon, Hampshire 

Remote payload monitoring will be 
done at Caltech 
• Initial mirror calibration 
• Mission planning (target selection) 
• Engineering data analysis and reduction 
• Outreach 

VHF 

S-Band ISL 



Elements 

1. MirrorCraft (x2) – 3U cubesats 
with deformable mirrors on top 
with rendezvous and docking 
capability 

2. CoreSat – main spacecraft with 
primary power, communications, 
primary ACS, docking capability 

 

Payload 
1. Mirror assemblies – 2 active 

deformable mirrors, 2 fixed glass 
reference mirrors with tip/tilt 
positioning 

2. Instrumentation package – 
Telescope optics, detectors, wave 
front sensor, aperture mask 

3. Boom – 1.2m deployable 
composite 
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Instrumentation 
package 

Reference 
Mirrors 

Deformable 
Mirrors 

Boom 

MirrorCraft 



Error Budget 
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Initial Imaging Calibration 

RBM: Rigid Body Motion 
WFE: Wave-Front Error 

Pointing 
stability  
& Jitter 

Final error 
on image 

Piston, Tip, 
Tilt 

correction 

Deformable 
Mirror 

correction 

Residual 
error 

Residual 
WFE 

RBM 

Shape errors 

WFE 

Primary 
Mirror 

Boom 

Camera 

Manufacturing 
& Integration 

Environment 

Manufacturing 
& Integration 

Environment 

Environment WFE 

RBM 

Shape errors 

RBM 

Vibrations 

Design WFE 



Payload Block Diagram 
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MirrorCraft CoreSat MirrorCraft 

High 
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Switch 
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Deformable Mirror 

Controller 

High 
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Switch 

M M M 

Deformable Mirror 

Controller 

M M M 

Reference Mirror 

Controller Controller 

M M M 

Reference Mirror 

I2C Pwr I2C Pwr I2C Pwr I2C Pwr 

Instrumentation Package 

Controller 

I2C Pwr 

Cam 

Shack 
Hartmann 

Imaging 
Sensor 

Optics M 
M 

M 



Concept of Operations 
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De-Orbit 

Launch 

Deploy 
Telescope Boom 

(2-stage) 

Spacecraft & 
Telescope  

Check-out & Init 

Telescope 
Operation 
(imaging) 

Telescope Re- 
configuration 

Telescope 
Operation 
(imaging) 

Extended 
Mission Ops 



Accomplishments in Past Year 
• AE105 class performed  

– Boom development and deployment testing 

– Disturbance analysis 

– Updated optical system design and stray light analysis and test 

– Thermal analysis 

• Active mirror technology has been matured in the lab, initial testing looks great, 
additional testing is underway. 
– Prototype of mirror high voltage switching board has also been tested 

• 2-D reconfiguration demonstrations have been performed in the lab using 
electromagnetic control 

• Preliminary spacecraft, telescope and ops concept have been defined 
– Total mass of 40kg is well within secondary launch capability 

• We have identified the key requirements and flowed them down to the spacecraft 
and telescope subsystems to understand the important performance requirements 
and design drivers 

• STRaND-2 (spacecraft) to payload interfaces are simple, with a lot of heritage from 
STRaND-1 which has flown. 
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Ae105 Project Scope 

John Steeves 
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AAReST Research Activities 

• Develop enabling technologies for AAReST 

– Deformable mirror 

– Deployable boom 

– Camera/Sensors 

• Integration with Surrey S/C 

9/3/2013 Ae105: Final Presentation 12 



Goals of Ae105 Project 

• Perform tasks which complement ongoing 
research activities 

 

• Provide useful information towards the 
AAReST mission as a whole 

 

• Gain experience working in a practical 
aerospace environment 
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2012/2013 Project Tasks 

• Thermal environment 

• External/Internal disturbances 

• Deployable boom characterization 

• Deformable mirrors 

• Camera design 
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Thermal Environment and Design 

Heather Duckworth 

Mentor: Kristina Hogstrom 
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Solar Heating Earth IR Earth Albedo Internal Heat 
Generation 

How does the space 
thermal environment 

affect each components 
ability to stay within 
operational values? 



