AAReST Mission Overview

John Baker September 9th, 2013

The Vision

Review Objective

Objective:

- Demonstrate the readiness to proceed to a flight technology Project CDR.
 - Does the preliminary design appear feasible?
 - What concerns do you have that we need to address as we go to PDR?

Review Outline

- 1. Mission Overview (20 mins)
- 2. Spacecraft Design (60 mins)
- 3. Telescope Design (160 mins)
 - a) Mirrors
 - b) Camera
 - c) Boom
 - d) Telescope System Performance
 - e) Test and Calibration
- 4. System Summary, Launch Vehicle, Project Plan (15 mins)
- 5. Discussion (15 mins)

Team Responsibilities

- NanoSat and MirrorCraft
- Docking system
- Integrated spacecraft & mission ops

- Deformable mirrors
- Telescope system
- Optical focus algorithm

System integration & Testing Mission operations

TBD

Launch

Class instructors

Manufacturing facilities

Project Approach

- Partner with Univ of Surrey for spacecraft development
 - Use proven cubesat elements with some new technology and some redundancy to ensure we can accomplish the objectives
- Well defined objectives and short duration mission with clear goals for an extended mission
- Keep spacecraft to payload interfaces simple
- Automate telescope to maximum extent possible
- AE105 classes do design, analysis, test and operations tasks as the Project matures. JPL instructors teach the class.
- Caltech grad and SURF students do research and technology development for the telescope
- JPL provides class instructors, access to the Micro Devices Lab (MDL) and other facilities as requested.

AAReST Mission Objectives

- Accomplish two key experiments in LEO by demonstrating new technologies for
 - Autonomous rendezvous and docking with small spacecraft for telescope re-configuration
 - 2. A low-cost active deformable mirror (one star image with 80% encircled energy)
- Operate as long as necessary to accomplish the objectives (90 days) post commissioning
- Accomplish the mission inexpensively for a 2015 launch
- Gather engineering data that enables the next system development

Extended Mission Objectives

- 1. Produce one focused image from a deformable mirror after reconfiguration
- Coalign images to improve SNR and demonstrate precursor to co-phasing
- 3. Produce at least two images of other sources (eg Earth and Moon) for outreach purposes.
- Requirements flowed down to the subsystem level last year
- > Surrey will discuss spacecraft system and subsystem requirements and updates
- > Telescope requirements will be discussed in each presentation along with updates.

Spacecraft & Payload Elements

- MirrorCraft (x2) 3U cubesats with deformable mirrors on top with rendezvous and docking capability
- CoreSat main spacecraft with primary power, communications, primary ACS, docking capability

Payload

- Mirror assemblies 2 active deformable mirrors, 2 fixed glass reference mirrors with tip/tilt positioning
- Instrumentation package Telescope optics, detectors, wave front sensor, aperture mask
- 3. Boom 1.2m deployable composite

Operation timeline

Deployment

t=0

- Launch
- Detach from launcher & Verify orbit

2 orbits

- Turn on satellite
 - Turn on low voltage then high voltage
 - Switch from battery to solar power

4 orbits

- Verify and stabilize satellite
 - Power, Thrusters, Communications
 - Tumble rate, Temperature, Attitude
 - Camera functioning (dark measurement)

8 orbits

- Telescope deployment
 - 1st stage boom deployment
 - 2nd stage boom deployment (+ camera)
 - Mirror covers deployment
 - Uncage DM1 and DM2

Adjust and stabilize satellite attitude

9 orbits

Reconfiguration

Payload Block Diagram

Spacecraft Communications

Mission Architecture

be run by Univ of Surrey

- Existing comm and ops infrastructure Includes spacecraft commanding and
- health monitoring
- Outreach

Remote payload monitoring will be done at Caltech

- Initial mirror calibration
- Mission planning (target selection)
- Engineering data analysis and reduction
- Outreach

Accomplishments in the Past Year

- Active mirror technology has been further matured in the lab.
- Preliminary spacecraft, telescope and ops concept have been refined
 - Total mass of 40kg is well within secondary launch capability
- 2012-13 AE105 class performed
 - Boom deployment tests and development
 - Refined optical system design
 - Refined Thermal analysis (2 orbit conditions)
- Spacecraft to payload interfaces are simple, with a lot of heritage from STRaND-1 which has flown.

Review Outline

- 1. Mission Overview (20 mins)
- 2. Spacecraft Design (60 mins)
- 3. Telescope Design (160 mins)
 - a) Mirrors
 - b) Camera
 - c) Boom
 - d) Telescope System Performance
 - e) Test and Calibration
- 4. System Summary, Launch Vehicle, Project Plan (15 mins)
- 5. Discussion (15 mins)

Review Outline

- 1. Mission Overview (20 mins)
- 2. Spacecraft Design (60 mins)
- 3. Telescope Design (160 mins)
- a) Mirrors
 - b) Camera
 - c) Boom
 - d) Telescope System Performance
 - e) Test and Calibration
- 4. System Summary, Launch Vehicle, Project Plan (15 mins)
- 5. Discussion (15 mins)

Deformable Mirrors

Keith Patterson (task lead, presenting)
Marie Laslandes (optimization, testing)
Kristina Hogstrom (thermal)
Erin Evans (thermal)
September 9th, 2013

