Review Outline

1:00 pm: Introduction & Welcome (Pellegrino)
1:05 pm: Mission Overview (Baker & Arya)
1:20 pm: AAReST Spacecraft Bus (Underwood & Bridges)
2:30 pm: AAReST Telescope Payload

- a) Optical System (Jackson)
- b) Mirrors (Bongiorno)
- c) Mirror Box (Wilson)
- d) Boom (Bosi)
- e) Camera (Sakovsky)
- f) Electronics (Lee)
- g) Calibration Algorithms (Talon)
- h) Telescope Software (Wei)

5:45 pm: Discussion & Drinks at the Rath

Meeting Objective: To determine if the design is appropriately mature to continue with the final design and fabrication and test phase.

AAReST History

2

2008 November: Large Space Apertures KISS workshop 2010 June: Ae105

Initial mission design; mission requirement definition
 2011 June: Ae105

- Spacecraft configuration revision: prime focus design
- Docking testbed commissioning
- 2012 June: Ae105
 - Composite boom design and experiments
 - Reconfiguration and docking experiments

2012 September: Mission Concept Review

2012 October: Division of responsibilities

- Surrey: Reconfiguration and docking
- Caltech: Deformable mirror and telescope payload

2013 June: Ae105

- Detailed camera design
- Thermal modeling

2013 September: Preliminary Design Review

2014 June: Ae105

- Camera opto-mechanical prototype
- Boom gravity offload deployment testing
- Mirror vibro-acoustic experiments
- TVAC chamber commissioning
- Telescope testbed commissioning

2014 September: Detailed Design Review

2015 June: Ae105

- Engineering models/prototypes of boom, camera
- Mirror thermal characterization
- Software and algorithms prototyping and testing

Team Responsibilities

- University of Surrey
 - NanoSat and MirrorCraft
 - Docking system
 - Integrated spacecraft and mission ops
- Caltech
 - Deformable mirrors
 - Telescope system
 - Optical focus algorithm
 - Boom
- JPL
 - Class instructors
 - Project management
 - Manufacturing facilities

Caltech Team

- Ae105 class designs, builds, analyzes, tests components
- Ae205 class provides mentorship and guidance
- JPL class instructors, project manager
- JPL provides mirror manufacturing facilities
- Postdocs, upper-year grad students, SURF students provide focused support

Review Outline

1:00 pm: Introduction & Welcome (Pellegrino)

1:05 pm: Mission Overview (Baker & Arya)

- 1:20 pm: AAReST Spacecraft Bus (Underwood & Bridges)
- 2:30 pm: AAReST Telescope Payload
 - a) Optical System (Jackson)
 - b) Mirrors (Bongiorno)
 - c) Mirror Box (Wilson)
 - d) Boom (Bosi)
 - e) Camera (Sakovsky)
 - f) Electronics (Lee)
 - g) Calibration Algorithms (Talon)
 - h) Telescope Software (Wei)

5:45 pm: Discussion & Drinks at the Rath

Meeting Objective: To determine if the design is appropriately mature to continue with the final design and fabrication and test phase.

Mission Overview

Manan Arya

caltech.edu

Motivation: Building Large Space Telescopes

- Mirror dia. of current and planned space telescopes limited by constraints of a single launch
 - Hubble (1990): Ø 2.4 m
 - JWST (2018): Ø 6.5 m
 - HDST (2030+): Ø 11.7 m
- New paradigms needed for Ø 30 m+ segmented primary:
 - Autonomous assembly in orbit
 - Active ultralight mirror segments
- Active mirrors relax tolerances for assembly and manufacturing, correct thermal distortions
- Modular, robust, low-cost architecture

Motivation: Building Large Space Telescopes

- Mirror dia. of current and planned space telescopes limited by constraints of a single launch
 - Hubble (1990): Ø 2.4 m
 - JWST (2018): Ø 6.5 m
 - HDST (2030+): Ø 11.7 m
- New paradigms needed for Ø 30 m+ segmented primary:
 - Autonomous assembly in orbit
 - Active ultralight mirror segments
- Active mirrors relax tolerances for assembly and manufacturing, correct thermal distortions
- Modular, robust, low-cost architecture

JWST

8

Motivation: Building Large Space Telescopes

- Mirror dia. of current and planned space telescopes limited by constraints of a single launch
 - Hubble (1990): Ø 2.4 m
 - JWST (2018): Ø 6.5 m
 - HDST (2030+): Ø 11.7 m
- New paradigms needed for Ø 30 m+ segmented primary:
 - Autonomous assembly in orbit
 - Active ultralight mirror segments
- Active mirrors relax tolerances for assembly and manufacturing, correct thermal distortions
- Modular, robust, low-cost architecture

AAReST Objectives

- Demonstrate key technologies:
 - Autonomous assembly and reconfiguration of modular spacecraft carrying mirror segments
 - Active, lightweight deformable mirrors operating as segments in a primary
- Operate for as long as necessary to accomplish the objectives (~90 days)
- Gather engineering data to enable development of the next system

CoreSat Power, Comm., Telescope ADCS *U. of Surrey*

MirrorSat (×2)

Reconfigurable free-flyers *U. of Surrey*

CoreSat Power, Comm., Telescope ADCS

U. of Surrey

Reference Mirrors (x2)

Fixed figure mirror segments

Deformable Mirrors (x2)

Caltech

Active mirror segments *Caltech*

MirrorSat (x2)

Reconfigurable free-flyers *U. of Surrey*

CoreSat

Power, Comm., Telescope ADCS *U. of Surrey*

Reference Mirrors (x2)

Fixed figure mirror segments *Caltech*

Deployable Boom

Composite structure provides 1.2 m focal length

Deformable Mirrors (x2)

Active mirror segments *Caltech*

MirrorSat (x2) CoreSat Reconfigurable free-flyers Power, Comm., Telescope ADCS U. of Surrey U. of Surrey Reference Mirrors (x2) Deployable Boom Fixed figure mirror segments Composite structure provides 1.2 m focal length Caltech Caltech Deformable Mirrors (x2) Camera Active mirror segments Imaging, Wavefront Sensing and Control Caltech Caltech

Mass: <40 kg Launch Volume: $46 \times 34 \times 30$ cm Camera: $10 \times 10 \times 25$ cm Boom: Ø 3.8 cm, 1.5 m long Prime focus telescope 465 nm – 615 nm bandpass 0.34° field of view 1.2 m focal length UHF down (9600 bps) VHF up (1200 bps) S-Band & Zigbee ISL

Ref. orbits: ~650 km SSO ISS (400 km, 52 deg. incl.)