Outline 

• Orbital mechanics 

• Thermal check 

• The model 

• The results 

• The conclusions 
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Orbital Mechanics 

• Orbit #1 Constant Sun:  
– Sun-Synchronous  
– “Dawn/Dusk” 
– 650 km and 98° inclination 
– Angle with respect to the Sun remains constant 
– Orbital plane rotates ~1°/day 

• Orbit #2 Varying Sun: 
– ISS Orbit 
– 400 km, 51.6° inclination 
– Angle larger, so more sun and shade variance 
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Star Pointing 
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Need camera pointed at  
star due north: 

POLARIS 
RA: 37.5° 
DEC: 90° 



Play 

SunSync_orbit.avi 

 

Sun Synchronous 
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ISS 
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Play 

ISS_orbit.avi 

 



Thermal Check 
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The Model 
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AAReST External 
Surface 

Material Internal Heat Load Heat Max 
and Min 

Mirror 
Crafts 
(x2) 

Solar Panels 
(sides), 
black paint 
(bottom) 

Aluminum 6W/Craft - 

Core 
Craft 

Solar Panels 
(sides), 
Black Paint 
(bottom) 

Aluminum 18W - 

Mirror 
Boxes 
(x4) 

Polished 
Aluminum 

Aluminum 2W/Mirror Range:  
dT<30K (+/-
15°C) 

Mirrors Aluminum 
Out, White 
Under Side 

Glass/Pyrex No Heat Range:  
dT<30K (+/-
15°C) 

Camera MLI Titanium 
(6AL-4V) 

Hot: 300 & 600 mW 
Sensors 
Cold: 0 W 

Range:  
-50 to 70 °C 

Boom Hot: Black 
Cold: White 

Carbon Fiber 
(orthotropic) 

No Heat - 



The Boom 
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Carbon Fiber  
White Paint (α: 0.25) vs. Black Paint (α: 0.9) 

Material Conductivity (W/m/K) Density (kg/m3) Cp (J/kg/K) 

Carbon Fiber 35 (axial) & 10 (circumferential) 2,000 700 

ORBIT HOT: Black Paint 
(°C) 

COLD: White Paint 
(°C) 

Sun Sync 
(longitude) 

Hottest: 35± 23 
Coldest: 35± 25 

Hottest: -10 ± 25 
Coldest: -10 ± 30 
 

ISS 
(longitude) 

Hottest: 35± 23 
Coldest: -45± 48 

Hottest: -10± 23 
Coldest: -40± 48 

Sun Sync 
(circumferential) 

Hottest: 60± 3 
Coldest: 12± 3.5 

Hottest: 15± 2 
Coldest: -37± 2.5 

ISS 
(circumferential) 

Hottest: 55± 2 
Coldest: -85± 2 
 

Hottest: 10± 2 
Coldest: -85± 2 



The Camera 
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ORBIT 2 Sensors 
ONLY (HOT: 
always on, 
°C) 

MLI ONLY 
(HOT: always 
on, °C) 

MLI ONLY 
(COLD: always 
off, °C) 

Sun Sync 
(longitude) 

38 25 ± 1.5 19.8 ± 1.1 
 

ISS 
(longitude) 

25 ± 4 over 
orbit period 

13.5 ± 4 8 ± 4 

Sun Sync 
(circumferential) 

38 26.5 ± 0.25 18.5 ± 0.1 

ISS 
(circumferential) 

25 ± 0.5 over 
orbit period 
 

13.5 ± 2 8 ± 2 

MLI Exterior (ε = 0.02) 
Operating Limits: -50 to 70°C 

 
Material Conductivity (W/m/K) Density (kg/m3) Cp (J/kg/K) 