Relevant Assemblies

Problem Description

- Develop & design deformable mirror assembly
 - Key Characteristics
 - Thin, flexible, low areal density
 - Identical manufacturing process
 - Actively controlled
 - Key Challenges
 - Large strokes (10's to 100's microns)
 - Nanometer precision
 - Volume, power constraints
 - Launch survival

Deformable Mirrors

Relevant requirements

- Nominal radius of curvature 2.4 m
- Deployable mirror cover(s), no debris
- USB interface to mirrorcraft
- Zigbee wireless interface to camera
- 2W power (continuous) for each mirror
- Functions in both wide and compact configurations
- Deformation stable long enough for exposures (~50ms)
- Capable of surviving between -40C and 80C
- Capable of operating between -20C and 20C
- Capable of correcting its manufactured shape error (~5 um RMS)
- Capable of correcting its thermal imbalance (~20 um P-V)
- Additional OAP stroke (microns RMS surface): defocus: 2; astigmatism: 1.2; coma: 0.2
- Typical reflecting coating roughness < 15nm RMS

General Concept

- Thin laminate
 - Polished glass wafers
 - Piezo polymer coating
- Bimorph actuation
 - In-plane strains create mirror curvature
 - Thin, low areal density
- Actuation patterns
 - Independent regions for fitting of mirror surface shapes

Mirror Fabrication Process

- 1. Polished glass wafer (~225um)
- 2. Slump at ~650C over quartz mold*
- 3. Coat Cr+Al laminate (~3um total)*
- 4. Roughen mirror backside with HF vapor
- 5. Sputter ground layer (Ti+Au+Ti, 10+50+10nm)
- 6. Spin coat + bake piezo layers 140C (20um)
- 7. Sputter blanket electrode (Ti+Au, 10+10nm)
- 8. Evaporate electrode pattern (Au, 100nm)
- 9. Pole active material layer to 100 V/um
- 10. Ion mill etch back blanket electrode
- 11. Wirebond electrodes and mount mirror onto PCB

Slumping process

Mirror Mounting

- Tiny Au wirebonds connect mirror electrodes to PCB pads (via holes)
- Kinematic mounting to PCB
 - Spheres pinch mirror in 3 places, preloaded and aligned using a magnetic field

Vibrational Behavior

Substrate: Glass

9/16/2013

 Experiment
 FEM

 Damping Ratio, ζ
 0.12
 (0.12)

 Mode 1
 63 Hz/3800 RPM
 70 Hz

 Mode 2
 74 HZ/4500 RPM
 81 Hz

 Mode 3
 220 Hz/ 13000 RPM
 257 Hz

NOTE: Possible resonances at wheel speeds!

Launch Survival

- Mirror mass is ~4 grams (0.5 kg/m^2)
- Acoustics are most concerning
 - Delta IV-Heavy acoustic loads (conservative case)
 - Clamping points have critical stresses
- Decision: require mirror launch restraint

Launch Restraint Concept

- Screw actuators lower mirror onto spring loaded restraint plate
- Restraint plate has small, soft pillars mounted to it to press on mirror underside
- Closed lid presses down from above with large soft pad (not shown)
- After lid is opened, mirror lifted from pads by actuators, restraint plate

DM Package Block Diagram

RM Package Block Diagram

Current Configuration

Mirror casing (white paint)

Sensors and Actuators

Sensors

- Thermopile remote temperature sensors underneath mirror to monitor temperature, TBD locations
- Thermocouples on PCB's
- Gimbal limit switches

Actuators

- ~40-80 mirror channels
- 3 piezo screw actuators
- Optional use of propellant heaters under mirrorbox
- Gimbal range of motion:

Mirror Position	Relative Piston (mm)	Tip (deg)	Tilt (deg)
Reference	0	2.855	0
Compact	2.9	2.855	2.855
Wide	8.7*	5.695	0

^{*}without step height in wide configuration

41 Channel Lab Prototype

- Upgrade from previous 16 channel design
- Marie's optimized "Notre Dame" actuation pattern
- Process improvements still ongoing
 - Reliability
 - Quality

Example influence function measurements

Major Components (Mirror assembly)

- Mirror board
 - Mirror
 - PCB
 - Launch restraint system
- Gimbal
 - 3 Newport Picomotors (8301-UHV)
- Multiplexer boards
 - Panasonic AQV258 PhotoMOS relays (1 per channel)
 - Maxim MAX6956AAX+ LED driver IC's
- Controller board
 - M/C options
 - Rascal micro (Atmel ARM9)
 - MBED M/C (ARM Cortex-M3)
 - Apex/Cirrus HV Opamp (PA89A)
 - EMCO (AH06N-5T, AH06-5T)
 DC-HV DC converters
 - Zigbee wireless (TI CC2520)

HV Opamp

- Material characterization
 - Data from
 - JPL polymer lab (TMA, DMA, DSC, TGA)
 - Caltech material testing (Instron, optical measurements)
 - Sandia report on PVDF in space (DMA, piezo measurement)
 - Large variation in properties across temperatures

Piezo Polymer Material Data

- CTE varies from 50 ppm/K to >200 ppm/K
- When cold, stiffness increases, but piezo coeff decreases
- Actuation stress fairly flat, optimal peak ~-40C
- Mirror stroke (for defocus mode)
 - +/-40 microns at 20C, +/- 60 microns at -40C
- Thermal balance
 - Thermal expansion overrides piezo range in <10C
 - Tuned balancing of mirror can extend operational range
 - Example designs below
 - * indicates curve used for performance analysis

