AAReST Detailed Design Review Mission Overview

John Baker September 8, 2014

The Vision

Review Objective

Objective:

- Demonstrate the readiness to proceed to a flight technology Project CDR.
 - Does the detailed design appear feasible?
 - What concerns do you have that we need to address as we go forward?

Review Outline

- 1. Mission Overview (15 mins)
 - Telescope overview
- Spacecraft Design (150 mins)
 < Coffee Break>
- 3. Telescope Design (150 mins)
 - a) Telescope Concept of Operation (Melanie)
 - b) Camera (Manan)
 - c) Mirrors (John)
 - d) Electronics (Yamuna)
 - e) Boom (Lee)
 - f) Telescope System Modelling (Lee / Marie)
 - g) Telescope Breadboard/Test (Marie)
- 4. Summary & wrap up (15 mins)

Please send comments to Dr. Greg Davis (Gregory.L.Davis@jpl.nasa.gov)

Team Responsibilities

- NanoSat and MirrorCraft
- Docking system
- Integrated spacecraft & mission ops

- Deformable mirrors
- Telescope system
- Optical focus algorithm
- Boom w/AFRL

Composite Boom

JPL

Class instructors Manufacturing facilities

* Planning to have discussions with ISRO

TBD

Launch

Project Approach

- Partner with Univ of Surrey for spacecraft development
 - Use proven cubesat elements with some new technology and some redundancy to ensure we can accomplish the objectives
- Well defined objectives and short duration mission with clear goals for an extended mission
- Keep spacecraft to payload interfaces simple
- Automate telescope to maximum extent possible
- Modularize design for future applications
- AE105 classes do design, analysis, test and operations tasks as the Project matures. JPL instructors teach the class.
- Caltech grad and SURF students do research and technology development for the telescope
- JPL provides class instructors, access to the Micro Devices Lab (MDL) and other facilities as requested.

AAReST Mission Objectives

- Accomplish two key experiments in LEO by demonstrating new technologies for
 - 1. A low-cost active deformable mirror (one star image with 80% encircled energy)
 - 2. Autonomous rendezvous and docking with small spacecraft for telescope re-configuration
- Operate as long as necessary to accomplish the objectives (90 days) post spacecraft commissioning
- Accomplish the mission inexpensively for a 2016 launch
- Gather engineering data that enables the next system development (eg. mirror performance over temp and time)

Mission Objectives \rightarrow System Requirements

Extended Mission Objectives

- 1. Produce one focused image from a deformable mirror after reconfiguration
- 2. Coalign images to improve SNR and demonstrate precursor to co-phasing
- Produce at least two images of other sources (eg Earth and Moon) for outreach purposes.
- Requirements flowed down to the subsystem level last year
- Surrey will discuss spacecraft system and subsystem requirements and updates
- Telescope requirements will be discussed in each presentation along with updates.

Caltech

Spacecraft & Payload Elements

- MirrorSat (x2) 3U cubesats with deformable mirrors on top with rendezvous and docking capability
- 2. CoreSat main spacecraft with primary power, communications, primary ACS, docking capability

Payload

- Mirror assemblies 2 active deformable mirrors, 2 fixed glass reference mirrors with tip/tilt positioning
- 2. Instrumentation package Telescope optics, detectors, wave front sensor, aperture mask
- 3. Boom 1.2m deployable composite

Deployment

t=0	LaunchDetach from launcher & Verify orbit	
2 orbits	 Turn on satellite Turn on low voltage Switch from battery to solar power 	
4 orbits	 Verify and stabilize satellite Power, Thrusters, Communications Tumble rate, Temperature, Attitude Camera functioning (dark measurement) 	
8 orbits	 Telescope deployment 1st stage boom deployment 2nd stage boom deployment w/ camera Uncage DM1, DM2, RM1 & RM2 	
9 orbits	 Adjust and stabilize satellite attitude Point spacecraft to first target and begin telescope calibration 	
	For spacecrart to first target and begin telescope calibration	Caltec

Mission Architecture

Flight System Block Diagram

Information System

Reconfiguration

Accomplishments in the Past Year

- Production of the propulsion components
- Fabricated the docking system from last year
- Evaluation of the C&DH candidates and laser rendezvous system
- AE105 Systems team evaluated risks and improved ConOps
- Finalized Telescope optical design
 - Sensor selection resulted in minor changes/optimization
 - Star tracker on Coresat allowed for better optical design
- Assembled Optical Test Bed
- Assembled Thermal vaccuum chamber and began mirror thermal testing
- Acoustically tested the mirror to verify launch survivability
- Mirror control algorithm development and coding
- Tested component interfaces and refined the electronics design
- Boom deployment testing
 - Eliminated the need for any damping mechanism
 - Defined mounts which allow for post installment alignment

Review Outline

- 1. Mission Overview (15 mins)
 - Telescope overview
- 2. Spacecraft Design (150 mins)
 < Coffee Break>
 - 3. Telescope Design (150 mins)
 - a) Telescope Concept of Operation (Melanie)
 - b) Camera (Manan)
 - c) Mirrors (John)
 - d) Electronics (Yamuna)
 - e) Boom (Lee)
 - f) Telescope System Modelling (Lee / Marie)
 - g) Telescope Breadboard/Test (Marie)
 - 4. Summary & wrap up (15 mins)

Please send comments to Dr. Greg Davis (Gregory.L.Davis@jpl.nasa.gov)

Review Outline

- 1. Mission Overview (15 mins)
 - Telescope overview
- Spacecraft Design (150 mins)
 < Coffee Break>
- 3. Telescope Design (150 mins)
 - a) Telescope Concept of Operation (Melanie)
 - b) Camera (Manan)
 - c) Mirrors (John)
 - d) Electronics (Yamuna)
 - e) Boom (Lee)
 - f) Telescope System Modelling (Lee / Marie)
 - g) Telescope Breadboard/Test (Marie)
- 4. Summary & wrap up (15 mins)

Please send comments to Dr. Greg Davis (Gregory.L.Davis@jpl.nasa.gov)

Telescope Design

Telescope Concept of Operation

Melanie Delapierre, Marie Laslandes, Eric Grohn

Telescope control

- <u>Purpose</u>: Automatically correct in space for deployment imprecision, manufacture errors and thermal disturbances with active calibration.
- <u>Degrees of freedom:</u>
 - 3 Rigid Body Motion actuators per segment (control through imaging detector)
 - 41 piezo-electric actuators per deformable mirror (control through Shack Hartmann) Segmented

Concept of operations

<u>Step 1</u>: Setup initial operational settings for mirrors' position and mirrors' shape

<u>Step 2</u>: Point telescope to a star.