Titanium (6AL-4V) 6.7 4,430 563 



(seconds) 

(seconds) 

The Mirrors 
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Operating Limits: +/- 15°C (preferably 0 to 30°C) 
Tested from -70°C to +110°C 

Material Conductivity (W/m/K) Density (kg/m3) Cp (J/kg/K) 

Mirrors: Pyrex 1.005 2230 750 

Box: Aluminum 240 2770 873 

ISS Sun Synchronous 

White (α: 0.25) vs. 
 Black Paint (α: 0.9) 

HOT CASE: E-Boards On  
(2 W per Mirror Box) 

White Box 
(seconds) 

Best Case: 
- Boxes Not Isolated 
- Painted Box 
- Sun Shield with  
Solar Panel Outside 
Black Chrome Inside  

(seconds) 

(seconds) 
(seconds) 

(seconds) 

(seconds) 

HOT CASE: E-Boards On  
(2 W per Mirror Box) 
White and Black Box 

HOT CASE: E-Boards On  
(8 W per Mirror Box) 
White and Black Box 

HOT CASE: E-Boards On  
(4 W per Mirror Box) 
White and Black Box 



Best Case Mirrors 
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ISS: -5 to 15°C 

Sun Synchronous: 0 to 
15°C 

Best Case: 
White Box Outside 

Black Box Inside 
Mirror Bottom White 

Recommended Heat Load: 
4W per Mirror Box 



Play 

Mirrors_ISS_whiteandblackbox_4w.avi 

 

Best Case Mirrors 
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Conclusions 
• Optimal orientation for Sun Sync and ISS orbit: Pointed at 

Polaris 

• Boom variance higher at lower temps due to conductivity 
pts 

– White paint would be better, but creates light scatter  

• Camera remains within operational values for sensors 

• Recommended mirror design in order to remain 0 to 30°C: 

– 4W heat load/box 

– White paint exterior box 

– Black paint interior box 

– White paint bottom mirror 
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Disturbance Analysis 

Kevin Rosenberg 

Hunter Zhao 

Mentor: Lee Wilson 
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Atmospheric Drag Reaction Wheel 
Torque 

Gravity Gradient 

• Maneuver spacecraft, counteract 
external torques 

• Imbalances generate vibrations • Potentially disrupt pointing accuracy 



1. Given a specific 
orbit/orientation 

Tnet 

2. Calculate net torque from 
atmospheric drag & gravity 
gradient for entire orbit 

 Translate net torque into required 
wheel speeds for orbit, Ω(t) 

𝐹 𝑡 ,𝑀 𝑡 =   𝐶𝑖Ω
2sin (2𝜋ℎ𝑖Ω𝑡)

𝑖

 

3. Input wheel speeds to empirical 
model to calculate forces and 
moments, F(t) and M(t) respectively 

4. Input dynamic loads F(t), 
M(t), calculate displacement of 
optical package 



1. Given a specific 
orbit/orientation 

Tnet 

2. Calculate net torque from 
atmospheric drag & gravity 
gradient for entire orbit 

 Translate net torque into required 
wheel speeds for orbit, Ω(t) 

𝐹 𝑡 ,𝑀 𝑡 =   𝐶𝑖Ω
2sin (2𝜋ℎ𝑖Ω𝑡)

𝑖

 

3. Input wheel speeds to empirical 
model to calculate forces and 
moments, F(t) and M(t) respectively 

4. Input dynamic loads F(t), 
M(t), calculate displacement of 
optical package 



Mesh Generation 
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DC Disturbances 

Atmospheric drag 
• Simplified drag model 

– Density function of altitude 
– 𝐶𝑑 = 1.17 for flat square plate 
– Input: position, velocity, orientation (Earth frame) 
– Output: total force, total torque (spacecraft frame) 
 

Gravity gradient 
• Simplified mass distribution model 

• 𝐹𝑔 =
−𝐺𝑀𝑚

𝑟2
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External Loading 
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• External disturbance torques are periodic 
• Gravity gradient is dominant 
• Do not need wheel speed adjustments throughout orbit 
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1. Given a specific 
orbit/orientation 