AAReST Preliminary Design Review

Additional Piezo Polymer Properties

- Critical temperatures
 - Tg: -40C, glass transition (ill-defined)
 - Tc: +110C, Curie
 - Tm: >140C, melting
 - Td: >400C, decomposition
- No moisture absorption (<0.01%)
- Viscoelasticity
 - Stiff for a polymer but still viscoelastic
 - Creep master curve to be measured
 - Good news: glass substrate will dominate shape over time and maintain molded shape

Thermal Traces: 11am/11pm SSO

The Model:

- Planetshine on
- Albedo on
- Sunshield (white paint, black chrome)
- .5 W generated/circuit board
- Temperatures between -10C and +10C
- Some radial thermal gradient present (due to board heat)
- Want surface temperature and emissivity underneath mirrors as uniform as possible to minimize gradients

Cold Case: No Power

The Model:

- 11 AM 11 PM Sunsynchronous orbit
- Planetshine on
- Albedo on
- Sunshield (white paint, black chrome)
- 0 W generated/circuit board
- Drops down to -60C
 - Need to ensure mirror survival here
 - Can improve conduction to mirrorcraft
- Minor thermal gradient

Sun Pointed (Lost Control) – "Hot"

Case

The Model:

- 11 AM 11 PM Sunsynchronous orbit
- Planetshine on
- Albedo on
- Sunshield (white paint, black chrome)
- .5 W generated/circuit board
- Telescope orbits with mirrors facing the sun
- Mirrors warm but still within survival range
- Solar irradiance may reflect into camera if mirrors are aligned -> BAD

Interfaces

- Mechanical
 - Mirrorbox bolts on top of 3U ISIS structure
- Electrical
 - 5V USB interface to mirrorcraft
 - Zigbee wireless to camera
- Thermal
 - Conductive contact with mirrorcraft
 - TBD survival heaters
 - Shielded from sun by lid/baffle(s)

Development Functional Tests

Optical

 Demonstration of 16-channel and 41channel prototypes

Electrical

- Multiplexer prototype tested to +/-500V in air
- Future: HV boards in partial vacuum

Thermal

- Piezopolymer survival (1 hour)
 - retained functionality down to -70C and >90C
- Future: thermal cycling of mirror package, shape hysteresis/creep
- Future: thermal cycling of electronics

Mechanical

Future test: launch restraint acoustic testing

Performance Tests

- Optical
 - 16 channel Si prototype
 - Achieved 2 waves RMS error in lab environment
 - 41 channel glass prototype
 - Some shorted channels, testing ongoing
 - Future: demonstrate diffraction-limited reproduction of OAP shapes
- Electrical
 - Future: amplifier power efficiency, peak power
- Thermal
 - Future
 - Mirror thermal shape stability and actuator stroke confirmation

16"x20" Vacuum chamber

Assembly and Integration

Assembly

- Critical step is wirebonding mirror to board
- Boards mount into casing using brackets
- Wirebonded flat flex cables between boards to minimize cabling volume/weight

Integration

- DM/RM individual unit assemblies shipped to Surrey
- Assemble modules onto M/C and Coresat
- Test communication to controllers
- Verify mirror functionality of all channels (visual inspection)
- Verify gimbal actuation
- Lower mirror gimbals, clamp lid and restrain mirrors

Functional Library

Commands:

- activateGimbal()
- resetController()
- standby()
- setVoltages(voltages)
- driveActuator(id, cycles, forward_reverse)

Queries:

- getTemperatures()
- getChannelStates()
- getGimbalStates()

Conclusion

- Mirror box design
 - Packaging scheme laid out
 - Mirror restraint system concept needs testing
 - Design trade on sun shield/baffle needed
- Preliminary analysis and testing completed
 - Vibration work suggests launch restraint needed
 - Concept needs testing
 - Possible mirror resonance at high wheel speeds
 - Thermal numbers look reasonable so far
 - Good mirror thermal balancing is critical to optical performance
 - Mirror survival heater would be good to include
 - Uniform surface temperature below mirror will aid in thermal gradient reduction
- (System performance modeling coming in later slides)
- Mirror prototypes built and performance tested in ambient
 - Have not yet achieved diffraction-limited but getting closer
 - Improvements to glass slumping and piezo coating methods ongoing
 - Mirrors were functional after thermal survival tests (-70C, +90C)
 - Need to test optical performance with thermal cycling (chamber is being built)
- Controller/amplifier electronics needs breadboard testing
 - Power consumption numbers need to be verified
- Electronics/communication interfaces to M/C and Camera need more definition

Acknowledgements

- John Steeves, Jim Breckinridge (Caltech)
- Namiko Yamamoto, Risaku Toda, Victor White, Harish Manohara, Andrew Shapiro, Bill Warner (JPL)
- Past Ae105 classes

Review Outline

- 1. Mission Overview (20 mins)
- 2. Spacecraft Design (60 mins)
- 3. Telescope Design (160 mins)
 - a) Mirrors
- b) Camera
 - c) Boom
 - d) Telescope System Performance
 - e) Test and Calibration
- 4. System Summary, Launch Vehicle, Project Plan (15 mins)
- 5. Discussion (15 mins)

