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Opinion
Many models of judgment and decision-making posit
distinct cognitive and emotional contributions to
decision-making under uncertainty. Cognitive processes
typically involve exact computations according to a cost-
benefit calculus, whereas emotional processes typically
involve approximate, heuristic processes that deliver
rapid evaluations without mental effort. However, it
remains largely unknown what specific parameters of
uncertain decision the brain encodes, the extent to
which these parameters correspond to various
decision-making frameworks, and their correspondence
to emotional and rational processes. Here, I review
research suggesting that emotional processes encode
in a precise quantitative manner the basic parameters of
financial decision theory, indicating a reorientation of
emotional and cognitive contributions to risky choice.

Introduction
Most of the decisions we make everyday involve uncer-
tainty. Out at dinner, for example, a new menu item can
sound tempting, but might be disappointing. An alternate
route around a traffic jammight save time, butmightmake
you even more late. A hot stock tip might strike it rich, but
you might lose your entire investment. What processes
underlie these decisions? A long tradition of research in
judgment and decision making (JDM), stemming from
choice or preference theory in microeconomics [1] and
decision theory in philosophy [2], suppose that uncertain
decisions are based on cognitive processes typically
regarded as involving means-end reasoning, logical infer-
ence, mental effort and exact computation according to a
cost-benefit calculus (Box 1). In the 1990s, however, JDM
models increasingly incorporated emotional processes [3–

5], influenced by a reconsideration of emotion in neuro-
science [6]. As these models developed, a prevalent empha-
sis of emotional contributions to JDMwas as approximate,
heuristic processes that deliver rapid evaluations without
mental effort [3,5,7–10]. In addition, JDM researchers
increasingly accounted for conflict in decision making as
the divergence between cognitive and emotional evalu-
ations [3,8], and pathological decision making as the result
of affect heuristics [3,5] (Box 2).

Despite the popularity and commonsense appeal of dis-
tinguishing between cognitive and emotional contributions
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to JDM, many fundamental issues remain unresolved.
Theories can be characterized in terms of the representa-
tions and the computations over those representations they
posit, and it remains unclear in what ways cognitive and
emotional contributions to JDM differ along these dimen-
sions. That is, at the level of representation, what specific
parametersofuncertaindecisioncontextsareencodedbythe
brain, to what extent do such representations correspond to
theparametersof variousdecision-making frameworks, and
towhatextentdoputativelydistinctcognitiveandemotional
contributions to JDM correspond to distinct underlying
representations of uncertain decision contexts? Addressing
these issues poses several challenges, not least that compet-
ing theories are not behaviorally distinguishable. This
suggests that adjudicating among different theories
requires neural studies that use quantitative and para-
metric frameworks with suitable resolution to distinguish
among the main parameters of these various models and
disassociating the representation of their basic parameters
from other potential components of uncertain choice, in-
cluding learning, motivation and salience (see Ref. [11] for
discussion). Based on recent work using such experimental
designs, I suggest that putative distinctions between cogni-
tive and emotional contributions to JDM at the level of
representation collapse. In particular, I focus on emerging
evidence suggesting that emotional contributions to JDMdo
not encode approximate, heuristic evaluations. Rather, it
suggests that emotional processes encode the precise,math-
ematically defined parameters of traditionally cognitive
accounts of decision-making from economics and related
fields, such asfinance.Onamoregeneral note, suchfindings
indicate thatonce-consideredbasicdistinctions, suchas that
between cognition and emotion, do notmap seamlessly onto
brain functioning. That is, just as studies of the deep inter-
connectivity among emotional and cognitive structures
suggests that assigning cognitive or emotional specializ-
ation to structures is deeply problematic [12], proposed
functional distinctions, such as complexity differences be-
tween emotional and cognitive representations and compu-
tations, are likewise problematic.