<u>Step 3</u>: Space Calibration concept

- 1. Blind search to bring spot on detector
 - Using 2 Rigid Body Motion Actuators
- 2. Centering to center the spot on the detector
 - Using 2 Rigid Body Motion Actuators
- 3. Focusing to minimize the spot size on the imaging detector
 - Using 3 Rigid Body Motion Actuators
- 4. Shape control to minimize the wave-front error on the Shack Hartmann
 - Using 41 embedded mirror actuators

Calibration operations

Start Calibration

Τ	Camera CPU (Observe, command)	Image Detector (Position)	SHWS (Shape)	Zigbee (Transmit)	Mirror CPU (execute)	Picomotor (position)	Def. Mirrors (Shape)
Ļ	• 1 -Order Initial image :	a - Standby	a- Standby	a- Transmit → Voltages	a -Set DM voltages	a - Standby	a - Set Voltages
		b -Take Image	b -Take image	b -Transmit DONE	b -DONE	b -Standby	b -keep Voltages
IF NECESSARY	2 -Im. Processing Eval. Update	Standby	Standby	Standby	Standby	Standby	Keep Voltages
	3 -Execute update	Standby	Standby	Transmit update	Execute update	Translate	Set new Voltages
	4 -Standby	Standby	Standby	Transmit DONE	Update DONE	Standby	Keep Voltages
	5-Order Image	Take Image	Take Image	Standby	Standby	Standby	keep Voltages
	6 -Im. Processing Eval. Update	Standby	Standby	Standby	Standby	Standby	keep Voltages
	7-Value achieved	Standby	Standby	Transmit DONE →	Put all in Standby	Standby	Standby

TIME ~10 min

Blind Search algorithm

<u>Aim</u>: Put the optical image in the image detector.

<u>Actuators</u>: two picomotors (to tip and tilt the mirror, 2 dofs) <u>Detector</u>: Image detector

<u>Open loop</u>: Move optical image on a spiral until reaching the camera (intensity threshold on image detector).

Experimental spiral

Centering algorithm

<u>Aim</u>: Center optical image on image detector.

<u>Actuators</u>: two picomotors (to tip and tilt the mirror, 2 dofs) <u>Detector</u>: Image detector

<u>**Closed loop**</u>: Find the zeros of the position in X and Y according to actuator length l_1, l_2 .

Find l_1, l_2 s.t. $\begin{cases} X(l_1, l_2) \\ Y(t_1, t_2) \end{cases} = \begin{cases} 0 \\ 0 \end{cases}$

Uses a standard Newton Method

$$\begin{pmatrix} \Delta X \\ \Delta Y \end{pmatrix} = \begin{bmatrix} \delta X / \delta l_1 & \delta X / \delta l_2 \\ \delta Y / \delta l_1 & \delta Y / \delta l_2 \end{bmatrix} \begin{pmatrix} \Delta l_1 \\ \Delta l_2 \end{pmatrix}$$

=> About 1 min algorithm

Experimental centering

Focusing algorithm

<u>Aim</u>: Translate mirror to put its focal plane in the image detector plan.

<u>Actuators</u>: three picomotors (to piston without tip and tilt, 1 dof) <u>Detector</u>: Image detector

<u>**Closed loop**</u>: Find the minimum radius R of optical image according to the length of the actuators l.

 $Min_l R(l)$

<u>Method 1</u>: Impose small increments δl in the direction that decreases R and stop when it changes direction: Long, imprecise <u>Method 2</u>: Experimentally evaluate the convexity of R(l) and implement better minimization algorithms (convex ?...)

Shape control algorithm

• Objective: Minimize Wave-Front Error (WFE)

=> Uses a standard technique with Shack-Hartmann sensor.

=> Perform a WFE slope minimization

- Knowing the influences of the n=41 actuators of the system, the optimal voltages can be deduced:
 - Influence Functions: $A = [a_1, a_2, ..., a_n]$, $a_i \in \mathbb{R}^m$, m~176 (# lens on SHWS)
 - Measured WFE slopes: $\boldsymbol{d} \in \mathbb{R}^m$

$$\Rightarrow \text{Voltages:} \quad \begin{aligned} \delta v &= \min_{x} \|d - Ax\|_{rms}, \\ \text{with} - v_{l} - v_{n} &< x < v_{l} - v_{n} \\ v_{n+1} &= v_{n} + \delta v \end{aligned}$$

- Control loop
 - Input: influence matrix (A) voltage limit (v_l) loop gain (α)
 - Output: corrected WF

Conclusion

- Blind Search, Centering and Focusing algorithms should be executed mainly after deployment.
- Shape control algorithm could be needed after each pointing because of different thermal disturbances.

Review Outline

- 1. Mission Overview (15 mins)
 - Telescope overview
- Spacecraft Design (150 mins)
 < Coffee Break>
- 3. Telescope Design (150 mins)
 - a) Telescope Concept of Operation (Melanie)
 - b) Camera (Manan)
 - c) Mirrors (John)
 - d) Electronics (Yamuna)
 - e) Boom (Lee)
 - f) Telescope System Modelling (Lee / Marie)
 - g) Telescope Breadboard/Test (Marie)
- 4. Summary & wrap up (15 mins)

Please send comments to Dr. Greg Davis (Gregory.L.Davis@jpl.nasa.gov)

Manan Arya, Maria Sakovsky, Marie Laslandes, Mélanie Delapierre, Eric Grohn

Telescope Optical Overview

Camera Requirements

- Functional
 - Image star field using sparse aperture primary mirror (M1)
 - Provide feedback for primary mirror segment calibration
 - Deformable mirror (DM) wavefront errors (WFE)
 - Segment rigid body motions (RBM)
 - Take engineering images of CoreSat during MirrorCraft reconfiguration
- Performance
 - 80% encircled energy (EE) diameter at image plane < 50 μ m
 - Full field-of-view (FoV) > 0.3°
 - Signal-to-Noise Ratio (SNR) > 100
 - Optical bandwidth: 465 nm 615 nm (540 nm center)
- Constraints
 - Mass < 4 kg
 - Volume < 10 × 10 × 35 cm</p>
 - Power < 5 W

Camera Optical Design

Camera Optical Elements

- Collimator designed for pupil conjugate size (< 10 × 10 mm) and good conjugation (min. WFE) using Zemax
- Imaging lens designed for min. spot size using nominal primary mirror figure
- Transmissive optics (as opposed to reflective optics e.g. OAP mirrors) because of volume limitations