Camera

Manan Arya September 9th, 2013

Camera Requirements

- Functional
 - Work with 1.16m focal length segmented primary mirror
 - Provide feedback during primary mirror calibration
 - Deformable mirror (DM1 & DM2) shape
 - Primary mirror segment positions (tip and tilt)
 - Science imaging
- Performance
 - 80% encircled energy radius < 90% diffraction-limited EE radius
 - 0.3° (18 arcmin) full field-of-view
 - -SNR > 100
- Constraints
 - Mass < 4kg
 - Volume (excluding boom interface) < 10cm × 10cm × 35cm
 - Power < 5W</p>

Configuration

Block Diagram

Optical Configuration

- Designed using Zemax to minimize spot radius at image and wavefront error at pupil conjugate
- Designed for manufacturability
 - Cheaply available Schott glasses
 - Minimum RoC = 32mm
 - No cemented doublets for thermal performance

Optical Bandpass

Mechanical Configuration

Mechanical Configuration

- The exterior will be wrapped in MLI for thermal stability
- The electronics box will be painted white

Dimensions exclude the boom mount

Mask Configuration

Command Architecture

Camera Electronics

Camera Electronics

- Camera receives 5V power from S/C
 - Hardware limited to 5W max draw
- External I²C connection to S/C
- Internal I²C bus
 - Master: Telescope CPU
 - Slaves: imaging detector, SHWS, mask, BIC, etc.

SHWS Detector

Incident optical wavefront

- Microlens array
 - 500μm-pitch gives 88 samples over each primary mirror segment
- TruSense KAI-16070 interline CCD
 - 36.0mm × 23.9mm, 4864 × 3232 pixels (15.7MP)
 - 7.4μm square pixels
 - -48% QE at $\lambda = 500$ nm
 - 12 electrons rms read noise

Imaging Detector

- Aptina MT9P031 CMOS
 - -2592×1944 pixels (5MP)
 - 2.2μm square pixels oversample the Ø14.2μm spot from a single primary mirror segment
 - 5.70mm × 4.28mm, 7.13mm diagonal
 - 0.3 degree (18 arcmin) field-of-view (diagonal)
 - -64% QE at $\lambda = 500$ nm

Camera Data Transmission

Imaging detector: 3 types of images

Focused point source < 800</p> Location and intensity of each useful pixel

• SHWS: {x,y} centroid location for each subaperture spot

Number of

useful pixels

Compression

method

Telescope Command List

- beginTelescopeCheckout()
 - takeDarkFieldMeasurements()
 - checkoutMask()
 - checkoutMirrorSegment(segment_name)
- beginSegmentBlindSearch()
 - adjustMirrorSegmentPointing(segment_name, tip, tilt)
 - captureImage(exposure_time)
- beginCoarseCalibration()
 - coarseCalibrateSegment(segment name)
 - adjustMirrorSegmentPiston(segment name, piston)
- beginFineCalibration()
 - fineCalibrateSegment(segment name)
 - takeWavefrontData(exposure time)
 - deformableMirrorVoltages(segment_name, v[0:42])
- capturePointSourceImage(exposure_time)
- captureExtendedSourceImage(exposure_time)
- takeTemperatureData()
- captureBoomInspectionCamImage()
- switchMaskState(mask state)
- Low-level commands not included!

Camera checkout commands

Mirror segment blind search and tip, tilt adjustment

Mirror segment voltage adjustment

Diagnostic and telemetry commands

Optical Analysis

- Spot diagrams and encircled energy analysis performed using Zemax
 - For a diffraction-limited, single \emptyset 10cm mirror, 90% encircled energy radius = 13 μ m
 - Require 80% encircled energy radius < 13μm
- Require SNR > 100 for both SHWS and imaging detector

Encircled Energy Analysis

Geometric Spot Diagrams

- Grid is 400μm across
- Spot diagrams are presented using a superposition of the wide and compact pupil modes
- Imaging-band wavelengths: 522-545nm shown

2.2μm pixel size

SHWS SNR Calculations

- SHWS design informs the limiting photon count
- For a 50ms exposure with 100nm bandwidth around λ=500nm, we need a flux of 10⁶ photons/cm²/s to achieve SNR = 100
- Corresponds to apparent magnitude ~1.5-1.8

$$SNR = \frac{N}{N_{ron} + N_{poisson}}$$

$$N_{poisson} = \sqrt{N}$$

$$N = FT_{int}\eta \left(\frac{A_{mirror}}{n_{lenslets}}\right)$$

$$\eta = \eta_{mirror} \times (\eta_{lens})^4 \times (QE) = 0.42e^-/photon$$

$$T_{int} = 50ms, A_{mirror} = \pi (4.5cm)^2, n_{lenslets} = 88$$

$$N_{ron} = n_{pixels} \times 12e^-/pixel = 195.1e^-$$

$$F = 2.6 \times 10^6 photons/cm^2/s$$

Camera Thermal Model

- 1000mW and 400mW thermal loads model sensors
- Operating range for sensors and electronics: -50°C to 70°C
- Lower noise at colder temperatures
- Interior of camera: black paint; exterior: MLI; top: white
- Titanium case, glass lenses

Thermal Modeling Results

Profile during eclipse

Thermal Modeling Results

Profile in sunlight

Part	Mass (g)
Lenses, filters, DBS	300
Lens mounts	300
Mask mechanism	150
Sensors	400
St <mark>ructure</mark>	1000
Fasteners & Wiring	300
Insulation	50
Total	2500
Margin (37.5%)	1500