1.	2.	3.	4.	5.	6.
Launch	Telescope Deployment	Telescope Calibration & Imaging	Reconfiguration	Telescope Recalibration & Imaging	Extended Mission

Launch in a compact, stowed volume

• 46 cm × 34 cm × 30 cm

1.	2.	3.	4.	5.	6.
Launch	Telescope Deployment	Telescope Calibration & Imaging	Reconfiguration	Telescope Recalibration & Imaging	Extended Mission

- Turn on, verify satellite components
- Stabilize attitude, temperature

- Deploy boom in two stages:
 - 1. Boom segments unfold
 - 2. Camera is released
- Uncage deformable mirrors

1.	2.	3.	4.	5.	6.
Launch	Telescope Deployment	Telescope Calibration & Imaging	Reconfiguration	Telescope Recalibration & Imaging	Extended Mission

- Telescope points to a bright reference star
- Calibrate:
 - Segment tip/tilt/piston
 - Deformable mirror surface figure
- Camera provides feedback for segment calibration

1.	2.	3.	4.	5.	6.
Launch	Telescope Deployment	Telescope Calibration & Imaging	Reconfiguration	Telescope Recalibration & Imaging	Extended Mission

- MirrorSats release from CoreSat (one at a time)
- Fly out ~1 m
- Re-dock into "wide" configuration

1.	2.	3.	4.	5.	6.
Launch	Telescope Deployment	Telescope Calibration & Imaging	Reconfiguration	Telescope Recalibration & Imaging	Extended Mission

- Telescope points to a bright reference star
 - Calibrate:
 - Segment tip/tilt/piston
 - Deformable mirror surface figure
- Camera provides feedback for segment calibration

1.	2.	3.	4.	5.	6.
Launch	Telescope Deployment	Telescope Calibration & Imaging	Reconfiguration	Telescope Recalibration & Imaging	Extended Mission

- Co-align star images from different segments to improve SNR
 - Pre-cursor to co-phasing
- Produce images of extended sources (e.g. Moon, Earth) for outreach

Mission Requirements

- Minimum mission
 - 1. Produce one focused image from a deformable mirror
 - 80% encircled energy radius from point source < 25 μ m
 - 2. Perform at least one in-flight autonomous spacecraft reconfiguration maneuver to demonstrate space assembly capability
- Extended mission
 - 1. Produce one focused image from a deformable mirror after reconfiguration
 - 2. Coalign images to improve SNR and demonstrate precursor to co-phasing
 - 3. Produce at least two images of other sources (e.g. Earth and Moon) for outreach purposes

AAReST Optical Overview

Telescope Alignment and Control

- Automatically correct for deployment errors, manufacturing errors and thermal disturbances with active calibration in-flight
- Actuators:

- Sensors:
- 3 rigid body motion (RBM) actuators per segment
- 41 piezoelectric actuators per deformable mirror
- Shack-Hartmann Wavefront Sensors (SHWS)

Caltech

Image plane camera

AAReST Payload Block Diagram

2015 Payload Accomplishments

- Produced deformable mirrors using spherically curved substrates
 Dravious DMa ware flat
 - Previous DMs were flat
- Demonstrated actuation of DM using proto-flight high-voltage (HV) supply electronics
 - Previous DM actuation used benchtop HV supplies
- Constructed a camera mechanical prototype with integrated optics and detectors
- Validated telescope alignment algorithms on telescope testbed with the camera prototype
- Successfully interfaced image sensors and telescope CPU
- Produced in-house full-length composite booms free from defects
- Built boom fixture prototype, and tested boom deployment stage 1
- Wrote and tested telescope autonomy software on flight CPU
- Designed and tested piezomotor driving electronics

Review Outline

1:00 pm: Introduction & Welcome (Pellegrino) 1:10 pm: Mission Overview (Baker & Arya)

- 1:30 pm: AAReST Spacecraft Bus (Underwood & Bridges)
- 2:30 pm: AAReST Telescope Payload
 - a) Optical System (Jackson)
 - b) Mirrors (Bongiorno)
 - c) Mirror Box (Wilson)
 - d) Boom (Bosi)
 - e) Camera (Sakovsky)
 - f) Electronics (Lee)
 - g) Calibration Algorithms (Talon)
 - h) Telescope Software (Wei)

5:45 pm: Discussion & Drinks at the Rath

Optical System

Kathryn Jackson

caltech.edu

Outline

- Optical System Overview
- Baseline Optical Requirement
- Rigid Mirrors
- Deformable Mirrors
 - Performance Requirements
 - System Model
 - Monte Carlo Optical Tolerance Simulations

- Pointing and Attitude Stability
- Signal to Noise Ratio
 - Science Detector
 - Wavefront Sensors
- Summary

Optical System Overview

- AAReST has been designed to meet its Baseline Requirement of 80% encircled energy from each individual mirror segment within a 25µm radius at all points within the 0.34° Field of View.
- Given the optical system design, key system elements have been identified, and their impact on optical performance assessed.

Optical System Overview

Optical System Overview

Baseline Requirement

Expected Encircled Energy of system "as designed" simulated on axis and at largest field angles using Zemax.

Simulations were done for individual mirror segments at each of three segment locations:

Reference	(R)
Compact	(C)
Wide	(W)

R

38

14 Sept 2015

Baseline Requirement:

80% encircled energy within 25µm radius for each segment over entire FoV

FFT Diffraction Encircled Energy

Baseline Requirement:

80% encircled energy within 25µm radius for each segment over entire FoV

FFT Diffraction Encircled Energy

Caltech

Baseline Requirement:

80% encircled energy within 25µm radius for each segment over entire FoV

Caltech

FFT Diffraction Encircled Energy

Rigid Mirrors

- Procurement process initiated for 5 off-axis hyperboloidal mirrors cored from single parent.
- Delivery: October 2015. Material:
- Mass:
- Surface quality: 630nm.
- Zerodur
- 321g
- $\lambda/10 \text{ PV}$ at
- To be used in optical test bed for assessment of other prototyped opto-mechanical components.
- To be assessed for flight readiness.

Caltech

Deformable Mirrors:

Deformable Mirror Simulations

Goal:

To ensure DMs can be driven in closed loop to required shape under various initial and transient error conditions, given available actuation.

- Key Inputs to Optical System Model:
 - Simulated DM influence functions
 - Measured resting shape of current DM
 - +/- 500 V actuator command limits
 - As delivered camera lens elements
 - thermal effects on opto-mechanical elements and DM actuation response.
 - boom deflection

Simulated Influence functions for actuator types 1 - 6 (left to right)

caltech.edu

14 Sept 2015

AAReST Payload CDR

The 41 actuator electrode pattern has been optimized to

Unactuated DM shape

- Use a Reverse Hartmann optical test bed to measure mirror surface error.
- Project RH spot displacements onto Zernike modes.
- T/T removed RMS Surface error: 1.75µm
- Relatively large astigmatism

Current DM initial shape

Optimal Initial Astigmatism

- Best performance achieved when astigmatism is aligned with primary mirror radial ray.
- Sign is equivalent to 90° • rotation.