Camera Block Diagram

Shack-Hartmann Wavefront Sensor

- MLA: EO #64-476
 - 10 × 10 mm, 300 μm pitch
 - 5.1 mm focal length
 - ~177 WF slope samples per segment
- Image sensor: CMOSIS CMV4000
 - CMOS imager
 - 11.26 × 11.26 mm active area
 - 5.5 μm pixel pitch
 - 2048 × 2048 pixels, 4.2 Mp
 - (QE)_{peak} = 0.57 at 537 nm

SHWS Spilt

- Collimator complexity drives lower magnification
 - i.e. larger pupil image
- Detector cost drives smaller pupil image
 - i.e. higher magnification
- High aspect ratio pupil topology leads to wasted pixels if imaged onto a single sensor
- Before: one monolithic sensor (KAI-16070)
- Now: two smaller, cheaper sensors

SHWS Prototype

- Baumer MXUC40 camera for sensor readout (flight-like CMV4000)
- Flight-like MLA (EO #64-476)
- EO tip/tilt/piston kinematic mount to position MLA wrt sensor
- 3D printed parts to attach sensor and MLA to kinematic mount

SHWS Prototype Alignment

- MLA position adjusted using flat WF from an interferometer
- Tip/tilt/piston between MLA and image sensor adjusted until we see regular centroid positions
 - Also gave reference centroid locations

AAReST DDR - 09/08/2014

Imaging Detector

- Aptina MT9P031 CMOS sensor
 - 2592 × 1944 pixels, 5 Mp
 - 2.2 μm square pixels oversample the Ø14.2 μm spot from a single primary mirror segment
 - 5.70 × 4.28 mm active area
 - 0.34° FoV (diagonal)
 - $-(QE)_{peak} = 0.62 \text{ at } 482 \text{ nm}$

• Prototype: Ximea MU9PM-MBRD camera

Telescope CPU

- Atmel SAMA5D35 ARM Cortex-A5 MPU
 - 536 MHz, 512 Mbyte DRAM
 - Arch-based Linux kernel
 - Leverage existing libraries (OpenCV), drivers (I²C, SPI, UART), file system, etc.
 - Using evaluation board for prototyping; will adapt evaluation board design for flight

Pupil Mask Configuration

Caltec

Lens Barrel Design

Assembled sequentially

Caltech

Lens Barrel Prototypes

Collimator 1 resting on spacer

Assembled Collimator

Lens Group Testing

Geometric spot size estimated using raytracing Ø 25.8 μm

Measured spot size ~Ø 17.6 μm

Caltech

Camera Mechanical Design

- Envelope requirement: < 10 × 10 × 30 cm
- Current best estimates: 9.8 × 9.5 × 26.5 cm

Calter

Camera Tolerancing

- Monte Carlo analysis with 500 trials
 - Lens manufacturing errors
 - Thickness: ± 0.1 mm
 - Radius of curvature: ± 0.1 %
 - Sphere centration: ± 0.01 mm
 - Wedge : ± 0.01 mm

- Alignment errors
 - Decenter: ± 0.1 mm
 - Tip/Tilt: ± 0.1°
 - Element spacing: ± 0.1 mm

- Spot size increased by 12% on average
- Spot size increase by less than 28% in 90% of the cases
- Impact on performance is not significant
- Allowable errors values guide camera hardware design and fabrication

Encircled Energy Analysis

- EE computed in both configurations, over entire bandwidth, at various field angles, using sparse aperture primary with a nominal figure
- Performance criterion: 80% encircled energy diameter < 50 μm

SNR Considerations

- SHWS dictates the limiting photon flux
- For a 50 ms exposure with 150 nm bandwidth around $\lambda = 540$ nm, we need a flux of 10⁶ photons/cm²/s to achieve SNR = 100
- Corresponds to apparent magnitude ~1.5-1.8

$$SNR = \frac{N}{N_{RON} + N_{poisson}}$$

$$N_{poisson} = \sqrt{N}$$

$$N = FT_{int} \eta \left(\frac{A_{mirror}}{n_{lenslets}}\right)$$

$$\eta = \eta_{mirror} \times (\eta_{lens})^4 \times (QE) = 0.52e^-/photon$$

$$T_{int} = 50ms$$

$$A_{mirror} = \pi (4.5cm)^2$$

$$n_{lenslets} = 177$$

$$N_{RON} = n_{pixels} \times 13e^-/pixel = 169.3e^-$$

$$F = 3.4 \times 10^6 photons/cm^2/s$$

Camera Mass Budget

Part	Mass (g)	
Collimator barrel assembly	750	
Imaging barrel assembly	754	
Metrology plate	683	
Mask mechanism	77	
SHWS	136 × 2	
Front Baffle	26	
Electronics	188	
Radiation shielding	126	
Beamsplitter assembly	71	
Boom inspection camera	53	
Total	3000	
+ Margin (10.0%)	3300	< 4000 g requirement

Camera Power Budget

Part	Peak (W)	Standby (W)	WF Sensing Mode (W)	Imaging Mode (W)	Reconfiguration Mode (W)
Telescope CPU	0.60	0.45	0.60	0.60	0.60
Imaging Detector	0.74	0.30		0.74	
SHWS	2.40 × 2	1.80 × 2	2.40 + 1.80		
BIC	0.22	0.15			
ZigBee	0.14		0.14	0.14	0.14
Mask	0.60				0.60
Total	7.10	4.50	4.94	1.48	1.34
+ Margin (10%)	7.81	4.95	5.43	1.63	1.47

- Requirement: < 5 W
- Using existing prototypes to estimate power; SHWS prototype camera has unnecessary features (e.g. high framerate output)
- Further power reduction through having only one SHWS active during WF sensing

Camera Open Issues

- SHWS detector readout electronics and software
 - Reduce power consumption
 - Challenging to design FPGA for readout
- SHWS alignment and calibration

Need to decouple piston from tip/tilt positioners

Camera Future Work

- Mature prototype
 - Metrology plate + lens barrel mounts
 - Pupil mask
 - SHWS
 - B/S mounts
 - Frangibolt interface
 - Integrate electronics and software prototypes
- Test stray light control strategies
 - Build front baffle
 - Select optical black coatings
 - Test mask optical properties