Tnet 

2. Calculate net torque from 
atmospheric drag & gravity 
gradient for entire orbit 

 Translate net torque into required 
wheel speeds for orbit, Ω(t) 

𝐹 𝑡 ,𝑀 𝑡 =   𝐶𝑖Ω
2sin (2𝜋ℎ𝑖Ω𝑡)

𝑖

 

3. Input wheel speeds to empirical 
model to calculate forces and 
moments, F(t) and M(t) respectively 

4. Input dynamic loads F(t), 
M(t), calculate displacement of 
optical package 



Empirical Model 

• Based on Masterson 
et. al (2001) 

 

• Vibrations modeled 
as series of discrete 
harmonics 
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Amplitude 
Coefficients 

Harmonic 
numbers 

Force/Moment 
Wheel speed 

Obtained 
experimentally 



Experimental Setup 

• 6-dof load cell 
 

• Connected via 
interface plates 
 

• Recorded 6-dof 
measurements for 15 
wheel speeds ranging 
from 1000 rpm to 
4000 rpm 
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1. Given a specific 
orbit/orientation 

Tnet 

2. Calculate net torque from 
atmospheric drag & gravity 
gradient for entire orbit 

 Translate net torque into required 
wheel speeds for orbit, Ω(t) 

𝐹 𝑡 ,𝑀 𝑡 =   𝐶𝑖Ω
2sin (2𝜋ℎ𝑖Ω𝑡)

𝑖

 

3. Input wheel speeds to empirical 
model to calculate forces and 
moments, F(t) and M(t) respectively 

4. Input dynamic loads F(t), 
M(t), calculate displacement of 
optical package 



FEA of Disturbances 

• Simplified 3D model 
of spacecraft 

– Abaqus 

– Camera, boom, base 

• AC disturbance 

• Simulated camera 
deflection 
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FEA Validation 

• Used simplified 
cantilever model to 
validate FEA 
simulations 

 

• Results are 
consistent within an 
order of magnitude 
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𝐹 𝑡 = 𝐶𝜔2sin (𝜔𝑡) 



FEA of Disturbances 

Wheel Speed (rpm) Root Sum Squared Deflection (mm) 
RSS Deflection Angle 

(degrees) 

x y z 

500 0.01889 0.01383 0.00849 0.0012 

1000 0.09279 0.05887 0.03713 0.0054 

2000 0.4307 0.1964 0.1185 0.0233 

4000 2.5 1.2 0.7 0.1368 
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𝑦 = 𝑝1𝑥
2  force α C𝑤2 
𝑝1 = 8.378 ∗ 10

−9 
R-square = 0.9911 
 
Upper bound on deflection 
angle: ~ 0.002 degrees 



Recommendations 

• Attempt to balance reaction wheel to obtain 
more realistic vibration data 

 

• Place stringent upper bounds on wheel speed 
to maintain pointing accuracy requirements 

 

• Investigate use of isolators to mitigate 
vibrations at higher frequencies  
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Future work 

• Design control system for reaction wheel 

 

• Consider magnetic effects 

 

• Gyroscopic precession incurred during 
orientation adjustments 
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Deployable Boom 

Carlos Laguna 

Timothy MacDonald 

Mentor: John Steeves 
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Boom Requirements and Use 

• Launch packaging 

• Deployment 

• Science mission use 

– Camera support 
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Mechanical 
Characterization 

Second Stage 
 Deployment 

First Stage Deployment 

Mounting Plate 

Thermal 
Characterization 
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Mounting Plate 
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Mounting Plate 

• Must be lightweight 
and stiff 

• Low CTE material 
required for mirrors 

• Kinematic mounting 

• Easy integration 
with S/C Carbon Fiber 

Aluminum 
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First Stage Deployment 
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1st Stage Deployment 