٠

A range of values give similar encircled energy performance, however the centre of the range (-1µm) requires the least amount of DM stroke, leaving the most dynamic range for correction of other errors.

Caltech

Optimal Initial Astigmatism

 Initial geometric spot at the image plane for conservative initial shape: 1µm RMS of Astigmatism.

Top Right:

- Best spot image after closing the loop with the DM: 80% encircled energy radius = 15µm
 Bottom Left:
- DM actuator voltage commands to achieve best spot image.
- 0 saturated actuators

Monte Carlo simulation

- 500 iteration Monte Carlo simulation.
- Initial conditions: current DM resting shape and measured camera lens specifications.

Error source	Min	Max
Temperature (°C)		
Mirror	-20	+20
Camera	-20	+20
Boom deflection: translation (mm)		
x translation	-0.625	+0.625
y translation	-0.625	+0.625
z translation	-0.127	+0.127
Boom deflection: rotation (°)		
Tip	-0.04	+0.04
Tilt	-0.04	+0.04
		Calte

Monte Carlo simulation

ch

Monte Carlo simulation

System requirement: Telescope Pointing

System Element	Requireme nt	Expected Performance
Pointing	<360 ["] (+/-180")	At 0° pointing angles +/-18 [°] (roll, pitch) +/-108 [°] (yaw)
Attitude Stability	<3.6 [°] /s	<1.8 [°] /s

Science Image Motion

Science Exposure Time

- Rate of motion: 1.8"/s in both pitch and yaw giving 2.55"/s total speed (from [pitch²+yaw²]^{1/2})
- Plate scale of science detector = 0.38"/pixel

$$\frac{0.38''/pix}{2.55''/s} = 149ms/pix$$

- 149ms exposures will limit smearing of image to one pixel.
- Effect of Roll has not yet been considered.

Science SNR for a 150ms exposure for a single mirror segment (goal is 100)

With 2.2micron pixels, a diffraction limited segment image is 7x7 pixels

- n_{pix}~45 illuminated pixels.
- From camera specs:

 $n_{RON} = 2.6e^{-1}/pix$ QE = 0.62@482nm

Read noise adds in quadrature:

$$N_{RON} = \sqrt{(n_{RON})^2 n_{pix}} = 17.5e^{-1}$$

caltech.edu

57

Observing targets: stars $m_v = 1$ to 2 $F = 3.4 \times 10^6$ photons/cm²/s: S = signal,Np = photon noise = \sqrt{S} , $T_s =$ integration time, A = segment area, η = throughput, $SNR = \frac{S}{N_{RON} + N_{r}} \qquad S = F \times T_{s} \times h \times \frac{A}{n_{pix}}$ $S = 3.4 \ 10^{6} \frac{n}{cm^{2}s} \times 150 \ 10^{-3}s \times h \times \frac{63.6cm^{2}}{45}$ $h = h_{mirror} h_{lens}^7 h_{BS} QE \sim 0.05 \frac{e}{R}$ $h_{BS} = 0.1$ $S = 3.6 \ 10^4$ $SNR = \frac{3.6 \cdot 10^4}{2.6 \pm 1.80} = 187 / pixel altech$

Shack-Hartmann Wavefront Sensor

- MLA: EO #64-476
 - 10 × 10 mm, 300 μm pitch
 - 5.1 mm focal length
 - ~177 WF slope samples per segment
- Image sensor: CMOSIS CMV4000
 - CMOS imager
 - 11.26 × 11.26 mm active area
 - 5.5 µm pixel pitch
 - 2048 × 2048 pixels, 4.2 Mp
 - (QE)_{peak} = 0.57 at 537 nm

Caltech

WFS Geometry

- Lenslet Array = 10x10mm
- lenslet pitch = 300µm
- 33x33 lenslets in total
- Beam footprint diameter = 4.2mm
- 14x14 lenslets per segment pupil
- Detector pixel size = 5.5µm
- 300µm/5.5µm = 55x55 pixels per subaperture
- Spot size:

$$A_{D} = 2.44 \frac{f_{l}}{D_{l}}$$

$$A_{D} = 2.44 \frac{(0.54 \text{ mm})(5.1 \text{ mm})}{300 \text{ mm}} = 22.4 \text{ mm}$$

$$22.4 \text{ mm} / 5.5 \text{ mm} = 4 \text{ } 4 \text{ pixels}$$

Callec

WFS SNR for a 50ms exposure for a single mirror segment

Signal to noise for given flux $F = 3.4x10^6$ photons/cm²: S = signal $N\rho = photon noise$ N_{RON} = Read out noise $T_s = integration time = 50ms$ $A = segment area = \pi(4.5cm)^2$ $\eta = throughput = 0.5e^-/photon$ $n_{pix} = number of pixels/spot = 12$ n_l = number of lenslets/segment = 177

$$SNR = \frac{S}{N_{RON} + N_{r}}$$

$$N_{RON} = 13e^{-}$$

$$N_{r} = \sqrt{S}$$

$$S = F \times T_{s} \times h \times \frac{A}{n_{pix}n_{l}}$$

$$S = 3.4 \cdot 10^{6} \frac{h}{cm^{2}s} \times 50 \cdot 10^{-3}s \times h \times \frac{63.6cm^{2}}{12 \times 177}$$

$$h = h_{mirror}h_{lens}^{4}h_{BS}QE \sim 0.5\frac{e^{-}}{h}$$

$$QE = 0.57 @ 540nm, h_{BS} = 0.9$$

$$S = 2545, \sqrt{S} = 50.4$$

$$SNR = \frac{2.5 \cdot 10^{3}}{13 + 50.4} = 40 / pixel = 138 / lenslet.$$

Caltech

Summary

- Given current optical system elements, including DM and Camera lenses, AAReST is able to meet its science requirement of 80% encircled energy in a 25µm radius under most tested error conditions.
- With some improvement to the DM initial shape, the science requirement can be met for all tested error conditions.
- For the selected target type (stars brighter than magnitude 2) both the WFSs and science detector will attain sufficient SNR within the time limits imposed by attitude stability.
- Additional information regarding pointing and attitude stability will ensure requirements are met.

Mirrors

Stephen Bongiorno

caltech.edu

Deformable Mirror (DM) Overview

Driving requirements

- Optics must focus 80% of point source energy to <50 µm diameter spot at focal plane.
 - Desired mirror shape + initial shape error must be within stroke limits of actuators.