Review Outline

- 1. Mission Overview (15 mins)
 - Telescope overview
- Spacecraft Design (150 mins)
 < Coffee Break>
- 3. Telescope Design (150 mins)
 - a) Telescope Concept of Operation (Melanie)
 - b) Camera (Manan)
 - c) Mirrors (John)
 - d) Electronics (Yamuna)
 - e) Boom (Lee)
 - f) Telescope System Modelling (Lee / Marie)
 - g) Telescope Breadboard/Test (Marie)
- 4. Summary & wrap up (15 mins)

Please send comments to Dr. Greg Davis (Gregory.L.Davis@jpl.nasa.gov)

Deformable Mirrors

John Steeves Erin Evans, Marie Laslandes

Problem Description

- Develop & design a deformable mirror assembly
 - Key Characteristics
 - Thin, flexible, low areal density
 - Identical manufacturing process
 - Actively controlled
 - Key Challenges
 - Large strokes (10 100 μm) required in order to perform figure correction
 - Nanometer precision required for visible wavelength imaging
 - Volume, power constraints
 - Accommodate thermal variations
 - Launch survival

Deformable Mirror Requirements

- Physical:
 - Mirror diameter: 100 mm
 - Nominal ROC: 2.326 m
 - Total hardware volume: ~1U (10 x 10 x 10 cm)
 - Manufacturing tolerances:
 - * 3 μm RMS aspheric figure error
- Actuation:
 - Capable of achieving $\lambda/10$ (50 nm) RMS figure accuracy
 - Accommodate both wide and compact telescope configurations (2.7 μm RMS)
 - Correction of manufactured shape errors (3 μm RMS)
 - Correction of deformations due to thermal imbalance (3µm RMS focus)
 - Stable shape deformation over exposure time (~50 ms)
- Environment:
 - Vibration:
 - Survival of launch loads (Delta IV Heavy test case)
 - Low excitation from S/C during imaging
 - Thermal:
 - Survival: -40 to +80 °C
 - Operational: -20 to +20 °C

Actuation Specifications

- Rigid body actuation (required for launch stowage, initial calibration, reconfiguration)
 - Piston: ± 10 mm
 - Tip/tilt: ± 0.1 rad
- Figure correction
 - Off axis shape generation
 - Manufacturing error correction
 - Thermal imbalance

=> Set of Zernike errors to be corrected (Z4 to Z66)

WFE measured by the Shack-Hartmann for a spherical mirror Narrow segment (1.4 μ m RMS) - Wide segment (2.7 μ m RMS)

Total actuation requirements

Zernike	[µm RMS]
Focus	±6
Astigmatism3	±3
Coma3	±1
Spherical3	±1
Trefoil5	±1
Tetrafoil7	±0.5
Astigmatism5	±0.5
Higher order	±0.1

Deformable Mirror Overview

- Thin active laminate
 - Polished glass wafer
 - Piezoelectric polymer backside
 - Reflective front surface
- Surface-parallel actuation scheme
- Custom electrode pattern

Mirror Fabrication Process

- 1. Polished glass wafer (~225um)
- 2. Slump at ~650C over quartz mold*
- 3. Coat Cr+Al laminate (~3um total)*
- 4. Roughen mirror backside with HF vapor
- 5. Sputter ground layer (Ti+Au+Ti, 10+50+10nm)
- 6. Spin coat + bake piezo layers 140C (20um)
- Sputter blanket electrode (Ti+Au, 10+10nm)
- 8. Evaporate electrode pattern (Au, 100nm)
- 9. Pole active material layer to 100 V/um
- 10. Ion mill etch back blanket electrode
- 11. Wirebond electrodes and mount mirror onto PCB

Slumping process (ongoing)

Mirror Mounting

- Low-stiffness Au wirebonds connect mirror electrodes to PCB pads (via holes)
- Kinematic mounting to PCB
 - Spheres pinch mirror in 3 places
 - Preloaded and aligned using magnetic field

Flight Packaging

Rigid body actuation scheme

Mirror box prototype with rigid glass mirror

Current Mirror Prototype

- Optimized "Notre Dame" actuation pattern
 - 41 independent channels
- Developed on flat glass substrates
- Optical characterization performed

Example influence function measurements

Performance Modelling

Large actuator strokes before saturation

Flight Qualification

- Material Characterization
 - Piezopolymer material data
- Thermal Analysis & Testing
 - Quantification of survival and operating temperature limits
 - Thermal-vac testing of mirror laminates
- Vibrational Tests
 - Survival of launch loads
 - Mirror vibrations during imaging

P(VDF-TrFE) Material Characterization

- Data obtained from
 - JPL polymer lab (TMA, DMA, DSC, TGA)
 - Caltech material testing (Instron, optical measurements)
 - Sandia report on PVDF in space (DMA, piezo measurement)
- Large variation in properties across temperatures

P(VDF-TrFE) Material Characterization

- Critical temperatures
 - Tg: -40C , glass transition (ill-defined)
 - Tc: +110C, Curie
 - Tm: >140C, melting
 - Td: >400C, decomposition
- Very low moisture absorption (<0.01%)
- Viscoelasticity
 - Stiff for a polymer but still viscoelastic
 - Creep master curve to be measured
 - Good news: glass substrate will dominate shape over time and maintain molded shape

Thermal Environment

- Thermal modelling:
 - Thermal Desktop used to model on-orbit temperature profiles
 - Assumed 11am/11pm SSO
- Operating:
 - Mirror electronics on
 - -10 to +6°C
- Survival:
 - Cold (Mirror electronics off)
 - Down to -60°C
 - Mirror functionality proven to be retained down to -70°C in lab setting
 - Hot (Sun facing (ie. loss of S/C control)
 - Up to 50°C

Operating thermal profile for the mirror segments

Thermal Balancing

- CTE varies from 50 ppm/K to >200 ppm/K
- When cold, stiffness increases, but piezo coeff decreases
- Actuation stress fairly flat, optimal peak ~-40C
- Mirror stroke (defocus mode)
 - +/- 40 μm at 20C
 - +/- 60 μm at -40C
- Thermal balancing
 - Balancing CTEs of mirror materials can extend operational range

Thermal-Vac Test Apparatus

- Thermal-vac chamber developed in order to test mirrors in a representative thermal environment
- Chamber performance:
 - Vacuum: 10⁻⁵ torr
 - Temperature:
 - -35°C in open air
 - Expecting -50°C in vacuum (TBD)

Jaltec

Thermal-Vac Test Apparatus

- Optical system developed to characterize mirror figure as a function of temperature
 - SHWFS to monitor WFE
 - Currently configured to test flat mirrors
 - Preliminary data obtained, but tests are currently under development