• Intermediate stage 

• Kinetic properties measured 

• Broadband frequency 

• Max Torque 0.4 Nm 
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Second Stage 
 Deployment 



2nd Stage Deployment 

• Final stage 

• Quasi-static 
deployment (cable 
guided) 

• Tip mass (camera) 
can’t experience 
shock loading 
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Deployed 
Characteristics 
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Deployed Characteristics 

• Boom response to 
disturbances 

• Mechanical 
properties 

• Thermal properties 

• Modeling and 
experiments 
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Mechanical Characterization 

• Abaqus model 

• Fixed and free S/C end 

• Masses represent ends 

 

4 kg 

30 kg 

Type Mode 1 Mode 2 Mode 3 

Fixed 4kg 1.27 1.45 6.91 

Free 4kg 4.94 6.20 7.24 

Fixed 
Modes: 

Bending 1 Bending 2 Torsion 9/3/2013 Ae105: Final Presentation 77 



Mechanical Characterization 

• Fixed end experiments 

• Experimental 
frequency  and 
damping 

– 4.6 kg mass 

PSD Analysis 
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First bending mode 
and torsion 

0.98 Hz 

8.97 Hz 



Thermal Characterization 

• Boom axial displacement 
and deflection cause out 
of focusing. 

• CTE measured with DIC 

• Temperature profiles 
provided by thermal 
environment analysis 

• Two different booms: 
white or black paint 

• Two orbits: ISS and Sun-
synchronous 

Temp Range: 297-332 K 
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ISS Sun-synchronous 



Thermal Characterization 

Boom 
coating 

Orbit Axial 
Displacement 
[um] 

Bending 
[um] 

Black paint 

ISS 222 357 

Sun-
Synchronous 

216 431 

White paint 

ISS 177 165 

Sun-
Synchronous 
 

172 218 Deformed shape 

9/3/2013 Ae105: Final Presentation 90 



Overall Results 
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• Preliminary mounting plate design 
• Characterized first stage deployment 

• Broadband reaction load 
• 0.4 Nm torque 

• Characterized second stage deployment 
• Cable restraint system 

• Deployed characteristics 
• Natural frequencies near 1 Hz 
• Damping properties determined 
• Deflection due to thermal environment 

• Max axial displacement 
• Max bending  

 



Deformable Mirrors & 
Calibration 

Mélanie Delapierre 

Vicky Tian  

Mentors: Keith Patterson, Marie Laslandes 
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Deformable Mirrors 



Timeline 

    Flight Package 
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Launch 

Calibration 

Operation 

Survivability analysis 

Mirror pointing and coarse focusing 

Mirror environmental testing 

Preliminary  design 



Timeline 

Flight Package Design 
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Launch 

Calibration 

Operation 



Mirror Flight Package Design 

Approach: 
 Design package following 

Surrey’s mirror craft 
design  including: 
– Deformable mirror & 

restraint system 
– Boards: Mirror, 

Amplifier, & 
Multiplexers 

– 3 axis gimbal w/  
     open loop  
     picomotor actuators 
– Flexible cables 

 

9/3/2013 Ae105: Final Presentation 96 

Mirror Mirror clamps (3) 

Multiplexers 

Mirror board 

Amplifier 

Actuator mount 

Actuators (3) 

Flex- cables 

Mounting 
Brackets 

Springs (4) 



Timeline 

Flight Package Design 
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Launch 

Calibration 

Operation 



Launch Loads Analysis 

Approach: 
• Measure the damping 

• Model the mirror in Abaqus 

• Apply gravitational loads 

• Apply acoustic loads 

• RSS for failure prediction 
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Perform an FEA of the mirror to predict 
survivability through launch 

Diameter of 10 cm Radius of curvature  
of 2.5m 

Polymer thickness 20μm  

Glass thickness 200μm  

Mirror Setup 



Vibrational Behavior 
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Laser Vibrometer 

Ball 

Mirror 

d(t) 