DM theory of operation

- Piezo depoles at 25 V/micron
- Dielectric breakdown at 75 V/micron

Slumped glass substrates

SPACE FLIGHT CENTER

caltech.edu 14 Sept 2015

AAReST Payload CDR

R

Fabricating deformable mirrors

Caltech

Mirror fabrication status

- Deformable Mirrors:
 - Initial shape test GS-12
 - Thermal test mirror GS-13
 - ND electrode mirror RS-14
- Reference Mirrors:
 - Ordered from NU-TEK
 - Expected delivery Oct.2015

DM process Improvements

Resin vacuum degassing

Resin centrifugation

caltech.edu 14 Sept 2015

AAReST Payload CDR

DM process Improvements

Caltech

77

DM process Improvements

- PVDF-TrFE Annealing
 - Simulation predicts
 loop can close on +54
 to -18mm CoF shift.
 - Worst-case high-temp.
 anneal will cause
 +19mm CoF shift.
- Heated poling

Caltech

Reverse Hartmann test-bed

caltech.edu 14 Sept 2015 **AAReST Payload CDR**

79

RS-14 influence functions

Caltech

14 Sept 2015 AA

AAReST Payload CDR

80

Thermally balanced reflective layer

GS-13 Thermal testing

- •Thermal balance layer tweaked to reduce focus mode variation from -15C to +20C (expected flight temperature range)
- Astigmatism variation due to mount/mirror CTE mismatch – low CTE mount to be fabricated
- Additional testing ongoing

82

Work to go

- Produce flight-like deformable mirrors with GSFC rev. 2 substrates
 - Additional thermal stability, shape control verification

Mirror Box

Lee Wilson

caltech.edu

Mirror Boxes

.

Accomplishments

- Mirror Box moved from concept into detailed design
 - Launch restraint system, frame & baffle design
 - Improved mirror mounts to avoid unintended mirror deformation
 - Optical encoders & limit switches included for picomotor control

Caltech

Optical test with improved mounts

Mirror Box Overview

Mirrors & Mounts

 Rigid & deformable mirrors & mounts

Picomotors

- Linear actuators
- Piston/tip/tilt the mirror

Launch Restraint System

Springs

Electronics

Frame

- Includes baffle to block stray light
- Milled from AI Plate
- Base interfaces with CoreSat / Mirrorcraft

caltech.edu

Key Requirements

- Provide capacity for mirror to kinematically tip / tilt to 6.85°
- $\underline{0}$ Mirror mounts do not Mirror mounts do not excessively deform mirrors \tilde{P} Mirror survives launch loads $\leq 6g$
- Mirror survives launch
- Operating temperatures - -25°C to +15°C
- Survival temperature - -60°C to 50°C
- USB electrical interface with Surrey subsystems

Operating thermal profile for the mirror segments

Rigid Body Motion

- Picomotors interface with kinematic mount
 - Shaft in contact with steel inserts
 - Cone, V-slot and Flat
- Same system for deformable & reference mirror boxes

Picomotor Control

- Picomotors
 - Newport Solutions 8354
 - Non-linear axial steps
 - $\mu_{mean} = 25-40 \text{ um/s}$
- Optical encoders
 - Avago AEDR-8400
 - Measure rotation of picomotors
 - 850 nm axial position resolution ~30 picomotor steps
 - Encoders find average increment for calibration
- Limit switches at top / bottom of picomotor travel
 D2F2-FL-N

Mirror Mounting

- Kinematic mounting to PCB
 - Spheres pinch mirror in 3 places
 - Spherical magnets aligns with surface normal
 - Cage retains magnet
- Jig used to systematically place magnets

Mounting Jig

Mirror Mount Deformation Results

- Zernike modes are an orthogonal basis for mirror deformation
 - Z9 and Z10 are trefoil modes
 - Test mounts at 120° separation
 - Ideal case mirror rotated 60° mode signs should invert

Mounts impart ~60 nm RMS

Z9 Z10 Key Zernike Modes

Zernike	0° RMS (um)	60° RMS (um)	Name
9	-0.29	0.35	Vertical Trefoil
10	-0.2	0.19	Oblique Trefoil

Trefoil Results (Reverse Shack Hartmann Test)

Mirror Shadowing

- Mirror box sides & baffle shadow mirror during operation
 - Wide Configuration ~ $\gamma = 8.1^{\circ}$
 - Mirror Diameter = 100 mm
 - Hole Diameter = 100 mm
- Region masked = 3.7 mm of one edge

Effect of shadowing on PSF

Un-shadowed pupil (wide configuration) Pupil given current mirror box design

- PSF of single segment shown with proper pixel samplings
- Difference on same scale

caltech.edu

Launch Restraint

- Latching with 6 springs
 - Mirror + Mirror plate =
 393 grams max
- Max 13 N / picomotor
 - Picomotors not engaged during launch

Latched

- Spring force ∞ Picomotor extension

			Force	Extended Force	Factor on Latching	Factor on Picomotors	
	Sprin 9044	ngs x6 IK19	24.3 N	37 N	1.05	1.05	
caltec	:h.edu	14 Sept 2015	5	Delta IV Launch Environment		Calle	ecr

Fully

Restraining Mirror

- Restraint posts prevent motion perpendicular to springs
- Silicone tips press on mirror back – reduce vibrations
- Lab implementation:
 - Holes drilled through mirror PCB allow restraint posts through
 - Mirror seated against silicone pads atop shoulder bolts

Acoustic Test Apparatus

Vibration Suppression

- Approximated Delta IV Heavy acoustic loads
- Mirror response measured at 115dB (low signal distortion)
 - ~ 75x reduction in RMS response
 - More broad-band response due to constrained configuration

Caltech

Values to be measured at higher SPLs (TBD)

Mirror Box Thermal Design & Modeling

- Passive thermal control
 - Mirror box exterior painted white (absorptance = 0.35, emissivity = 0.85)
- DM is the most temperature-sensitive component (20° C
 - $> T_{DM} > -25^{\circ} C$ during operations)
 - Conductively isolated from the rest of the box
 - Radiative coupling to PCB below is primary heat transfer mech.
 - Inefficient at rejecting heat to cold sky because of low-emissivity reflective coating
- Steady state FEM thermal simulation
 - Conservative estimates of hot and cold case temperatures
- Simulation accounts for
 - Solar (1400 W/m²), Earth-reflected (albedo = 0.3), Earth-emitted (240 W/m²) radiation
 - Limited view of the cold sky (140° cone blocked by Earth)
 - Waste heat from electronics (1.53 W) and MirrorSat (4 W)

				Min (°C)	Max (°C)	Mirror (°C)
	Hot Ca	ase (Survival &	Operational)	12.7	23.7	12.7
	Cold C	Case (Operation	nal)	-25.7	-15.1	-22.1
	Cold C	Case (Survival)		-34.5	-29.6	-34.5
caltec	h.edu	14 Sept 2015	AAReST Payload	CDR	101	