Camera Power Budget

Part	Peak (W)	Nominal (W)
Telescope CPU	0.600	0.450
Imaging detector	0.381	0.262
SHWS	1.600	1.000
Boom inspection camera	0.218	0.150
Wireless module	0.128	0.100
Mask	0.600	0.600
Total	3.527	2.562

Interfaces

- Mechanical
 - 3-point kinematic interface to boom mount
- Electrical
 - Data and 5V power over I²C connection to S/C
- Wireless
 - 2.4GHz ZigBee communication to DM1, DM2, RM1, RM2
- Thermal
 - MLI exterior, white-painted top
 - Conduction to/from boom mount
- Optical
 - f/11.4 converging light beams from 4 primary mirror segments
 - 0.3 degree full field-of-view

Fabrication, Assembly & Integration

- To be contracted out:
 - Lens manufacturing
 - Lens group assembly
- To be done at Caltech:
 - Fabrication and assembly of camera
 - Initial alignment with primary mirror and boom
- To be done at Surrey:
 - Final alignment and integration with the boom and S/C

Optical Testing

- Test with polychromatic point source at the M1 prime focus
- Science detector requirements
 - 80% encircled energy radius < 90% diffraction-limited EE radius
 - Full field-of-view = 0.3°
- Tests to be performed in thermal chamber to characterize temperature effects

Future Work

- Mechanical and optical prototyping
- Optical element manufacturing and testing
- Command hardware development and testing
 - Telescope CPU
 - Various hardware drivers
- Software development

Review Outline

- 1. Mission Overview (20 mins)
- 2. Spacecraft Design (60 mins)
- 3. Telescope Design (160 mins)
 - a) Mirrors
 - b) Camera
- c) Boom
 - d) Telescope System Performance
 - e) Test and Calibration
- 4. System Summary, Launch Vehicle, Project Plan (15 mins)
- 5. Discussion (15 mins)

Deployable Boom

John Steeves
Carlos Laguna, Falk Runkel, Lee Wilson
September 9th, 2013

Problem Definition

- Design and fabricate a deployable boom suitable for the AAReST S/C
 - Key Characteristics
 - Lightweight and compact
 - Self-Deploying (utilizes strain energy for self-deployment)
 - Key Challenges
 - Maintaining optical-quality tolerances during telescope operation
 - Stiffness, deployment error & thermal issues
 - Controlling deployment process (forces on instruments)

Boom Requirements

Functional

- Package into a tight launch configuration for volume conservation
- Deploy to final imaging state once in orbit
- Accommodate a 1.16m focal length for the AAReST Telescope

Performance

- Boom deployment shall not impart rates greater than the control authority of the S/C ACS.
- Static elongation of boom shall be no more than 500 μm in order to maintain telescope focus (can be accommodated by rigid body actuators on mirrors)
 - 50 μm axial displacement during calibration and imaging (depth of focus of imaging system)
- Static lateral boom deflections shall be less than 2mm
 - 200 μm/s during imaging (avoid image smearing during calibration & imaging)
- Avoid coupling between S/C ACS system in imaging mode

Boom Architecture

Boom Architecture

- Boom wrapped around S/C via folding tape-spring hinges
 - 4 hinges in total
 - L_{tot} = 1.35m, D = 38mm, m = 80g
 - Rigidly attached to S/C and instrumentation package
- Two-stage deployment process

Stage 2

Hinge Design

Materials

- Combination of plain-weave fiberglass (60 μm thick) and unidirectional carbon fiber (90 μm thick)
- $[+/.45_f/0_c/+/.45_f]$ lay-up
- 210µm total thickness
- 38mm diameter

- Cutting pattern
 - "Dog-bone" hinge cutting pattern
 - D = 15 mm, L = 90 mm, SW = 8 mm
- Structural optimization techniques used to develop design

Based off of Mallikarachchi, H.M.Y.C. and Pellegrino, S. (2008-2012)

Boom Design

Boom Design

9/16/2013

Boom Design

Fabrication Process

Deployment

First Stage Deployment

- First stage deployment initiated by burn wire (wrapped around folded boom)
- 2 hinges deploy, 2 remain folded at 90°
 - Compliant nature of boom accommodates small errors in deployment
- High velocity but low energy due to low mass of boom
 - Maximum torque applied to S/C = 0.4Nm

Second Stage Deployment

- Rate controlled deployment in order to minimize shock loading on instruments
 - Spool/cable system with stepper motor
- Deployment initiated by release of instrumentation package from S/C (frangible nut)
- Stiffness ratio of hinges designed to ensure collision avoidance between Camera and S/C
 - "Outward then up" motion

Deployment Control

- Required to ensure 2nd stage deployment remains quasi-static
- Cable spool driven by brushless DC motor (CDA-InterCorp)
 - 52Nmm max torque
 - < 2W input</pre>
 - 80g total mass

Deployment Control

- Required to ensure 2nd stage deployment remains quasi-static
- Cable spool driven by brushless DC motor (CDA-InterCorp)
 - 52Nmm max torque
 - < 2W input</pre>
 - 80g total mass

Cable Retraction

- Cable will become slack once mirror cover is deployed (after 2nd stage deployment)
 - Slack cable could potentially obstruct optical path
- Long, low stiffness spring located inside boom
 - Fixed at camera package
 - Metal bead provides hard-stop during deployment

Structural Modeling

Structural Model

- Structural dynamics modeled using Abaqus Standard/CAE 6.12
- Boom: shell elastic elements
- S/C & Camera: 3D continuum elements
- 4kg Camera, 30kg S/C
- Boom properties defined using general shell section (ABD matrix – determined experimentally)