Caltech

Vibrational Behavior

- Impulse response of mirror measured experimentally
 - Steel ball used to excite mirror
 - Center deflection measured as a function of time
- Damping coefficient determined by monitoring decay and fitting exponential
 - Average value: 0.068

Vibrational Behavior

Launch Survival

- Large acoustic loads during launch
 - Delta IV-Heavy (conservative case)
 - Mounting points are points of stress concentrations
- Mirror launch restraint required

Acoustic Test Apparatus

Signal Generation

- 125dB overall sound pressure level (OASPL) achieved
- Signal broken into sections in order to deliver proper SPL across all frequencies
- > 300 μ m RMS center deflection measured at 125dB
 - Good agreement with model predictions (< 10 %)
 - Restraint system required

Restraint System

Restraint System

- Lab implementation:
 - Holes drilled through mirror PCB in order to accommodate various restraint configurations
 - Mirror seated against silicone pads atop shoulder bolts

Vibration Suppression

- Mirror response measured at 115dB (low signal distortion)
 - ~ 75x reduction in RMS response
 - More broad-band response due to constrained configuration
 - Values to be measured at higher SPLs (TBD)

Vibration During Imaging

- Mirror jitter calculated as a function of reaction wheel imbalances
 - Imbalances measured using sample wheel from Surrey
- Large deflections predicted towards resonant frequencies, however wheels will operate at much lower speeds during imaging (< 650 rpm)
 - No significant concerns for imaging

Conclusions

- Design of deformable mirrors complete
 - Fabrication process (almost) finalized
 - Still working on obtaining slumped glass substrates
 - Design of flight package complete
 - Flat prototypes constructed
- Flight qualification of mirrors
 - Extensive material data gathered for piezoelectric polymer
 - Thermal-vac chamber commissioned
 - Thermal balancing of mirror laminates (TBD)
 - Optical performance during thermal cycling (TBD with figured mirrors)
 - Launch survival
 - Data gathered for reduced SPL inputs
 - Restraint system constructed in order to mitigate mirror vibrations

Review Outline

- 1. Mission Overview (15 mins)
 - Telescope overview
- 2. Spacecraft Design (150 mins) < Coffee Break>
- 3. Telescope Design (150 mins)
 - a) Telescope Concept of Operation (Melanie)
 - b) Camera (Manan)
 - c) Mirrors (John)
 - d) Electronics (Yamuna)
 - e) Boom (Lee)
 - f) Telescope System Modelling (Lee / Marie)
 - g) Telescope Breadboard/Test (Marie)
- 4. Summary & wrap up (15 mins)

Please send comments to Dr. Greg Davis (Gregory.L.Davis@jpl.nasa.gov)

Mirror Electronics

Yamuna Phal, Melanie Delapierre, Eric Grohn

Mirror Electronics - Overview

- Requirements
- Block diagram
- Lab-prototype design decisions
- Lab-prototype design
 - Controller board
 - HV board (Mirror actuators)
 - HV board (Picomotors)
 - MUX board
 - Power budget
 - Components used
- Plan Forward

Mirror Electronics - Requirements

- Constraints
 - USB interface to mirrorcraft
 - ZigBee wireless interface to camera
 - Volume : Contained within a 10 cm x 10 cm x 5 cm box
 - Power constraints : < 2 W
- Performance
 - HV DC output for driving mirror actuators (*Wavefront correction*)
 - +/-500V range for driving 41 modes
 - 0.1 V resolution at the output (corresponds to $\lambda/10$ wavelength)
 - HV DC output for driving picomotors (*Translation*)
 - 0-110V range for driving 3 modes
 - Required SR 0.6 V/µs(transient)

Mirror Electronics - Block Diagram

Caltech

Lab-prototype - Design Decisions

- ATMEL MCU
 - RAD tolerant used in INSPIRE mission
- DAC needed
 - 16-bit DAC for a resolution of 61 mV
 - I²C or SPI SPI Interface
 - Could be interfaced for bipolar output range
- Power Amplifier selection HV board (*Picomotors*)
 - Gain of X100
 - Output swing of +/-500 V DC as required
- Power Amplifier selection HV board (Mirror actuators)
 - 10KHz capacity and swing 0-110 V (SR \sim 0.6 V/ μ s)
 - Output current of 120 mA rms max
- HV DC-DC converter selection
 - 1 W dissipation each with 1.67 mA input current
- Temperature sensors + Telemetry channels

Lab-prototype - Controller board

- Summary
 - 12 V power supply for board operation (3.3-5 V desired)
 - UART interface (RS232) for sending program and feedback (needed)
 - I²C/SPI interfaces (needed)
 - ANALOG INPUT (*present*)/ANALOG OUTPUT interfaces (*absent*)
 - On-board switches and other interfaces (not needed)

Lab-prototype - HV board (Mirror actuators)

- Design Summary
 - Provides Digital/Analog interfacing with the Controller board
 - Provides an amplification factor of x100 for HV output (-500 V to +500 V)

HV DC CONVERTER

- Target value of the HV output line with resolution of 0.1 V

Lab-prototype - HV board (Picomotors)

- A single HV line could be used for driving 3 channels

TRANSLATION MODES

HV board (Picomotors) - Open Issues

- Designing appropriate driver for picomotors
 - 10KHz capacity and swing 0-110 V (SR ${\sim}0.6$ V/µs)
 - Output current of 120 mA rms max
 - Corresponds to ~3-4 W (FULL LOAD)

Lab-prototype - MUX board

- Design Summary
 - I²C interfacing with the Controller board
 - Provides optical isolation between LV-HV signals
 - A single HV line could be used for driving 41 channels

Mirror Electronics - Power Budget

LAB PROTOTYPE (TESTED)	POWER RATING (<i>NO LOAD</i>)	POWER RATING (FULL LOAD)
CONTROLLER BOARD	0.1 W	2.76 W
HV BOARD (Mirror actuators)	0.4 W	TBD
HV BOARD (Picomotors)	0.4 W	TBD
MUX BOARD	0.1 W	0.8 W
TOTAL	1 W	TBD