Mass Budget

- ~ 0.66 kg / Deformable Mirror Box
- ~ 0.90 kg / Reference Mirror Box

Subsystem	Current Mass (g)	Contingency (g) (30%)	Total (g)
Mirror – Deformable (Reference)	28 (340)	8 (-)	36 (340)
Picomotors	57	-	57
Launch Restraint System	71	21	92
Electronics	144	43	187
Frame	224	67	291
Total Mass	524 (791)	140 (118)	664 (909)

Future Work

- Additional thermal simulations for reference mirror mounting
- Manufacture protoflight hardware
- Vibration test on protoflight hardware
 - Investigate if "mirror walking" during launch is a problem
 - Wire bond survivability
- Optics test on protoflight hardware

Boom

Christophe Leclerc, Serena Ferraro, Federico Bosi

caltech.edu

Boom overwiev

1.16m

Functional

- Enable 1.16m telescope focal length
- Lightweight and compact launch configuration
- Can self deploy

Architecture

- Hollow cylindrical boom wrapped around S/C via 4 folding-tape-spring hinges attached to S/C and Camera through interfaces
- Two stage unconstrained deployment process

Accomplishment

- New composite material: use of cyanate ester resin matrix
- In-house two full length booms manufacturing (previously realized by AFRL in Albuquerque)
- Material characterization: outgassing test and viscoelastic analysis
- Hinges characterization
- Manufacturing and testing of Boom-CoreSat Interface: kinematic mount and separation device
- Stage 1 deployment experiments

Boom Lay-up

-boom

 $\pi D_{mandrel}$

Objective: improve seaming area and **prevent opening** of the boom (happened with AFRL booms).

The composite consisted of

- Plain-weave (PW) Astroquartz
- ThinPreg 180CE unidirectional carbon fiber with a cyanate ester resin matrix (to reduce outgassing and low moisture absorpion)

Mandrel Material Choice

Objective: choose a mandrel through which the boom is easy to remove, has a good surface quality and maintain its straightness after the curing cycle.

The mandrel is composed of:

- External hollow **PTFE** mandrel. Because of its high CTE, the boom is easy to remove from the mandrel and will not have wrinkles.
- Internal Aluminum tube to keep the PTFE mandrel straight.

The mandrel's length is 1.85 m, therefore it is possible to manufacture a full length boom (1.45 m) without any junction zone.

Fabrication Process

3) Cut hinges in appropriate locations, optimized for stored configuration

Final Boom

Two full length boom have been realized:

- Total mass of each boom is 65 g;
- Diameter is 38.8 mm;
- Total length is 1.45 m;
- Thickness is 200 µm;
- Straightness is 5 mm/1.45 m (~0.34%).

Caltech

Comparison New & Old Booms

New booms

(Caltech fabrication) do not present any opening during multiple folding and unfolding, thanks to the new lay-up and manufacturing process.

Old booms (AFRL in Albuquerque) show opening of the seam during folding.

caltech.edu 14 S

14 Sept 2015

AAReST Payload CDR

129

Outgassing

Objective: Validate the low outgassing properties and low moisture absorption of the composite material with the new cyanate ester resin.

- Tests were performed in accordance with ASTM E595-07;
- From NASA standard, a material is "Low Outgassing" if
 - TML < 1% (Total Mass Loss);
 - CVCM < 0.10% (Collected Volatile Condensable Material).

Test	TML %	WVR %	CVCM %
6 samples	0.17	0.11	0.00

• WVR is Water Vapor Regained.

From these results, the material **successfully passed** the outgassing tests.

Viscoelastic Test

Objective: Ensure boom retains sufficient potential energy for deployment after long-term storage.

Test Method:

- Sample buckled and positioned inside a preheated thermal chamber;
- Supports kept at fixed distance to simulate stored radius of curvature;
- The change in reaction force exerted by the sample is measured with a load cell.

(a) Experimental set-up: Instron Mechanical testing machine with its thermal chamber; (b) detail of the sample

Viscoelastic Properties: Master Curve

Though the master curve we know the viscoelastic behavior of the material over time: to simulate 4 months of storage time the sample need to be <u>aged 84 minutes</u> at $80 \degree$ C.

Results expected:

- ~12% decrease in reaction force over 4 months;
- ~14% decrease in reaction force over 8 months;
- ~16% decrease in reaction force over 1 year.

Caltech

Hinge Design

- Dimensions
 - 200 µm composite's total thickness;
 - 38.8 mm boom's diameter.
- The cutting pattern has been design through a structural optimization:
 - "Dog-bone" hinge cutting pattern;
 - D = 15mm, L= 90mm, SW = 8mm;

Based off of Mallikarachchi, H.M.Y.C. and Pellegrino, S. (2008-2012)

Caltech

Hinge Characterization

Objective: Measure the moment exerted by the hinge with respect to the hinge configuration, defined by its angle. Compare unaged and aged hinge behavior.

Results: ~12% decrease in steady moment if behavior at the peak is neglected.

Conclusions: - Quasi-static deployment test confirms master curve prediction;

- Reduced moment did not prevent successful hinge deployment, longer storage time will not compromise boom deployment.

Boom-CoreSat Interfaces

AAReST stored configuration

<u>Kinematic Mount</u> allows adjustment of camera relative to CoreSat before final storage; It corrects for misalignments.

Separation Device

constrains boom during storage and releases stage 1 during deployment.

Caltech

Objective: Validate last year's designs through manufacturing and testing and suggest improvements.
Boom-CoreSat Interfaces: Testing

Axis	Degrees of Rotation	Camera Lens Displacement
х	4°	11.3 cm
У	3°	8.5 cm
Z	6°	1.0 cm

Kinematic Mount

 More than enough adjustability in all 3 axes of rotation.

Separation device

- Ran multiple trials at various currents;
- Several Vectran configurations and tensions (need angled cable);
- 9 sec cut time for 1.6 A;
- Reliable: no failure in 26 tests.

Caltech

Y

138

Separation Device Testing

Stage 1 Deployment Test

Motivation:

Ensure reliable and repeatable stage 1 deployment during which the boom follows the prescribed trajectory

Objectives:

- Design and build a highly modular setup
- Validate stage 1 deployment kinematics
- Validate kinematic mount
- Test separation device
- Find final position of stage 1 deployment

Stage 1 Deployment Test: Video 1

Stage 1 Deployment Test: Video 2

Stage 2 Deployment Test

- Gravity offload setup used to test stage 2 deployment
- Representative masses (4kg & 30kg) suspended from J-rail can rotate freely;

Stage 2 Deployment Test

Future Works

Long-Term Storage

- Compare results with FEM simulations
- Further experiments on aged hinges and full boom

Boom-CoreSat Interfaces

Caltech

- Analyze kinematic mount design from thermal and structural standpoint and make necessary modifications
- Complete the design of the Boom-camera interface

Stage Experiments

• Perform stage 1 and 2 experiments with the final version of the boom

Camera Package

Manan Arya, Kathryn Jackson, Maria Sakovsky

caltech.edu

Accomplishments

- Finalized mechanical design of optical components
- Created final design for camera interfaces
- Fabricated prototype of optical components
- Prototype optical testing procedures created and testing started