AAReST Preliminary Design Rewendary conditions

Structural Model

Mode 1
Bending (yz-plane)

Mode 2
Bending (xz-plane)

Mode 3
Torsion

	Mode		Frequency (Hz)
1	Bending (yz-plane)		4.2
2	Bending (xz-plane)		5.6
/16/ 3 013	Torsion	AAReST	Preliminary Design Review

Note: Bending modes measured experimentally in order to validate model (fixed/free BCs)

Disturbance Analysis

- Reaction wheel provided by Surrey for characterization
- Jitter due to imbalances measured using 6DOF load cell
 - Used as boundary conditions for structural model
- Camera displacements/rotations calculated as a function of wheel speed

$$M(\omega) = \sum_{i} A_{i}\omega^{2} \sin(2\pi h_{i}\omega)$$

 Note: Data collected for a nonisolated, unbalanced wheel (worstcase scenario)

Disturbance Analysis

- Torque imbalances applied to Coresat structure
- Loading due to three orthogonal wheels modeled
- Maximum deviations from optical axis determined (displacements and rotations)
 - Information fed into optical model

Wheel Speed (rpm)	Displacements		Rotations	
	Amplitude (μm)	Rate (µm/s)	Amplitude (deg)	Rate (deg/s)
500	8	130	5e ⁻⁴ (1.8arcsec)	0.008
750	14	225	9e ⁻⁴ (3.2arcsec)	0.014
9/16/20 1000	30 AAReST	Prelimin 4-80 esign Rev	view1.9e ⁻³ (6.8arcsec)	0.030 115

Disturbance Analysis

- Torque imbalances applied to Coresat structure
- Loading due to three orthogonal wheels modeled
- Maximum deviations from optical axis determined (displacements and rotations)
 - Information fed into optical model

Recommendation: Keep wheel speeds less than 750rpm while imaging

Wheel Speed (rpm)	Displacements		Rotations	
	Amplitude (μm)	Rate (µm/s)	Amplitude (deg)	Rate (deg/s)
500	8	130	5e ⁻⁴ (1.8arcsec)	0.008
750	14	225	9e ⁻⁴ (3.2arcsec)	0.014
9/16/20 1:000	30 AAReST	Prelimin ar D esign Rev	view1.9e ⁻³ (6.8arcsec)	0.030 116

Thermal Model

Thermal Model

	Mirror				
1	Crafts (x2)	Solar Panels (sides), Black Paint (bottom)	Aluminum	6W/Craft	-
	Core Craft	Solar Panels (sides), Black Paint (bottom)	Aluminum	18W	-
	Mirror Boxes (x4)	White Paint (outside), Black Paint (inside)	Aluminum	2W/Mirror	Range: dT<30K (+/- 15°C)
	Mirrors	Aluminum Out, Black Under Side	Glass/Pyrex	No Heat	Range: dT<30K (+/- 15°C)
	Camera	MLI/ White Paint/ Black Paint	Titanium (6AL-4V)	Hot: 400 & 1000 mW Sensors	Range: -50 to 70 °C
	Boom	Black Paint	Carbon Fiber (orthotropic)	No Heat	-
	Sun shield	Black Chrome/ White Paint	Aluminum	No Heat AAReST Prelimina	-

Thermal Model

		Material	Internal Heat Load	Heat Max and Min
Mirror Crafts (x2)	Solar Panels (sides), Black Paint (bottom)	Aluminum	6W/Craft	-
Core Craft	Solar Panels (sides), Black Paint (bottom)	Aluminum	18W	-
Mirror Boxes (x4)	White Paint (outside), Black Paint (inside)	Aluminum	2W/Mirror	Range: dT<30K (+/- 15°C)
Mirrors	Aluminum Out, Black Under Side	Glass/Pyrex	No Heat	Range: dT<30K (+/- 15°C)
Camera	MLI/ White Paint/ Black Paint	Titanium (6AL-4V)	Hot: 400 & 1000 mW Sensors	Range: -50 to 70 °C
Boom	Black Paint	Carbon Fiber (orthotropic)	No Heat	-
			No Heat	

Thermal Profiles

- Boom thermal profiles determined for Sun-Synch orbit (11am-11pm)
 - Determined assuming black paint across boom surface (worst-case scenario)
 - Significant circumferential gradient due to solar loading
- Deflections due to thermal profiles obtained via FEA 9/16/2013 (full sun) and cold (eclipse) profiles studied

CTE Measurements

- Preliminary values of axial and circumferential CTE measured using 3D-DIC
- Tests performed in Thermal Chamber over a 65°C operating range
- **Axial:** $\alpha_{11} = \sim 1.0 \text{ppm/°C}$ (dominated by carbon fibers)
- **Circum:** α_{22} = 21ppm/°C (dominated by fiberglass & epoxy resin)
- Note: Deflections are stable for approximately half the orbit
 - Below 2mm requirement
 - Produces a shift of the image on the focal plane

	Case	Axial Deflection (μm)	Lateral Deflection (μm)	Rotation (deg)	
	Hot	25	625	0.04	
9/16/2	013 Cold	-127	97	0.006	121

Interfaces

Interface to S/C

- Boom epoxied onto attachment collar
 - Collar pressure fit into S/C fitting then bolted in place
- S/C Fitting bolted into ISIS Cubesat frame
- May need to incorporate a secondary adapter plate in order to correct for errors introduced during assembly

