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Abstract

Market researchers often conduct surveys asking respondents to estimate
their future demand for new products. However, projected demand may exhibit
systematic bias. For example, the more respondents like a product, the more
they may exaggerate their demand. We found evidence of such exaggeration in
a recent survey of demand for a potential new video product. In this paper, we
develop a computationally tractable procedure that corrects for a general form
of systematic bias in demand projections. This general form is characterized by
a monotonic transformation of projected demand, and covers exaggeration bias
as a special case.
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1. Introduction

Many popular econometric models have the form

Λ(Y ) = X ′β0 + u (1)

where Y is a response variable, X is a vector of predictor variables, β0 is a vector
of unknown parameters, u is an error term, and Λ is a monotonic transforma-
tion. The Box-Cox model (Box and Cox, 1964) is a famous example, where
Λ is known up to a single real-valued parameter and u is normally distributed
with mean zero and unknown variance. All unknown parameters are estimated
using maximum likelihood. Horowitz (1992) presents a kernel-based method
for estimating both Λ and the distribution function of u without making any
parametric assumptions about their functional forms. His estimators are

√
n-

consistent, converge to Gaussian processes, and can be used to estimate the
quantiles of Y given X.

In this paper, we consider the following model:

Λ(Y ) = (X ′β0 + u){X ′β0 + u > c} (2)

where the constant c is known to equal either 0 or −∞. This model allows a
monotonic function of Y to equal a censored regression when c = 0, and reduces
to (1) when c = −∞. We will argue that (2) with c = 0 is a useful model for
new product demand based on survey data. In this context, Y denotes reported
demand and Λ(Y ) denotes actual future demand. The inverse function, Λ−1,
may be interpreted as a reporting function mapping actual demand into reported
demand, Y . We develop a procedure for estimating β0, the variance of u, and
Λ without making any parametric assumptions about the functional form of Λ.
However, we assume that the distribution of u is known up to scale. We obtain√
n-consistent estimates of the model parameters and show that the estimate of

Λ converges to a Gaussian process at a
√
n rate. These estimates can be used

to produce reliable estimates of new product demand.
While our procedure places heavier demands on u than the kernel-based

method of Horowitz, it places lighter demands on Λ, and the latter fact is
crucial for the application we consider. The kernel estimators are based on a
representation of Λ that holds only if each distribution function of Y (given
X ′β0) is differentiable (Horowitz, p. 5). Further, each distribution function
must have at least 3 derivatives for the estimator of Λ to control asymptotic
bias and so achieve

√
n-consistency (Horowitz, pp. 10–11). This is needed even

if the distribution of u is known. In our application, the response variable only
takes on nonnegative integer values. Consequently, each conditional distribution
function of Y is a step function and so not even continuous. Our procedure
covers applications like this without sacrificing

√
n-consistency. We also note

that the kernel-based estimator only applies when c = −∞ (Horowitz, p. 21).
For our application, we need a procedure that covers the case c = 0. The
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procedure we develop covers this case and generalizes immediately to cover the
case c = −∞. Finally, we note that kernel-based methods are much more
computationally intensive than the procedure proposed here.

In order to motivate the use of model (2), we consider a recent survey of
demand for a potential new video product. Respondents are asked to estimate
the average number of times per month they would use the product if it were
offered, and there is a charge for each use. They report nonnegative integer
values. Figure 1 gives a histogram of the responses. Because of the proprietary
nature of the data, reported quantities have been masked by dividing them by
their median value.

From this figure, one would suspect that individuals reporting high levels of
demand are exaggerating.1 For example, 7% of those surveyed reported a level
of demand more than three times the median level. Moving out in the tail of this
distribution, there are people who report a level of demand exceeding median
demand by factors of 6, 10, 13, and even 20. Given the nature of this particular
new product, such levels of demand are highly suspect. Though it is not possible
to discern from the masked data, median and lower levels of demand agree with
what one might expect for the type of product being surveyed. We also note
that nearly 20% of the respondents reported zero demand for the product.

Write Y for projected demand and Q for actual future demand (quantity).
From the description of the data just given, it seems reasonable to assume
that there exists a function Λ defined on [0,∞) and satisfying the following
conditions:

(1) Λ(Y ) = Q where Λ is strictly increasing.

(2) Λ(0) = 0 and Λ(s) = s for some known, positive number s.

Assumption (1) requires that large projected demands correspond to large
actual demands, but imposes no further structure on Λ. By freeing Λ from
parametric restrictions like those imposed by the Box-Cox formulation, we allow
for different reporting regimes:

Λ(Y ) ≡

 Y < Λ1(Y ) , Y ∈ A1 : Underreporting
Y = Λ2(Y ) , Y ∈ A2 : Accurate Reporting
Y > Λ3(Y ) , Y ∈ A3 : Overreporting

The regime regions Ai must partition the real line, but need not be known or
contiguous. In addition, Λ need not be continuous, even at transition points
from one regime to another. This type of freedom in modeling Λ is desirable in

1Exaggeration is common in surveys on demand for new products. This phenomenon
may be due to new product enthusiasm, an attempt to influence the decision to market the
product, a desire to please the interviewer, or the tendency for people to be less sensitive to
total costs in a survey than they would be if they were making actual purchases. There may
be other plausible explanations. For whatever reason or combination of reasons, the tendency
to exaggerate is an acknowledged problem in surveys of this type.
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the context of our data: we are skeptical about the magnitude of high reported
quantities but are reluctant to impose the form of the relationship between Y
and Λ(Y ), beyond requiring that the relationship be monotonic. Note, however,
that we do not assume that misreporting exists: Λ(Y ) = Y satisfies assumptions
(1) and (2) given above.