The minimal parameters of decision-making under
uncertainty
To begin, it is necessary to identify the underlying repres-
entational schemes, or minimal parameters, that various
2.003 Available online 8 April 2009 209
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Box 1. Cognitive models of decision-making under uncertainty

Cognitive models of JDM assume individuals integrate information

regarding the value and likelihood of possible outcomes on the basis

of some expectation-based calculus. The standard formulation of

such an expectation-based calculus is expected utility theory (EUT),

whereby the value of uncertain choice (or prospect) is determined by

the sum of the value of individual outcomes, u(x), weighted by their

objective probability, p(x), giving
P

xpðxÞuðxÞ (Figure Ia). Prospect

theory (PT) was developed as a more psychologically realistic

alternative to expected utility, and particularly to capture subtleties

regarding sensitivity to risk, such as loss aversion, resulting in an S-

shaped value function that passes through a reference point rather

than the concave utility function of EUT (Figure Ib). According to PT,

the value of a prospect is given by
P

xpðpðxÞÞvðx� rÞ, where the value

of individual outcomes, v, depend on a reference point and are

weighted by a non-linear function of the probabilities [13]. Neither

EUT nor PT explicitly compute risk. Rather, it is implicitly captured by

the utility’s transformation of reward, resulting in a concave utility

function (EUT) or an S-shaped value function (PT). Hence, EUT and

PT posit a single-dimensional index for the valuation of prospects.

An alternative approach stems from FDT [16], which has been

applied widely in behavioral ecology settings [15] (Figure Ic). In this

approach, a risky choice is decomposed into its various statistical

dimensions, which are then used to evaluate the choice by

contrasting its scores along those dimensions or statistical mo-

ments. Among the various statistical moments that could be used,

there is considerable behavioral evidence that human decision-

making is sensitive to primarily the first two moments, expectation

(expected value) and reward variance (risk), although in some

contexts sensitivity to higher moment, such as skewness and

kurtosis, is also possible [49].

Figure I. Cognitivist depiction of decision-making under uncertainty. According to cognitivist models, a decision context is decomposed into anticipated outcomes for

which utilities and probabilities can be assigned. These are then subject to some expectation-based calculus: (a) a typical expect utility function, (b) a typical value

function from prospect theory, (c) the first two statistical moments as in FDT (in this case taken from the gambling task discussed in main text). Note that cognitive

evaluations might result in emotions, but that such emotions do not enter into the computation of the decision.
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JDM theories posit. Theories of decision-making under
uncertainty rest on two fundamental representations of
a decision context. Informally, a decision maker must
represent both an estimate of the predicted value of a
prospect (expected value) and how far away from the actual
value that estimate might be (risk). This latter representa-
tion is essential to capture a pervasive feature of decision-
making under uncertainty, namely, sensitivity to risk in
the form of both risk aversion and risk seeking. We often
trade off predicted value for less risk, such as when we put
savings into a fixed interest account rather than the stock
market, or order an unexciting but predictable menu item
over one that might be either superb or horrible. Alterna-
tively, we might seek risk, particularly in the face of losses
[13]. Sensitivity to risk is observed in a wide range of
animal behavior from non-human primates to fish, birds
and bumblebees [14,15], indicating the importance of
representing both expectations of reward and risk for all
organisms that must confront uncertainty.

Cognitive theories of JDM formalize these two repres-
entations of expected value and risk and posit that these
are encoded either as a single-dimensional index according
to a utility (expected utility theory [EUT]) or value (pro-
spect theory [PT]) function, or are encoded separately as
posited by financial decision theory (FDT) [16] in terms of
some of an uncertain context’s statistical moments, which
could be subsequently integrated to guide choice (Box 1).
Where do theories of emotional contributions to JDM stand
210
in relation to these views? For emotional contributions to
JDM to be distinct from cognitive ones, the answermust lie
at least at the level of representation in terms of some
distinct encoding. Indeed, at the level of representation,
theories of emotional contributions to JDM typically sup-
pose that emotional processes instantiate some sort of
heuristic encoding of reward and risk, in the sense of
heuristic as an approximate process (Box 2), typically
supposing that positive affective responses represent an
approximate evaluation of reward whereas negative affec-
tive responses represent an approximate evaluation of
risk. For the sake of comparison, cognitive representations
in terms of utility functions are continuous, whereas an
affect heuristic encodes an uncertain context via a small
subset of discontinuous representations. The driving con-
sideration is that such a small subset of discontinuous
representations, although approximate, simplifies compu-
tation and so can be computed rapidly and without mental
effort.