Outline

- Camera overview
- Mechanical design and fabrication
- Camera performance
- Optical testing
- Future work

Camera Requirements

Functional:

- Image star using a sparse aperture primary mirror
- Work with reconfigurable
 primary mirror
- Provide feedback on mirror shape
- Take engineering images of CoreSat during MirrorCraft reconfiguration

Constraints:

- Mass < 4kg
- Volume < 10 x 10 x 35 cm
- Power < 5 W

Performance:

- 80% encircled energy radius < 90% diffraction limit
- 0.34° full field-of-view
- Bandwidth: 465 615 nm
- SNR > 100

Optics Overview

- Lens design optimized in Zemax for spot radius at imaging plane and WF error at pupil conjugate
- Mask and SHWS located at pupil conjugate
- Each SHWS looks at half of the pupil
- Mask prevents stray light to the detector in both narrow and wide configurations

Interfaces

Mechanical Design

Metrology Plate

Caltech

Purpose: alignment of optical components to tolerance

- All mounts aligned in position and rotation using two dowel pins, secured with two bolts
- Shim components to fix misalignment if necessary

Baffle

Purpose: reduce stray light from outside the mirrors

- Opening placed at focal point allowing 0.3 deg point of view
- Secured to the front of the collimator barrel

Lens Groups

Set

Purpose: space and center lenses along optical axis

- Lens prescription optimized in Zemax software
- Individual lenses mounted to spacers that are threaded into the lens barrels
 - Tangential interface, radial tabs for centering lens
 - Spacers keep correct distance between lenses
- Barrels mounted using two plates and secured using 4 set screws

Beam Splitters

Purpose: split light for wavefront detection and imaging

- EO # 68-537 B/S: 15 mm cube, 70R/30T
- Meets 0.3 deg field of view requirement
- Detents and low outgassing RTV silicone for thermal expansion

Mask Mechanism

Purpose: mask light not originating from mirrors

- Actuated by stepper motor (Faulhaber ADM1220S)
- Cutouts larger than beam footprint account for misalignment in system
- Holes tapered along optical axis to meet
 0.3 deg field of view requirement

SHWS

Purpose: provide feedback on mirror shape and wavefront error

- Microlens array (EO#64-476) and detector (CMOSIS CMV4000 CMOS)
 - MLA: 5.1 mm focal length, 300 um pitch; ~177 slope samples per mirror segments
 - Detector: 11.26 x 11.26 mm area to cover MLA
- Shims between two mount segments aligns detector/MLA in piston, tip/ tilt
- Beads of RTV silicone for thermal expansion

Imaging Detector

Front View

Back View

Purpose: science imaging

- Aptina MT9P031 CMOS Detector detector in the Baumer
 MU9PC camera
- 2.2 µm pixels oversample the Ø14.2 µm spot from a single primary mirror segment

Electronics

Mount to

metrology

plate

- Room to mount SHWS electronics, telescope CPU, BIC connection, motor electronics, Zigbee antenna
 - Wiring done through component mounts
- Can add more boards if necessary, still meets volume constraints
- Can fit 7 x 7 cm boards
- Electronics dissipate heat at the back and have minimal effect on optics

Boom Inspection Camera

0

14 Sept 2015

Bolts

caltech.edu

BIÇ

Purpose: inspect boom during deployment, image reconfiguration

- Sunex DSL218 Fisheye lens and Aptina MT9P031 CMOS detector
 - 1.22 mm, f/2.0, 180 deg field of view
- Chosen for good depth of field (~12 cm to ∞) and low-light performance

Detector

ribbon

cable slot

Imaging lens

AAReST Payload CDR

170

Boom Mount

Purpose: secure boom to camera and maintain correct spacing between the S/C and camera

- mandrel inside boom and two collars over the boom attached with adhesive
- Placed at the centre of mass of the camera

Frangibolt

- Shape memory alloy cylinder elongates and fractures a notched bolt
- FD04 standard Frangibolt: 2224 N tensile strength, 15W at 9V DC, #4 bolt
- Cup-cone interface between Frangibolt mount and spacecraft to react lateral loads
- #4 bolt threads into titanium part
- Mount located at centre of mass

Camera Prototype

- Prototype fabricated from aluminum, final product will be mostly titanium
- Fabricated components:
 - Metrology plate
 - Lens barrels
 - Beamsplitter mount
 - Mask
 - SHWS x 1
 - Imaging detector mount
 - Test ease of fabrication, optical alignment, mechanical functionality, assembly procedures, optical performance

173

Prototype Components

Mass Budget

Component	Mass (g)	Margin (10%)
Metrology Plate	833.9	917.3
Collimator	542.2	596.4
Focal Group	513.6	564.9
Lens Mounts (4x)	388.4	427.3
Electronics Package	263.7	290.0
Fasteners & Wiring	100.0	110.0
SHWS Board (1x)	56.8	62.5
SHWS Mount (2x)	154.1	169.5
Light Shielding	90.1	99.1
Beam Splitter Assembly	67.8	74.6
Boom Inspection Camera	17.4	19.1
Image Detector w/ Mount	45.4	49.9
Mask Mechanism	45.5	50.0
Baffle	26.1	28.7
Motor Assembly	12.3	13.5
Frangibolt Bracket (AI)	82.8	91.1
Boom Bracket (Al)	135.7	149.2
Total	3375.6	3713.1

Power Budget

Part	Peak (W)	Standby (W)	WF Sensing Mode (W)	Imaging Mode (W)	Reconfiguration Mode (W)	Safe Mode (W)
Telescope CPU	0.60	0.45	0.60	0.60	0.60	0.45
Imaging Detector	0.74	0.30	OFF	0.74	OFF	OFF
SHWS	3.12	2.88	3.12	OFF	OFF	OFF
BIC	0.74	0.30	OFF	OFF	0.74	OFF
ZigBee	0.15	0.15	0.15	0.15	0.15	0.15
Mask	0.60	0	OFF	OFF	0.60	OFF
Total			3.87	1.49	2.09	0.60
+ Margin (10%)			4.26	1.64	2.30	0.66

Caltech

176

Optical Testbed Overview

• Auto-collimation technique to simulate light from a distant star

- Primary mirror segments and flat mirror on kinematic mount
- Currently testing using spherical mirrors

Collimator Testing

- Qualitative test demonstrating functionality of collimator barrel
- An image of a letter mask at the pupil plane is taken at the pupil conjugate and compared to predicted image
- Verifies the location of the pupil conjugate
- Slight defocus due to misalignments in test setup

conjugate

Image of mask at pupil

178

SHWS Testing

- The distance between SHWS detector mount and MLA mount is shimmed at three locations to adjust piston, tip/tilt
 - 5.1 mm focal length
 - 0 deg relative tip/tilt between MLA and detector
- Alignment using plane wavefront
 - Spot deflections are measured and converted to wavefront slopes
- Deviation from plane wavefront used as calibration for SHWS algorithms