Lab-prototype - Components used

- Controller board
 - MCU ATMEGA 1284
 - DAC Maxim MAX542
 - Zigbee
 - XBEE-ZB XBP24BZ7SIT-004J (63mW RPSMA Router/End Device)
 - Antenna A24HASM450 (2.4 GHz RPSMA)
- HV board (Mirror actuators)
 - Power Amplifier Apex PA79
 - HV DC-DC converter EMCO FS10-CT
- HV board (*Picomotors*)
 - Power Amplifier Apex PA78
 - HV DC-DC converter EMCO FS02-CT
- MUX board
 - PhotoMOS relay Panasonic AQV258
 - LED driver IC Maxim MAX6956
- Temperature sensor
 - TI TMP006

Plan Forward

- Designing appropriate driver board for picomotors
- Validate the use of HV board (mirror actuators) and MUX board for in-flight operation
- Design a customized controller board for in-flight operation with a new controller
 - 5 V (3.3 V) power supply
 - UART interface (RS232)
 - I²C/SPI/ANALOG INPUT-OUTPUT interfaces

Camera Electronics

Manan Arya,

Melanie Delapierre, Yamuna Phal, Eric Grohn

Camera Electronics - Overview

- Requirements
- Lab-prototype block diagram
- Lab-prototype design
 - Power budget
 - Components used
- Open Issues
- Plan Forward

Camera Electronics - Requirements

- Constraints
 - USB interface
 - ZigBee wireless interface with mirror electronics
 - Volume < 10 cm x 10 cm x 35 cm box (must fit between the two MirrorCraft – stowed configuration)
 - Power < 5 W
 - Mass < 4kg

Camera Block Diagram

Camera Power Budget

Part	Peak (W)	Standby (W)	WF Sensing Mode (W)	Imaging Mode (W)	Reconfiguration Mode (W)
Telescope CPU	0.60	0.45	0.60	0.60	0.60
Imaging Detector	0.74	0.30		0.74	
SHWS	2.40 × 2	1.80 × 2	2.40 + 1.80		
BIC	0.22	0.15			
ZigBee	0.14		0.14	0.14	0.14
Mask	0.60				0.60
Total	7.10	4.50	4.94	1.48	1.34
+ Margin (10%)	7.81	4.95	5.43	1.63	1.47

- Requirement: < 5 W
- Using existing prototypes to estimate power; SHWS prototype camera has unnecessary features (e.g. high framerate output)
- Further power reduction through having only one SHWS active during WF sensing

Components used

- Telescope MPU : Atmel SAMA5D35 ARM Cortex-A5
- Imaging Detector : Aptina MT9P031 CMOS sensor
- Boom-Inspection Camera : OV7670
- SHWS
 - MicroLens Array : EO #64-476
 - Image Sensor : CMOSIS CMV4000
- SHWS driver : Xilinx Virtex 4 FPGA (TBC)
- Motor driver : Allegro A4988 (TBC)
- Zigbee
 - XBEE-ZB XBP24BZ7SIT-004J (63mW RPSMA Router/End Device)
 - Antenna A24HASM450 (2.4 GHz RPSMA)

Open Issues

- SHWS detector readout electronics and software
 - Reduce power consumption
 - Challenging to design FPGA for readout
- SHWS alignment and calibration
 - Need to decouple piston from tip/tilt positioners

Plan forward

- Validate the use of components for in-flight operation
- Design a customized controller board for inflight operation
- Reduce power consumption by reducing the interfacing electronics on the Atmel SAMA5D35 evaluation board

Review Outline

- 1. Mission Overview (15 mins)
 - Telescope overview
- Spacecraft Design (150 mins)
 < Coffee Break>
- 3. Telescope Design (150 mins)
 - a) Telescope Concept of Operation (Melanie)
 - b) Camera (Manan)
 - c) Mirrors (John)
 - d) Electronics (Yamuna)
 - e) Boom (Lee)
 - f) Telescope System Modelling (Lee / Marie)
 - g) Telescope Breadboard/Test (Marie)
- 4. Summary & wrap up (15 mins)

Please send comments to Dr. Greg Davis (Gregory.L.Davis@jpl.nasa.gov)

Lee Wilson, John Steeves, Erin Evans

Boom Requirements

- Functional
 - Enable 1.16m telescope focal length
 - Compact launch configuration
 - Can self deploy

= Additional testing required

Performance

- Boom elongation
 - Static: < 500µm (can handle with rigid body mirror actuators)
 - During imaging: < 50 μm
- Boom lateral deflection
 - Static: < 2mm (keep image on detector)
 - During imaging: < 200 μm/s (avoid image smearing)
- ACS
 - Boom deployment within ACS control authority
 - Avoid coupling between S/C and ACS system

AAReST DDR - 09/08/2014

132

Boom Lay-up

90°

- Now manufactured by AFRL in Albuquerque for improved quality
- Combination of
 - Plain-weave (PW) fibreglass 60 μm thick
 - Unidirectional carbon fibre 90 μm thick

Hinge Design

- Extra 90° layup on outer side of hinge regions
- Dimensions
 - 210 μm total thickness
 - 38 mm diameter

- Cutting pattern
 - "Dog-bone" hinge cutting pattern
 - D = 15mm, L=90mm, SW = 8mm
- Structural optimisation techniques used to develop design

Based off of Mallikarachchi, H.M.Y.C. and Pellegrino, S. (2008-2012)

Hinge Characterization

- Characterized moment vs angle for individual hinges
 - Torque for each angle determined with strain gauges on mounts
 - Steady moment (~0.1 Nm) at large-fold angles
 - Moment less stable near snap-through

Hinge Characterization

- Hinges locked before reaching deployed configuration
 - Quasi-static test
 - Some manufacturing defects in hinges tested – process now improved

Hinge A (shifted line defect)

front

Dynamic Stage 2 Deployment Test

- Gravity offload setup used to test stage 2 deployment
 - Determine if deployment needs to be controlled
- Representative masses (4kg & 30kg) suspended from J-rail can rotate freely
- Accelerometers attached to masses measure shocks

Dynamic Stage 2 Deployment Test

Stage 2 Deployment Test Results

- Low accelerations compared to those experienced during launch
 - Boom had axial line defects may reduce accelerations slightly
 - Ie, Delta IV rocket load factors -2g to 6g

Stage 2 Finite Element Simulation

Camera & S/C

modeled as

rigid body

- Abaqus/Explicit used to model stage 2 deployment process
 - Reduces number of gravity offload tests needed
 - Used to estimate failure margins
- Simulation first folds boom then allows unconstrained deployment

Boom & hinge modeled as thin

Preliminary FEA Results

AAReST DDR - 09/08/2014

Simulated Thermal Profile Summary

- Assumed sun-sync orbit (11am – 11pm)
- Software: Thermal Desktop
- Nodes plotted are uniformly distributed across boom surface – boom painted black
- Deflections are stable for approximately half the orbit