The question of what representations of risky choices
are used in human decision-making cannot be adjudicated
at the level of behavior alone. This is because the expected
utility function of EUT and the value function of PT can
both be approximated by FDT as the weighted sum of
expected value and variance, resulting in behavioral equiv-
alence despite divergent underlying representations. How-
ever, these models make highly constrained predictions
regarding the specific functional form brain activity would



Box 2. Emotional contributions to JDM

Although emotional reactions to risky contexts are widely acknowl-

edged, a central controversy in JDM concerns whether emotional

reactions are the result of cognitive evaluations, or whether

emotional reactions can guide choice independent of cognitive

evaluation. In favor of the former, cognitive appraisal theories

propose that emotional evaluations are post-cognitive evaluations

[50] (red arrows in Figure I). Based on behavioral evidence, early

alternative views proposed that emotional processes constitute an

evaluative system that can be more rapid than cognitive ones and

can lead to choice independent of cognition [51] (black arrows in

Figure I). This led to more fully developed JDM models, according to

which, emotional reactions constitute an ‘affect heuristic’ which, like

other heuristics, reflect a speed–accuracy tradeoff whereby beha-

vioral options are evaluated only with sufficient resolution to bias

behavior in a typically adaptive manner. At the level of representa-

tion, then, cognitive and emotional processes differ in terms of

encoding risky contexts either in terms of cost-benefit parameters

(Box 1) or reduced-complexity, heuristic approximations that are

more rapid and automatic in requiring minimal (or no) cognitive

load. As a heuristic, emotional processing might also be the source

of pathologies of decision-making, in that heuristics by definition

introduce misrepresentations of uncertain contexts, which in some

cases could be maladaptive (note, however, that cognitive heuristics

could, likewise, lead to suboptimal choice).

Although JDM views were originally influenced by behavioral

evidence, the rise of affect-based JDM models in the 1990 s was

strongly influenced by neurobiological evidence. Among these, the

somatic marker hypothesis of Damasio and colleagues [30,52–55]

has been extremely influential in reviving interest in the role of

emotion in decision-making under uncertainty [30,42,52–55]. Based

on clinical studies of patients with ventromedial prefrontal cortex

damage, Damasio and colleagues [30,52–55] proposed that their

deficits in decision-making were due to their inability to generate

emotions, or somatic markers, which encode an appraisal of a

situation or choice outcome. A central feature of this view is that

somatic markers, like affect heuristics in JDM, involve representa-

tions that are distinct from cognitive cost-benefit analyses [30,42].

Figure I. Models of emotional contributions to uncertain decisions. Red arrows

indicate cognitivist models of emotion, in which uncertain contexts trigger

cognitive evaluations, which could either directly guide choice or could lead to

post-cognitive emotional evaluations that subsequently guide choice. Black

arrows indicate heuristic models of emotion, in which rapid emotional

evaluations can directly guide choice. Note that on this model post-hoc

cognitive evaluations could be generated, which could act as a rationalization

of a choice that was in fact guided by emotion. The green arrow represents

possible bidirectional influences between cognitive and emotional evaluations.

Where these are weak, the result is a dual-process model of choice. Timeline

indicates rough temporal relations proposed among these processes.
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display to implement their underlying representations and
computations of uncertain decision contexts. To what
extent, then, is there evidence that the brain encodes these
various proposed dimensions of risky decision contexts: the
utility function of EUT, the value function of PT or a
decomposition of value in terms of expected reward and
of reward variance (risk) as in FDT? Furthermore, can such
candidate cognitive representations of uncertain contexts
be distinguished from affective, heuristic ones correspond-
ing to emotional contributions to decision-making?

Evidence for neural correlates of JDM parameters
Numerous physiological studies have investigated brain
responses to uncertainty in non-human primates and func-
tional imaging in human brain responses to uncertainty
(reviewed in Refs. [17,18]). To date, however, their empha-
sis has been on reward-related learning or choice rather
than on the more basic question of underlying representa-
tions independent of learning, motivation and salience (see
Ref. [18] for discussion). Among those examining this latter
issue, there is some evidence for a single-dimensional PT-
like signal [19]. Here, I focus primarily on whether there is
evidence for underlying representations of expected
reward and risk, however, in part because it is plausible
that the issue of single- versus multi-dimensional value
indices will be resolved by regarding EUT- or PT-like
signals as integrations of these underlying component
representations [20].