Mode 1 Mode 2 
Mode 3 

(Experiment) (FEM) 

Damping Ratio, ζ   0.12 (0.12) 

Mode 1 63 Hz  70 Hz 

Mode 2 74 Hz  81 Hz 

Mode 3 220 Hz 257  Hz 

Substrate: Glass 



Launch Loads Analysis 

• Delta IV-Heavy acoustic loads 

• Clamping points are critical 

Frequency vs Curvature of mirror RSS of curvature over all freqs 
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Bending stress failure @ 7 m-1 P
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Timeline 

Flight Package Design 

Launch 

Calibration 

Operation 
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Mirror Pointing and Focusing 
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Fig 1: Actuators Fig 2: Degrees of freedom Fig 3: Setup 

Blind 
Search 

(Find spot) 

Pointing  

(center 
image) 

Coarse 

Focusing 
(spot 

radius) 

Wavefront 
control 

(Shack 
Hartman 
sensor) 

Approach: Process: 



Image Processing 

Radius: Two methods 

1-Encircled Energy: 

 

 

 

 

 

 

2-Gaussian fit*: 
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 Automatically find position and estimate  
radius of the spot 
 
Position: 
Barycenter of the intensity 
 

*From MatlabCentral 



Blind Search 
Theory: 

-Use an open loop 

-Do a spiral path not to miss the camera 

 

Results: 
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Fig2: Actual path (error of the actuators) 

Small path on the camera 

Fig1: Theoretical path of the blind search 

Detector Start 



Pointing 

• Gradient descent 
We assume that the image 
displacement is linear with the actuator 
position and we iterate. 

 
 

 
 
 
 
 

- 2 Inputs: 𝑡𝐵 , 𝑡𝐶  (we only need two 
actuators over three)  

- Parameters: β step time (fix in our 
case) 

- Unknowns X(𝑡𝐵 , 𝑡𝐶), Y(𝑡𝐵 , 𝑡𝐶)  
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Results: 

Pointing beta=0.4 

Pointing beta=0.2 

 Precision<50μm after 15 iterations 
size of the camera : 3,6 mm *4,8 mm 
 



Coarse Focusing 

 
 

 

9/3/2013 Ae105: Final Presentation 106 

 Scan through -500V to 500V and find 
the minimum spot size. 

Results: 
 

 
 
 
 
 
 
 
 
 
 
 

 Active layer V 

Substrate 

Reflective coating 

Electrodes 

Optimum 

 Precision < 410 um  



Timeline 

Flight Package Design 
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Launch 

Calibration 

Operation 



Operation: Thermal Test Design 

Design a vacuum test chamber that will simulate 
the space environment 

Glass Viewport 

Thermal Electric 
Cooler Array 

Electrical 
Feed-through 

Vacuum Pump 

Water-cooled 
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Conclusion 

Mirror Flight Package 

– Preliminary package design complete 

– Redesign mirror clamps to prevent cracking during 
launch 

– Update design as needed 

Finite Element Analysis of Mirror 

– FEM of gravitational and acoustic pressure loads 
complete 

– Experimental shock test to be performed 

– Natural frequencies show possible resonance with 
reaction wheel  
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Conclusion 

Calibration 

– Algorithms implemented  

– Speed of the algorithm can be improved 

– Actuator choice re-evaluation may be necessary 

– Use several voltages to deform the mirror 

– Modify algorithms for several mirrors 

Thermal Test Design 

– Preliminary components identified  

– Interfacing plates between mirror package and chamber to 
be designed 

– Chamber to be built this summer 
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Optics 

Altemurcan K. Kursunlu 

Mary Nguyen 

(Mentor: Manan Arya) 
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Camera 



Overall Camera Setup 
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Primary Mirror 

Collimator 

Adjustable mask 

Reimaging lens 

Image sensor 
(TrueSense KAI-04022)  

Shack-Hartmann 
sensor [SHWS] 

(TrueSense KAI-16070) 

Filters 

Dichroic 
beamsplitter 

(ThorLabs 
DMLP505L) 

 



2013 Goal 

 

Improve on last year’s work, especially by 
addressing complexity. 