Boom Interfaces

CoreSat-Boom Interface

- Boom bonded on to mandrel
 - Features
 - Cradles support boom during launch
 - Kinematic mount
 - For boom alignment during assembly
 - Stage 1 separation device
- Camera mount similar but more compact & no separation device

Kinematic Mount

- Components
 - 4 ball tipped screws
 - 3 flats
 - 1 cone
 - 3 screws on base plate control rotation about x, y
 - 4th screw controls rotation about z
- Clamping Method
 - Two springs hold plates together during alignment
 - Three nuts hold plates together after alignment

Kinematic Mount

- Components
 - 4 ball tipped screws
 - 3 flats
 - 1 cone
 - 3 screws on base plate control rotation about x, z
 - 4th screw controls rotation about y
- Clamping Method
 - Two springs hold plates together during alignment
 - Three nuts hold plates together after alignment

Separation Device

- 1.60 ± 0.05 amps heats the nichrome wire which slices the vectran restraint cable
- Two springs provide preload
- Based on design tested by NRL*

*A Nichrome Burn Wire Release Mechanism for CubeSats by Thurn et al.

Future Work

- Prototype testing is needed for:
 - Stage 1 burn wire cutting release mechanism
 - Shake test for boom alignment & survivability
 - Will determine if additional cradles / damping material is needed to support boom in launch configuration
 - Confirm dimensional accuracy needed from kinematic mount is attainable
- Redo stage 2 deployment tests with final boom layups

Integrate boom cabling into the tests

Future Work

- Utilize cyanate ester resin in boom
 - Improved thermal properties
 - Low outgassing
- Quantify viscoelasticity of boom material
- Monitor damage of hinges due to multiple folding/deployment processes

Review Outline

- 1. Mission Overview (15 mins)
 - Telescope overview
- Spacecraft Design (150 mins)
 < Coffee Break>
- 3. Telescope Design (150 mins)
 - a) Telescope Concept of Operation (Melanie)
 - b) Camera (Manan)
 - c) Mirrors (John)
 - d) Electronics (Yamuna)
 - e) Boom (Lee)
 - f) Telescope System Modelling (Lee / Marie)
 - g) Telescope Breadboard/Test (Marie)
- 4. Summary & wrap up (15 mins)

Please send comments to Dr. Greg Davis (Gregory.L.Davis@jpl.nasa.gov)

Telescope System Modelling

Lee Wilson, Marie Laslandes

Dynamic Pointing Control

- MATLAB Simulink model of S/C control system was developed
 - Prove pointing requirements can be met with given reaction wheel disturbances
 - Only example control system Surry with implement actual system
 - Assume optical axis = principle S/C inertia axes
- Requirements
 - Camera jitter from pixel size and exposure time: dθ/dt, dφ/dt < 0.02 °/s
 - Image remains on detector during calibration: θ, φ constant to within 0.1° for 600s

Control Loop

- PID Controllers Determine required torque on S/C from orientation, angular velocity
- Allocator Uses psudo-inverses to distribute torque to four RWs
- RW disturbance torque calculated from wheel speed
- Spacecraft Dynamics Torques combined & new S/C and Camera positions, angular velocity calculated
- Sensor White noise can be added to estimated position knowledge then fed back to the PID controllers

Block representation of evaluation tool

Dynamic Pointing Results

- Version 1 unbalanced RW prototype had disturbance amplitude of $F = 11 \mu Nm/Hz^{2*}\omega^2$
 - Assume here $1.1 \,\mu \text{Nm/Hz}^2$
 - Estimate wheels will operate at < 650 rpm during imaging
- Sensor (ie, MEMS gyro) noise assume white noise with variance 3.5e-4 rad²
- System meets requirements with these assumptions

Telescope closed loop modeling

- Objective: validate optical performance and control concept
- Modeling of a 1 segment telescope, on axis observation at 540 nm
- Code V + Matlab + Abaqus for an end to end simulation
 - Inject a set of perturbations into optical model (Monte Carlo)
 - Ray trace: degraded performance
 - Compute correction commands and inject into optical model (5 iterations)
 - Ray trace: corrected performance
- Statistics on 500 Monte Carlo trials give the expected performance of the telescope

Injected errors

- Mirror initial shape error (< 4.5 μm RMS)
 - Off-axis shape generation
 + manufacturing errors correction
 - Defined by set of Zernike (Z4-66)
- Boom deflections (±0.04° / ±0.6mm)
 - Induce camera translation and rotation

- Thermal effects (±20°C)
 - Mirror curvature depends on temperature
 - Spacing between elements depends on temperature (CTE mismatch)

Correction loops

- Segment Rigid Body Motion
 - Segment Tip/Tilt (centering)
 - Control feedback: spot centroid position on focal plane
 - Segment Piston (focusing)
 - Control feedback: spot size on focal plane
- Deformable mirror shape (41 embedded actuators)
 - Control feedback: wavefront error on Shack Hartmann plane (177 measure points per segment)
 - Actuators influences from finite element model
 - Voltages computed with constrained least square algorithm (500 V limit) and applied with a 0.1 V resolution

AAReST deformable mirror Finite Element Model

Example trial

Caltech

Telescope closed loop results

- Narrow configuration: performance meet requirements
 - Mean wave-front error: 43.5 nm rms ~ λ /10 RMS
 - Mean spot diameter (80% EE): 31.4 μ m < 50 μ m required

Telescope closed loop results

- Wide configuration: more challenging but acceptable
 - Mean wave-front error: 89.7 nm rms ~ λ /6 RMS
 - Mean spot diameter (80% EE): 69.0 μm slightly above requirement
- Conclusion
 - The system should be able to correct efficiently the expected errors
 - Validate optical design and control scheme
 - Validate chosen hardware
 - Validate requirements on the deformable mirror initial shape error

Review Outline

- 1. Mission Overview (15 mins)
 - Telescope overview
- Spacecraft Design (150 mins)
 < Coffee Break>
- 3. Telescope Design (150 mins)
 - a) Telescope Concept of Operation (Melanie)
 - b) Camera (Manan)
 - c) Mirrors (John)
 - d) Electronics (Yamuna)
 - e) Boom (Lee)
 - f) Telescope System Modelling (Lee / Marie)
 - g) Telescope Breadboard/Test (Marie)
- Summary & wrap up (15 mins)

Please send comments to Dr. Greg Davis (Gregory.L.Davis@jpl.nasa.gov)