Interface to Camera

- Kinematic mount used to provide alignment between Camera and Boom
 - Camera: V-grooves mounted at 120°
 - Boom Fitting: Matching spherical-tip cones

Boom Mass Budget

Component	Mass (kg)
Boom	0.08
S/C Fitting	0.10
Camera Fitting	0.18
Cabling (electronic)	0.10
Burn wire	0.02
Motor/Spindle	0.10
Cabling (deployment)	0.02
Retraction Mechanism	0.05
Total	0.65

Future Work

- Utilize cyanate ester resin
 - Improved thermal properties
 - Low outgassing
- Quantify viscoelasticity of boom material
- Monitor damage of hinges due to multiple folding/deployment processes
- Further refinement of manufacturing techniques
- Study flexible structure interaction with ACS

Review Outline

- 1. Mission Overview (20 mins)
- 2. Spacecraft Design (60 mins)
- 3. Telescope Design (160 mins)
 - a) Mirrors
 - b) Camera
 - c) Boom
- d) Telescope System Performance
 - e) Test and Calibration
- 4. System Summary, Launch Vehicle, Project Plan (15 mins)
- 5. Discussion (15 mins)

Performance Analysis

Keith Patterson September 9th, 2013

AAReST Performance Simulation

Error sources:

9/16/2013

Initial

Error Sources

134

Imaging

AAReST Prediminary Design Review Calibration

Performance Analysis Model

Error Sources

9/16/2013

Initial

AAReST Prediminary Design Review Calibration

136

Error Budget Values

Mirror temperature: -20C to +20C

Camera temperature: -20C to +20C

• Mirror initial shape bounds (surface amplitudes, non-normalized, microns, +/-):

```
Z4 = .002;
                                  astigmatism 0
                                 defocus
    Z5 = .005;
- Z6 = .002;
                                 astigmatism 45
    Z7 = .001;
                                 trefoil x
  Z8 = .001;
                                               coma x
- Z9 = .001;
                                 coma y
- Z10 = .001;
                                 trefoil y
- Z11 = .0005;
                                 tetrafoil y
  Z12 = .0005;
                                 2_astigmatism_0
   Z13 = .001;
                                 spherical
   Z14 = .0005;
                                 2 astigmatism 45
                                 tetrafoil y
   Z15 = .0005;
   Z16:66 = .0001; higher order modes
```

Boom deflection bounds (+/-):

X: 0.625 mm
 Y: 0.625 mm
 Z: 0.127mm
 Tip: 0.04 deg
 Tilt: 0.04 deg

Example Performance Trial

Performance Results (Compact)

Performance Results (Wide)

System Performance Take-aways

- Mirror initial shape quality, astigmatism stroke, and operating temperatures are critical
- Low Shack-Hartmann sampling degrades camera spot size performance but increases SH SNR
- Non-common path errors and bandpass differences between detector and SH can degrade camera spot performance
- Boom deflection and alignment is of secondary importance compared to mirror quality
- Needed additions to model (future work)
 - Spacecraft pointing model (Newton-Euler)
 - Pointing controller
 - Mirror tip tilt controller
 - Camera optics manufacturing and integration errors

Review Outline

- 1. Mission Overview (20 mins)
- 2. Spacecraft Design (60 mins)
- 3. Telescope Design (160 mins)
 - a) Mirrors
 - b) Camera
 - c) Boom
 - d) Telescope System Performance
- e) Test and Calibration
- 4. System Summary, Launch Vehicle, Project Plan (15 mins)
- 5. Discussion (15 mins)

AAReST Integration and Test

Marie Laslandes September 9th, 2013

Objectives

- Assembly segments/boom/camera
 - Verify mechanical interfaces
 - Optical alignment
- Optical performance validation
 - Validate calibration process
- Functioning
 - Mechanism
 - Electronic
 - Control & Algorithm
 - Communications

Test bed - requirements

- Generation of a large collimated beam
 - Auto-collimation technique
 - Only test 2 segments at a time

- Space-craft simulator
 - Mechanical interfaces
 - Communications
 - Power supply

Test-bed - Design

Reference Mirrors alignment

- Mount segment on spacecraft interface plate
- Piston, Tip, Tilt each mirror

Criteria:
 PSF size, shape and location

Camera

PSF: 80% of EE on 13um

Criteria:

Position camera: adjust translation and rotation according to prime focus

WFE $< \lambda/20 \text{ rms}$ Flat mirror Focal plane Φ 350 mm RM1 RM2 RM1 BS_{Col} / BS Foc WFS Source Camera BS Spacecraft interface Ф 350 mm flat mirror Source 9/16/2013 esign Review 148

Deformable Mirror 1 alignment

- Mount DM1 in narrow configuration
- Illuminate RM1&DM1: tilt source, translate flat mirror
- Piston, Tip, Tilt DM

Criteria:

 PSF size and location
 Measurable WFE

Deformable Mirror 1 correction

- Control law from Influence Function measurement
- Reference wave-front: flat
- Correction of initial shape error
 - Will validate mirror control
 - Voltages minimizing the WFE to be recorded to approximate off-axis shape during operations

Φ 350 mm flat mirror

Camera

Criteria:

PSF: 80% of EE on 13um

WFE $< \lambda/20 \text{ rms}$

Deformable Mirror 2

- Mount DM2 in narrow configuration
- Illuminate RM2&DM2: tilt source, translate flat mirror

Boom integration

DM2

- With RM1&2 illuminated
- Attach unconstrained boom to spacecraft interface plate
- Link boom to camera without straining the boom

Φ 350 mm flat mirror

• Criteria:

PSF: 80% of EE on 13um

WFE $< \lambda/20 \text{ rms}$

Telescope calibration process

Align RM1 Align RM2 Align DM1 Correct DM1 Align DM2 Correct DM2

Reference Mirror process:

Telescope calibration process

Deformable Mirror process:

Test telescope calibration

- With any aligned configuration (2 segments)
- Validate overall calibration process: introduce an expected perturbation (values from model and testing)
 - Camera temperature: translate camera
 - Boom deflection: translate/rotate camera
 - Segment misalignment: piston, tip, tilt segments

Criteria: performance after calibration

PSF: 80% of EE on 13um

WFE $< \lambda/20 \text{ rms}$

In-flight calibration: reference star

- Point telescope to reference star
 - bright star
 - near Zodiac
 - ±3 monthsfrom sun

In-flight calibration

- Star camera: pointing knowledge
 - If star disappear from FoV during process, stop and wait (or repoint)

Imaging

Imaging (extended)

- Co-align segments
 - Adjust each segment tip/tilt to superimpose spots
 - Fine refocusing: adjust segments' piston
 - Possibly: adjust DM1&2 shapes
 - Record image of the combined spot on science camera

- Calibrate on a star near the moon and then point at the moon
- Co-phase segments
 - If technique demonstrated on Earth

Conclusion and future work

- Integration and test plans defined
 - Optical elements
 - Mechanical interfaces
 - Control algorithm
- Integration on S/C
 - Ship segments in individual boxes and camera attached to deployed boom
 - Assemble on spacecraft
 - Optical test with same set-up to validate performance
 - Overall environmental testing
- Operation scheme defined, to be validated and refined with testing
- Start breadboard this year
 - Test-bed optical elements: white source, large flat mirror
 - Space-craft simulator: define interfaces

Review Outline

- 1. Mission Overview (20 mins)
- Spacecraft Design (60 mins)
- 3. Telescope Design (160 mins)
 - a) Mirrors
 - b) Camera
 - c) Boom
 - d) Telescope System Performance
 - e) Test and Calibration
- 4. System Summary, Launch Vehicle, Project Plan (15 mins)
 - 5. Discussion (15 mins)

Launch Vehicle Options

- Multiple opportunities now exist for small secondary payloads (<40kg)
 - Secondary launches on EELVs
 - ISS Cargo and jettison through the JEM airlock
- Orbit needs to be constrained to LEO (<650km) for communication performance and to de-orbit post mission.
 - No preferred inclination
- Looking for a low-cost/free ride share
 - NASA Earth science mission
 - NASA Space Technology Program mission
 - KSC LSP offers the CLI Program where NASA covers the launch cost.
- Used Delta-IV H for launch environments

Telescope Mass & Power Summary

Component	#	Unit Mass (kg)	Total Mass (kg)	Unit Peak Power (W)	Unit Avg Power (W)		
•	1	2.5	2.5	4.2	2.75		
Camera Package		2.5	2.5	4.2	2.75		
Mast + Cabling	1	0.44	0.44	0	0		
Deformable Mirror	2	0.68	1.36	2.0	0.2		
Reference Mirror	2	0.75	1.5	2	0		
Cover	1	0.25	0.25	2	0		
Subtotal			6.05	12.2	2.95		
Contingency		30%	1.815	20%	20%		
Total			7.82	14.64	4.49		

Data Rates/Volume

- Daily Data Volume
 - Best case: 3600s*9.6kb/s= 34.56Mb
 - Worst case: 17Mb
- Telescope data volume (per day-16 orbits)
 - Camera image: 15.7Mp (10 bits/pixel)
 - Windowing data reduction (50x50): 4 * 2500*10 = 100 kb
 - SHWFS: 5Mp (12 bits/pixel)
 - SHWFS data reduction: 4 * 88 Bytes * 12 bits/byte = 2816 bits
 - Telemetry (temps, state): 9600 bits
 - TOTAL: 10 images*100kb + 10*2816 + 9600 = 1.038Mb
 - Well within the available data downlink volume contraints

Plan

- Develop element prototypes and test Projects
 - Will include flight-like controllers, optics and mechanisms.
- Potential list of student Projects
 - Optical breadboard with two mirrors
 - Includes thermal testing of structure
 - Mirror Thermal and acoustics testing
 - Camera breadboard
 - Continue boom development
- Will be refined with the AE105 class instructors (Davis, Freeman, Scharf)

Schedule

	FY	,														
/	2013				2014			2015				2015				
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Concept Dev	M	CR: 9/20)12													
PDR					9/2	013										
Detailed Design																
CDR								/	9/:	2014						
PrototypeTesting																
Fab & Assembly																
Telescope Integ			1,										Ship: 10/2015			
Pre-ship Review													9/2	015		
Spacecraft Integ																
Launch		- /													/	

Discussion

- Did we demonstrate readiness to proceed to a Project CDR?
 - Does the preliminary design appear feasible?
 - What concerns do you have that we need to address as we go to CDR?

Please provide written input to:

Andy Klesh
Andrew.T.Klesh@jpl.nasa.gov