Suggestive evidence that the activity of dopamine
neurons encodes expected value and risk stem from an
important physiological study of non-human primate
reinforcement learning [21]. This study reported that pha-
sic responses in dopamine neurons in the ventral tegmen-
tal area varied monotonically with reward probability for a
given level of reward across four levels of probability (0,
0.25, 0.5, 0.75, 1). In addition, this study reported sus-
tained activity in this population of cells that related to
uncertainty, in that it was maximal when uncertainty was
highest (0.5). Although this provides suggestive evidence
for expected reward and risk encoding in midbrain dopa-
mine neurons, the limited range of probabilities used in the
study did not allow for the specific functional form of
reward-related encoding beyond monotonicity. Similarly,
several uncertainty measures other than variance, such as
entropy, are maximal at 0.5. To establish whether this
candidate signal encodes expected reward, then, it is
necessary to establish that such a signal varies linearly
with probability. Likewise, to establish an encoding of risk
as variance for this task, it is necessary to establish that
such a signal varies quadratically with probability.

Recent human functional imaging studies have found
evidence that the parameters of FDT are encoded by the
brain in risky decision contexts independent of the influ-
ence of learning, motivation and salience [11,22]. To do so,
this used a simple gambling task involving a deck of ten
cards from which two cards were drawn on every (inde-
pendent) trial with the bet being whether the second card
would be higher or lower than the first (Figure 1). By
varying expected reward and risk orthogonally and across
the full range of probabilities, the study found immediate
bilateral activation in ventral striatum that varied linearly
with probability (expected reward), whereas a delayed
activation in bilateral midbrain and ventral striatum var-
ied quadratically with probability (risk as variance)
(Figure 2). It is striking that both non-human primate
211



Figure 1. A simple gambling task to test how uncertain contexts are encoded by the brain. (a) On each trial, two cards were drawn (without replacement within each trial)

from a deck of ten, numbered 1 to 10. Before seeing either card, subjects first placed a $1 bet on one of two options, ‘second card higher’ or ‘second card lower’ (than first

card shown). Subjects could earn $1 if they guessed the right card and lost $1 if they were wrong. (b) Expected reward and risk as a function of the probability of reward.

Expected reward, measured as mathematical expectation of reward, increases linearly in the probability of reward p (dashed line). Expected reward is minimal at p = 0 and

maximal at p = 1. Risk, measured as reward variance, is an inversely quadratic function of probability that is minimal at p = 0 and p = 1 and maximal at p = 0.5 (solid line). As

such, expected reward and risk are orthogonal over the full range of probabilities, p in [0,1]. Reproduced, with permission, from Ref. [11].

Opinion Trends in Cognitive Sciences Vol.13 No.5
physiology and human functionalmagnetic resonance ima-
ging (fMRI) studies converge on evidence for temporally
and spatially distinct encodings of expected reward and
risk in dopaminergic midbrain areas. Although dopamin-
ergic midbrain areas have been implicated in many forms
of reward-related learning [23], these results suggest a
primary role of these structures in encoding the
parameters of uncertain choice contexts independent of
such learning [11]. This study and a related one found that
Figure 2. Neural correlates of reward and risk. (a) Immediate neural correlates of expe

probabilities. In left and right ventral striatum (vst), neural responses increase with incre

correlates of risk. Mean activations (parameter estimates b with standard error) for ten

medium probabilities and decrease towards low and high probabilities. Dashed lines i
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the insula also encodes risk as variance and found evidence
for a novel risk-prediction-error-signal in insula that is
roughly analogous to the error signal for reward found in
midbrain dopamine areas [22]. The quantification of a
reward-prediction-error-signal and its computational role
in reinforcement learning dramatically enriched the un-
derstanding of midbrain dopamine areas [23]. Less well-
known, however, is the analogous need to update predic-
tions of risk and to use risk prediction error to modulate
cted reward. Mean activations (parameter estimates b with standard error) for ten

asing probability of win. Dashed line indicates the best linear fit. (b) Delayed neural

probabilities. Neural responses in left and right ventral striatum increase towards

ndicate best quadratic fit. Reproduced, with permission, from Ref. [11].