Telescope system Breadboarding

Marie Laslandes, Manan Arya, Eric Grohn

- Provide a set-up in which the different components of the telescope can be integrated and tested as a whole
 - Verify interfaces
 - Verify optical alignment
 - Verify calibration process
- Breadboard requirements
 - Simulate the interfaces between spacecraft and telescope
 - Mechanical, power supply, communication
 - Simulate the observation of a star
 - Feed the primary mirror segment with a large collimated beam

Optical design

- Auto-collimation technique to generate the collimated beam
 - Require a flat mirror of the size of the primary aperture
 - Pupil is divided in half in the Shack Hartmann plane
 => each half of the aperture can be tested independently
 => reduce the size of required flat mirror

Implementation

Spacecraft interface plate (representing mechanical interfaces between mirror boxes and spacecraft)

Pellicle Beam Splitter (minimizing aberrations)

Caltec

Characterization

- Optical quality of flat mirror was unknown
 => Measurement through Newton fringes
- Fringes created between a 10 cm optical flat and the flat mirror surface
 - Distortion of the fringes compare to straight lines characterize flatness of the measured area

Characterization

- Measurements on different areas of the mirror
- Qualitative analysis: Fringes look straight everywhere => no obvious shape error
- Quantitative analysis with automatic image processing could be implemented if needed

Breadboard Alignment

- Breadboard elements (Source, Beam Splitter and Flat Mirror) to be aligned first
- Alignment with a segment mirror in the reference position
 - Temporary segment : 100 mm diameter rigid spherical mirror mounted on mirror box

Breadboard Alignment

- Breadboard elements (Source, Beam Splitter and Flat Mirror) to be aligned first
- Alignment with a segment mirror in the reference position
 - Temporary segment : 100 mm diameter rigid spherical mirror mounted on mirror box
- Procedure
 - Set source and Beam Splitter on optical axis to illuminate segment
 - Set segment piston/tip/tilt to have a collimated beam with no tip or tilt

Breadboard Alignment

- Breadboard elements (Source, Beam Splitter and Flat Mirror) to be aligned first
- Alignment with a segment mirror in the reference position
 - Temporary segment : 100 mm diameter rigid spherical mirror mounted on mirror box
- Procedure
 - Set source and Beam Splitter on optical axis to illuminate segment
 - Set segment piston/tip/tilt to have a collimated beam with no tip or tilt
 - Set flat mirror tip/tilt to send back the beam onto the segment
 - Resulting focal point should be on the optical axis, at the camera entrance

Breadboard Alignment Validation

- Spot is measured at prime focus with the imaging detector and compared to optical model (ray tracing)
 - Expected spot size (80% EE): 90 μm
 - Measured spot size (80% EE): ~ 100 μ m

=> Breadboard alignment is satisfactory for preliminary testing

Telescope Integration & Tests

- Breadboard has been aligned with the 1st reference mirror
 - Once this is done, the breadboard elements should not be moved any more
 - The other AAReST elements are simply added
- Integration and Test plan
 - Breadboard alignment
 - Camera integration
 - Other segments integration
 - Optical performance validation
 - Functioning tests: inject error and run control loop
 - Boom integration
 - Check optical performance

Camera on Breadboard

- Procedure
 - Insert collimating group according to prime focus
 - Insert refocusing group
 - Insert imaging detector
 - Insert cube beam splitter
 - Insert Shack Hartmann

- Degrees of freedom for each elements
 - Translation along optical axis
 - Height
 - Tip/Tilt

- Objectives
 - Minimize wave-front error on Shack Hartmann
 - Minimize spot size on imaging detector

Camera on Breadboard

- Validation with measured spot on imaging detector (compare to optical modelling)
 - Expected spot size (80% EE): 95 μm
 - Measured spot size (80% EE): ~ 110 μ m

 When Shack-Hartmann implemented: measured and simulated wave-front error must be compared

Other segments integration

- Only 2 segments can be tested in the same time (due to flat mirror size)
- Procedure
 - Mount segment on mirror box
 - Mount mirror box on interface plate
 - Set piston/tip/tilt using the imaging detector measurement (blind search, centering and focusing algorithms)
 - Set shape of deformable mirror using the Shack-Hartmann measurement (shape control algorithm)
- Validation: measurement vs breadboard optical modelling
 - Spot measured on imaging detector and wave-front error on Shack-Hartmann
 - Will validate both optical alignment and control functioning

Rigid Body Motion control

- Test of the blind search and centering algorithms on the breadboard
- Use of off-the-shelf hardware for communications between elements
- Current breadboard configuration for RBM control loop:

Rigid Body Motion control

• Hardware will gradually be switched to a flight-like configuration:

RBM control loop - results

- Test performed with one spherical segment on the aligned breadboard
- Introduce an error: manually piston, tip and tilt the segment
- Run the algorithms

 spot come back
 at the same position
 with same optical
 performance
- Focusing algorithm still to be implemented

Conclusion

- Breadboard assembled and validated
 - Integration and test plans developed
 - Alignment procedure validated with a rigid spherical mirror
 - Algorithm for Rigid Body Motion control validated with the current hardware and a single segment
 - To be modified: source wavelength (to 540 nm) and spherical mirror (to offaxis parabola)
- Next steps
 - Integrate a second segment and validate control algorithms
 - Integrate Shack-Hartmann in camera to validate alignment
- Breadboard is now functional and characterized. It will gradually be modified to a flight-like version of the telescope

Review Outline

- 1. Mission Overview (15 mins)
 - Telescope overview
- Spacecraft Design (150 mins)
 < Coffee Break>
- 3. Telescope Design (150 mins)
 - a) Telescope Concept of Operation (Melanie)
 - b) Camera (Manan)
 - c) Mirrors (John)
 - d) Electronics (Yamuna)
 - e) Boom (Lee)
 - f) Telescope System Modelling (Lee / Marie)
 - g) Telescope Breadboard/Test (Marie)
- 4. Summary & wrap up (15 mins)

Please send comments to Dr. Greg Davis (Gregory.L.Davis@jpl.nasa.gov)

Plans for Next Year

John Baker

Plan for next year

- Operate prototype deformable mirrors over a range of temperatures
- Complete the camera optical testing
- Operate and test the telescope optical breadboard
- Complete camera electronics design
- Prototype the camera electronics and mirror controller and integrate
- Run optical testbed with prototype electronics
- Boom testing and flange mount prototype testing
- Will be refined with the AE105 class instructors (Davis, Freeman, Scharf)