Mask Testing

- Mask testing done by placing spherical mirror in each one of the mirror positions
 - Image on detector checked for both narrow and wide configurations and compared against expected results
 - Image also checked before and after mask to check that spot is unchanged
- No light transmitted from onaxis mirror, as expected

Fully illuminated Partially illuminated Not illuminated

Mirror	Wide	Narrow
1	Pass	Pass
2	Pass	Pass
3	Pass	Pass
4	Pass	Pass
5	Not tested	Not tested
6	Not tested	Not tested

Point Source Test

- Laser source positioned at the focal point of the camera
- Spot measured at the imaging detector
- Predicted spot size from Zemax simulations = 39 um
- Measured spot size = 36 um

Telescope Testbed End-to-End

- Verification of overall testbed alignment
- Test done with a single spherical mirror in one of the reference mirror positions
- Shape of spot as expected, but too large
 - Predicted size: 160 um
 - Measure size: ~250 um
- Error likely due to misalignments in the testbed

Conclusion & Future Work

Conclusions:

- Camera and interface mechanical design complete
- Camera functional prototype fabricated
- Prototype testing in progress

Future work:

- Testbed modifications
- Complete optical testing
- Thermal & vibration testing
- Integration with electronics

Electronics

Nicolas Lee, Manan Arya, Stephen Bongiorno, Finn Carlsvi, Thibaud Talon

caltech.edu

Electronic system components

This year's accomplishments

- Successful interface between camera CPU and image sensors
- New circuit design prototyped for electrode and picomotor drivers
- Demonstrated mirror deformation using new mirror electronics design (on RS-14)

Requirements (Camera)

- USB interface to spacecraft
- ZigBee wireless interface to mirror payloads
- Electronics boards < 7 cm x 7.9 cm
- Power < 5 W

Camera electronic system

Camera CPU

- Atmel ARM-based SAMA5D3 processor
- Up to 536 MHz CPU frequency
- Manages payload C&DH using Linux OS
- Command files uploaded from S/C through USB (discussed more later)
- Use unmodified CPU module board with integrated memory (SODIMM200 interface)
- 3.3 VDC input power
- 0.45-0.6 W power consumption

Imaging camera / BIC

- Aptina MT9P031 CMOS sensor
- Ximea MU9PM camera module
- USB 2.0 interface
- 5 VDC input
- 0.3-0.9 W power consumption

SHWS imager x 2

- CMOSIS CMV4000 CMOS sensor
- Baumer MXGC40 camera module
- GigE interface
- 12 VDC input
- 2.88-3.12 W power consumption: run one SHWS at a time

Caltech

GigE switch

- Texas Instruments TS3L4892 IC
- 16-Bit to 8-Bit SPDT Gigabit LAN Switch
- 1.1 GHz max bandwidth
- 3.3 VDC input
- Not tested yet

Mask motor

- Faulhaber ADM1220S stepper motor
 - Two phase, 20 steps per revolution

- Allegro A4988 microstepping bipolar stepper motor driver
 - Full- to 1/16th-step modes
- C&K KMT011NGJLHS limit switches
 - SMT top-actuated switch (0.15mm travel)
 - Interrupt-enabled digital input

Zigbee tranceiver

- XBee 2mW RF module
- 2.4 GHz ISM band
- 35 kbps data rate with packetization and error checking

Caltech

- 3.3 VDC input
- 0.15 W power consumption

Camera power distribution

- Input power: 5 V from USB interface
- Regulated 3.3 V, 5 V, 12 V buses
- Camera CPU controls power to motor driver and image detectors

Caltech

Camera power budget

Part	Peak (W)	Standby (W)	WF Sensing Mode (W)	Imaging Mode (W)	Reconfiguration Mode (W)	Safe Mode (W)
Telescope CPU	0.60	0.45	0.60	0.60	0.60	0.45
Imaging Detector	0.74	0.30		0.74		
SHWS	3.12	2.88	3.12			
BIC	0.74	0.30			0.74	
ZigBee	0.15	0.15	0.15	0.15	0.15	0.15
Mask	0.60				0.60	
Total			3.87	1.49	2.09	0.60
+ Margin (10%)			4.25	1.64	2.30	0.66

207

Requirements (Mirror)

- USB interface to mirror craft
- ZigBee wireless interface to camera
- Volume : 84 x 82 mm board size, up to 3 boards
- Power constraints : < 2 W
- HV DC output for driving mirror actuators (Wavefront correction)
 - +/- 500 V range for driving 41 modes
 - 0.1 V resolution at the output
- HV analog output for driving picomotors (Translation)
 - 140V amplitude
 - Required slew rate: > 0.7 V/ns

Mirror electronics block diagram

Reference mirror variant

Mirror shape control

- Sequentially refresh electrodes with appropriate voltage
- Individual opto-isolated MOSFET switch (Panasonic AQV258) connects each electrode to variable HV supply

Mirror electrode driver

- 2 x custom switched mode HV power supply (fixed 500 V bias and variable 0–1000 V)
- Refresh electrodes sequentially

Electrode driver test data (1)

Good linearity in voltage control

Electrode driver test data (2)

- 150 mV peak to peak over 100 s (steady state)
- 75 mV step, DAC 0x1fff–0x1ffe (one count)

Integrated test results

 Demonstrated optical stability of influence functions on RS-14 mirror

Temporal RMS of Central influence function = 10nm ($<\lambda/50$)

Picomotor driver

- Stick-slip mechanism with piezo element drives screw
- Need to achieve dV/dt ~ 8 V/ μ s (or at least > 0.7 V/ μ s)

Picomotor driver circuit

- Low-resistance MOSFETs with high-/low-side driver •
- Two separate charge/discharge paths to control voltage • slew rate

Picomotor driver test data

Demonstrated bidirectional operation (about 8 µm/s travel rate at 1.2 W)

Mirror electronics power budget

Part	Peak (W)	Standby (W)	Picomotor mode (W)	Shaping mode (W)	Safe mode (W)
Mirror MCU	0.10	0.10	0.10	0.10	0.10
Electrode driver	1.00	0.50		0.50	
Picomotor driver	1.20	0.50	1.20		
ZigBee	0.15	0.15	0.15	0.15	0.15
Total			1.45	1.25	0.25
+ Margin (10%)			1.59	1.37	0.27

 Electrode and picomotor power both easily scalable by adjusting refresh/pulse rates

Caltech

Mechanical constraints

 Multiplexer board layout designed to accommodate current box design

Work to go

- Implementation and testing of health monitoring and power distribution components
- Further integrated system testing of breadboard modules with optical testbed
- PCB layout, fabrication, assembly