Box 3. Outstanding questions

� Why are there multiple representations of risk and reward across

the brain, and in what ways do these relate to distinct mechan-

isms underlying action selection?

� If implicit, emotional representations accurately track the para-

meters of uncertain contexts, what intervening processes result in

sub-optimal decisions?

� What are the neural correlates of individual differences in risk and

reward sensitivity, and does the development of these structures

correspond to differences in risk taking across psychological

development?
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reward learning [24]. The discovery of such a signal in
insula indicates that its underlying representations encode
precise quantitative information about risk and risk pre-
diction errors, corresponding in striking fashion to the
parameters of FDT, where such risk updating has a central
role.

Reevaluating affective heuristic processing?
These results suggest several potential challenges for the
affect heuristics view of emotional contributions to uncer-
tain decisions, including neurobiological versions in terms
of somatic markers (Box 3). On the one hand, reward and
risk seem to be encoded in many of the brain areas that
have been closely identified with emotional processing,
including midbrain dopamine areas and insula. Midbrain
dopamine areas are centrally implicated in both positive
and negative emotion [25], motivated behavior [26], dimen-
sions of personality related to emotionality [27], affective
disorders [28] and figures prominently in theories of core
affect [29]. The insula has also been centrally implicated in
emotion [30], uncertainty [31–33] and risk aversion [34,35].
Given its bidirectional connections with numerous struc-
tures implicated in reward and decision-making, including
orbitofrontal cortex, amygdala, anterior cingulate and
nucleus accumbens [36], the insula is well-positioned to
integrate affective value with adaptive behavior. Further-
more, just as emotional processes are often identified with
implicit, or System 1, processes in dual-processing
accounts [37,38], risk and reward processing in these
structures is fast, automatic and implicit, in contrast to
the characterization of cognitive processes, such as mem-
ory, attention and problem solving, which are typically
regarded to be mediated primarily by cortical structures,
involve controlled processes and are sequential and rule-
based [12,37]. On the other hand, the specific mathemat-
ical form of the encoding of reward and risk in these
structures is strikingly in accordance with the parameters
of FDT, a paradigmatic cost-benefit and cognitive compu-
tation. This is suggestive evidence that the most likely
candidate structures for encoding a heuristic, approximate
representation of uncertain contexts (the insula, in
particular, has a central role in the somatic marker hy-
pothesis) do not, in fact, encode such approximate repres-
entations. Hence, these results suggest there need be no
deep speed–accuracy tradeoff in terms of encoding the
basic parameters of uncertain contexts. In this regard, it
is worth noting that this supposed tradeoff was developed
largely on the basis of non-quantitative treatments of
emotional processing, differences in reaction time between
emotional and cognitively mediated processes, and other
indirect evidence. However, research in other areas of
implicit decision-making, such as sensory integration, in
which the brain must decide whether to integrate or seg-
regate sensory information from different modalities such
as audition and vision, suggests that fast decision-making
need not be approximate in the above sense. Indeed, recent
work has shown such integration to be statistically optimal
from the perspective of Bayesian causal inference [39].
Therefore, the decisions the brain makes regarding sen-
sory integration are essentially the best ones that could be
made, given the sensory information. Although Bayesian
causal inference has been typically regarded as limited to
conscious, high-level cognition, it is performed continually
and effortlessly in perception.

Given the central adaptive problems of both sensory cue
integration and uncertain decision contexts, it is not
altogether surprising that the brain has developed efficient
and computationally complex solutions that are both fast
and accurate. The most parsimonious way to reconcile
these results could be simply to view emotional processes
as the brain’s way of encoding the parameters of expec-
tation-based calculi, such as those of FDT and to recognize
that there need be no deep tradeoff between speed and
accuracy in terms of reward and risk perception. A possible
rejoinder to this is to suggest that in the absence of well-
defined estimates of such parameters, as in situations of
ambiguity, it is necessary to generate such crude or
approximate representations. Yet, such situations seem
to be precisely when accurate representations of uncer-
tainty are most needed to guide learning in light of new
information, and the accuracy of such representations
conditional on the available information remains an open
issue. The possibility that insula might underlie such
computations in the form of risk-prediction-error-signals
[22] suggests that the computations underlying risk and
reward learningmight be substantially more complex than
current understanding of these structures indicates.