 

• Lens Prescription 

• Mechanical Design 

• Data Analysis 
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Trade-Offs: A Second Look 
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1 deg FOV 

f/2 

Large Bandwidth 

10 cm x 10 cm x 40 cm 

Reasonable lenses 

4.0 kg 



Lens Prescription 
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2012 

2013 



Lens Prescription 
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2013 

Characteristic 2012 2013 

Mass (Collim. + Reimag. lenses) 526.240 g 561.062 g 

Total Length (from Prime Focus) 264.4 mm 318.8 mm 

# Lenses + Filters 10 9 

# Cemented Doublets 3 0 

Min Abs. Curvature 26.984 mm 32.717 mm 

Max. Cost Rel. to BK7 16.20 3.00 

# Moving Parts 2 1 



2012 

Mask Design- Last Year 
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Mask Design 

• One fixed mask and a filter 
wheel 

 
• Why do we need a fixed 

mask? 
 
• Stepper Motor activated 
 
• Four modes: 

– Two pupil modes 
• Wide/narrow 

– Two bandpass modes 
• Filter/glass 

• Latching mechanism 
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Mask Design 
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Narrow Pupil Configuration 
 
Pointing Bandpass 

Wide Pupil Configuration 
 
Pointing Bandpass 



Mask Design 
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Narrow Pupil Configuration 
 
Imaging Bandpass 

Wide Pupil Configuration 
 
Imaging Bandpass 



Mask Design 
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Mask Design- Last Year 

• Different objectives 

 

 

 

 

 

• Less complicated design 
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Criterion 2012 2013 

Number of modes Individual hole pattern Four modes 

Number of stepper 
motor 

2 1 

Number of disks 3 2 

Mass 106.5 g 141.2 g 

Energy Consumption 1.2 W 0.6 W 



Conclusions 

• Constraints met: 
– Mass: 2.8 < 4.0 kg 
– Power: 3.4 < 4.0 W 
– Volume: 320mm x 80mm x 80 mm  

• Imaging Performance: 
– 80% encircled energy: 8.589 um (Dif Limit: 5.58 um) 
– SHWS Wavefront Error: 2.7457 waves P2V / 0.6335 waves RMS 

 
• Cheaper, and simpler! 
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Future Work 

• Structural analysis to survive launch and 
deployment loads  

• Thermal analysis 

• Tolerancing 

• More detailed mechanical design 

• Electronics design 

• Machine and test components 
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Concluding Remarks 

John Steeves 
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2012/2013 Project Tasks 

• Thermal environment 
– Thermal profiles obtained for a number of orbits/orientations 

• External/Internal disturbances 
– Quantification of S/C response to disturbances (pointing stability) 

• Deployable boom 
– Characterization of deployment process 
– Determination of deployed properties 

• Deformable mirrors 
– Design of flight package 
– Coarse focusing algorithms 

• Camera design 
– Optimized design of corrective lenses 
– Opto-mechanical design of masking mechanism 
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Error Budget 
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Initial Imaging Calibration 

RBM: Rigid Body Motion 
WFE: Wave-Front Error 

Pointing 
stability  
& Jitter 

Final error 
on image 

Piston, Tip, 
Tilt 

correction 

Deformable 
Mirror 

correction 

Residual 
error 

Residual 
WFE 

RBM 

Shape errors 

WFE 

Primary 
Mirror 

Boom 

Camera 

Manufacturing 
& Integration 

Environment 

Manufacturing 
& Integration 

Environment 

Environment WFE 

RBM 

Shape errors 

RBM 

Vibrations 

Design WFE 



Error Budget 
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Error Budget 
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Error Budget 
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Questions? 

9/3/2013 Ae105: Final Presentation 161 