Telescope Alignment & Control Algorithms

caltech.edu

Overview

Caltech

- Write the algorithms to operate the telescope
 - Aligning
 - Shape correction
- Test on the testbed (with computer)

ALIGNING

caltech.edu

Requirements

- Center the mirrors on the optical axis

 Precision < 2 µm (1 pixel, 1-2 ticks on a picomotor)
- Place the mirrors on the focal plane
 - Precision on Z4 (Zernike focus coefficient) < 40 nm (λ /10, 1-2 ticks on a picomotor)

Caltech

Motivation

20 15 10 5 y (pixels) 0 -5 -10 -15 -20 -15 -10 -5 10 15 0 5 x (pixels)

Uncertainty of the position of the center of a spot on the science camera

Position gradients

ALIGNING: Have mirrors aligned to the focal plane

 Influence of the motion of each picomotor on the displacement of a spot

Focus gradients

ALIGNING: Have mirrors aligned to the focal plane

 Influence of the piston of a mirror on the Zernike focus coefficient

Zero pointing error

ALIGNING: Have mirrors aligned to the focal plane

- Need to know the position of each spot when the star is perfectly aligned
- Get the information from the spacecraft (star trackers)
 Doesn't account for the boom deflections
- Use the position of the reference mirrors
 - Known within 50nm with the encoders
 - $\sim 0.002^{\circ}$ error

Loop

ALIGNING: Have mirrors aligned to the focal plane

Concept of operation

ALIGNING: Have mirrors aligned to the focal plane

- 1. Focus/Center the deformable mirrors
- 2. Focus/Bring the reference mirrors close
 - Need 2 points to account for pointing errors
- 3. Final open loop centering of the reference mirrors

Test

ALIGNING: Have mirrors aligned to the focal plane

2 picomotors / mirror 2 mirrors

SHAPE CORRECTION

Loop

SHAPE CORRECTION: Correct shape of the deformable mirrors

Conclusion

What has been done

- Algorithms written
- Tested on a computer
 - Off-the-shelf hardware & drivers

What needs to be done

- Include mirror boxes and hardware into the loop
- Test the shape correction algorithm
- Tests on the flight CPU

AAReST Onboard Software

Yuchen Wei Finn Carlsvi

Outline

- Objective
 - State Based Operation
 - Purpose of OBSW
 - Onboard Computer
- Onboard Software Design
 - Camera OBSW
 - Mirror OBSW
 - Communication Design and Data Budget

Caltech

- Test
- Future Work

AAReST Mission Operation

Operation Timeline

AAReST Mission Operation

• Operation of AAReST can be divided into different Onboard States:

• <u>Transition</u> between states will be triggered by ground command or automatically

Based on <u>current state</u>:

- Hardware operation
- <u>Command and data handling</u>, <u>fault protection</u> Need to be performed automatically

Objective

Design

Purpose of AAReST OBSW

Objective Design Test

Caltech

OBSW is the "Brain " of the science payloads

- Implement state-based operation
- Control payload hardware
- Relay science and engineering data for camera/mirror boxes
- Fault detection and recovery
 - Health monitoring
 - Event logging
 - Safe mode and recovery

Camera OBSW Architecture

Objective Design Test

- Linux OS
- Three main threads

Command and Data Handling

Handles all external communication

Objective Design Test

C+DH
Event Manager
Fault Protection

Caltech

Event Manager

- Implement State-Based operation
- Executes functions based on:
 - Telecommands
 - Mirror Telemetry
 - Satellite State
 - Software and Hardware Events

lest
C+DH
Event Manager

Fault Protection

Objective

Desian

Objective

Design

Test

caltech.edu **AAReST Payload CDR** 14 Sept 2015

257

Objective

Design

Objective

Design

Objective

Design

Objective

Design

Objective

Design

Objective

Design

Objective Design Test

Event Manager Auto Coder

Objective

Design

Fault Protection

Monitors engineering data

 Temperature, Voltage, and Current

Mirror OBSW Architecture

Objective Design Test

- Real-time Scheduler
 - Uses timer overflow interrupt ticks
 - Runs processes based on:
 - 1. Countdown ticker
 - 2. Priority
 - Uses interrupts for receiving data

Communication

	From	То
Telecommands	Caltech	Camera OBSW
Telemetry	Camera OBSW	Caltech
Mirror Commands	Camera OBSW	Mirror OBSW
Mirror Telemetry	Mirror OBSW	Camera OBSW

Caltech to Camera OBSW

Communication - Telecommands

Telecommand type

Objective

Caltech

Design

Test

- Regular
- Special
- Telecommand identifier

4 kB = 16-1023 telecommands / message

Communication - Science Data Downlink

Objective Design Test

Caltech

- 1. Image taken on AAReST
- 2. Thumbnails selected for downlink
- 3. Area of interest of image transmitted to AAReST
- 4. Image area cropped and downlinked in full resolution

Communication - Telemetry

Camera OBSW to Caltech

- Telemetry type
- Telemetry identifier
- 1ms time accuracy
- Science data payloads up to 16MB
- 8 bit CRC

Caltech

Communication

	From	То
Telecommands	Caltech	Camera OBSW
Telemetry	Camera OBSW	Caltech
Mirror Commands	Camera OBSW	Mirror OBSW
Mirror Telemetry	Mirror OBSW	Camera OBSW

Communication - Mirror Commands Design Test and Telemetry

- Commands and
 Telemetry:
 - State Commands and Telemetry
 - Mirror Electrode Settings
 - Piezo Actuators
- 0.1% Duty Cycle

0.1% duty cycle

OBSW Test

Objective Design Test

- Tests and test success criteria are formulated based on the Software Requirements Specification
- All tests are performed on flight hardware

Fault Injection

Objective Design Test

Caltech

Simulates hardware failure

- Infinite loops
- Memory corruption
- Temperature out of range
- Power levels out of range
- Unexpected reboots

- Activated using special telecommands
- Used in both Camera and Mirror OBSW

Objective Design Test

Image Acquisition

OBSW Test Sum-up

OBSW passed all Use Case tests

	Test Name	Test Description
State Operation	Change State	Request change of state
	Force State	Force change of state
Fault Detection and Recovery	Fault Injection	Manually disturb onboard process, force S/C into safe mode
	Safe mode Recovery	Recover from safe mode to designated state
Communi- cation	Retrieve Engineering/Science Data	Download stored onboard data by request
	Camera CPU – Mirror MCU Communication	Exchange TC/TM through XBee
Payload Operation	Image Acquisition	Retrieve stored image from telescope
tech.edu 14 Sept 201	5 AAReST Payload CDR 278	Caltech

Future Work

- Memory error detection & correction
 Use of Hamming encoder
- Integration with payload control software
- Payload hardware in the loop test