The finding that emotional systems encode and compute
the basic parameters of FDT also raises some questions for
somatic-based theories of emotions. According to the view
sketched here, the crucial feature of emotional processing
for risky choice is their underlying representation of
expected reward and risk. This is concordant with theories
that characterize emotions in terms of value-stimulus
associations, whereby emotions are states elicited by rein-
forcers [40,41]. Indeed, it extends these associations to
additional parameters of value-stimulus associations, such
as risk. Whereas somatic theories ground emotions in
representations of an organism’s homeostatic state,
according to these latter accounts, value-stimuli associ-
ations might relate to peripheral states, but the peripheral
states themselves, or their central representation, do not
participate in the computation of a decision. From this
perspective, it is not clear what additional role somatic
states would confer because the parameters of risky choice
would already be represented and computed according to
expected reward–risk tradeoffs. It is possible that somatic
states are correlates of representations of expected reward
and risk, but from this perspective it remains an
open question what causal role such states would have
213
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in resolving risky choice. Whether or not the representa-
tion of uncertain contexts involves an embodiment in
somatic states or their central representation, the findings
considered here challenge the notion that somatic markers
act as an alternative encoding to the parameters of
traditional cognitive JDM theories [30,42].

Conclusions
The investigation of the neural basis of uncertain choice
has progressed rapidly in the last few years, progressing
from investigating neural responses to basic contrasts such
as certainty versus uncertainty, to quantitative parametric
frameworks capable of testing the extent to which brain
activation reflects the parameters of formal JDM models.
Perhaps the most surprising finding to date is that core
emotional structures, including the midbrain dopamine
system and insula, decompose uncertain choice contexts
along the statistical dimensions that are the cornerstone of
FDT. Previous accounts of emotion as value-stimulus
associations tended to focus on orbitofrontal cortex as
the primary structure involved in representing reward
expectation and viewed midbrain dopamine areas as
involved in reward-related learning rather than in the
representation of reward expectation per se [40]. However,
recent findings suggest that the encoding of value in mid-
brain dopamine areas might underlie an early implicit
encoding that is signaled to orbitofrontal cortex, where it
guides choice. [43] Indeed, an important issue for future
research is to work out the relationship between multiple
representations of value across the brain. Although there is
evidence that cortical areas mediating high-level cognitive
processes, such as lateral prefrontal cortex in the case of
ambiguity and posterior parietal cortex in the case of risk
[44], are also recruited by complex decision problems, it is
intriguing that at the level of perception the basic
parameters of FDT (and plausibly the component repres-
entations of EUT or PT-like value functions [20]) are
encoded in the brain’s central emotional systems. Another
important area of future research is to better understand
the subjective nature of valuation, in the sense that value
is not merely transduced from the environment, but
depends on subjective states and needs. Recent work link-
ing the insula, emotion and craving is particularly intri-
guing in this regard [45].

Finally, to end on an historical note, although the find-
ing that emotional processes might implement the
parameters of formal choice theory is surprising from
current characterizations of cognition and emotion, it is
not without historical precedent. Indeed, the deep division
between emotional and cognitivist models of uncertain
choice is puzzling given the historical foundations of uti-
lity. As Fishburn [46] notes, the notion of utility changed
radically as economics turned away from psychological to
axiomatic foundations in the early twentieth century,
where the goal increasingly was to use the minimal con-
ception of utility that generates sufficient structure on
preference relations [1] independent of psychological con-
siderations. As late as 1918, however, the economist Irving
Fisher was still able to debate whether ‘utility’ should be
replaced with a more transparent notion of human want,
tracing the notion from Benthem’s reduction of utility to
214
pleasure and pain to consider such affective terms as
‘desirability’ or ‘wantabillity’ [47]. In 1883, the French
economist, Charles Gide, put it more colorfully, noting that
‘as a shadow follows a butterfly from one flower to another,
so utility accompanies desire, and abides only where desire
rests’ [48]. From this perspective, it is not altogether
surprising that investigations of the neural basis of uncer-
tain choice are finding fundamental connections among
value, motivation and emotion. What might be more sur-
prising, however, is the degree of correspondence between
these connections and the quantitative parameters of for-
mal models of decision-making under uncertainty.
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