Without assumption (2), Λ can only be identified up to location and scale.
For full identification, we require that Λ be known a priori at two distinct
nonnegative points. Zero is a natural point to choose in the context of new
product demand: Λ(0) = 0 says that people who project zero demand will, in
fact, not use the product in the future. The assumption Λ(s) = s for s known
and positive is a key identifying condition. It says that there is a known, nonzero
“safety point” at which demand is accurately reported.

It is instructive to contrast the method of Horowitz with ours regarding as-
sumptions needed to identify Λ(Y ). Both methods require location and scale
assumptions to identify Λ(Y ). Horowitz (pp. 10–11) assumes that Λ(Y ) is known
at one point and that one of the slope parameters in model (1) is known up to
sign. For purposes of making inferences on Y , which is natural in the context
of actual market data, for both methods, location and scale assumptions serve
merely as convenient normalizations. Indeed, any location and scale normaliza-
tions would suffice. However, in the application we consider in this paper, we
are not directly interested in reported demand, Y , but rather in actual demand,
Λ(Y ). Assumption (2) is substantive in this context. Accordingly, we have
developed graphical and formal safety point tests in Sections 3 and 4.

We now further sketch out the import of assumptions (1) and (2). As men-
tioned above, nearly 20% of the respondents in the survey projected zero demand
for the product. It is quite common in surveys of this type to see a significant
fraction of respondents report zero demand. Using this fact in conjunction with
assumptions (1) and (2), we can correctly assign each reported quantity to one
of three regions as follows:

Region I : Y = 0 ⇐⇒ Q = 0
Region II : 0 < Y ≤ s ⇐⇒ 0 < Q ≤ s
Region III : Y > s ⇐⇒ Q > s

In Section 2, we show how to estimate the parameters of a demand model for
Q using only information on the region containing Y . The classification scheme
above shows that this region contains the corresponding Q value. We do not use
any other information about reported quantities, and consequently, provide an
estimation method that is insensitive to reporting bias of the form characterized
by assumptions (1) and (2).

The new product demand model we assume is the standard Tobit (To-
bin (1958)) model:

Q = (X ′β0 + u){X ′β0 + u > 0} . (3)
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The disturbance term u is assumed to be independent of X and normally dis-
tributed with mean zero and unknown positive variance σ2

0 .
The distributional assumption on u is important, because various estimated

quantities of interest will be inconsistent if it does not hold. In the concluding
section, we mention work on a semiparametric version of the procedure devel-
oped in the next section that makes no parametric assumptions on the error
term.

Other assumptions implicit in (3) can also be relaxed. For example, we can
permit quantities to depend nonlinearly on X. We can also replace Q in (3) with
a known, strictly increasing function, F (Q). However, in order to test whether
F is correctly specified, more information is needed to distinguish F from Λ.
For example, we could assume that F is the log transformation and that there
is a known interval of accurate reporting.

Proceeding with assumptions (1), (2), and (3), in the next section we provide
a method for estimating the parameters β0 and σ0. Using these parameter
estimates, we then show how to recover an estimate of Λ.

Our focus will be on recovering an estimate of Λ. There are two main reasons
for this. First, knowledge of this function should prove useful in survey design,
by defining the nature and extent of misreporting. This, in turn, may suggest
ways of designing future surveys to avert or at least minimize this problem.
Second, by applying an estimate of Λ to reported quantities, we can recover
estimates of actual demand. This can greatly facilitate making revenue forecasts
for the product being surveyed.

In Section 3, we report the results of several simulation experiments illus-
trating the performance of the estimation method. We also provide graphical
tests of the safety point assumption. Section 4 provides a formal statistical test
of this assumption. In Section 5, we apply the method to the video applica-
tion discussed at the beginning of this section. Section 6 collects results on the
asymptotic properties of the parameter estimates, the estimate of Λ, and the
safety point tests. In particular, we show that the parameter estimates and the
pointwise estimates of Λ are

√
n-consistent and asymptotically normally dis-

tributed, that the estimate of Λ converges uniformly on compact intervals at
rate n1/2−δ for any δ > 0, and that

√
n(Λ̂ − Λ) converges in distribution to a

mean-zero Gaussian process on compact intervals. Finally, Section 7 provides a
summary and directions for future research.

2. The Orbit Procedure

In this section we present the Orbit procedure, so-called because it borrows
features from an ordered choice model (Amemiya, 1985, Chapter 9) and the
Tobit model defined in (3).2 It is a 2-stage procedure in which we first estimate

2After completing this paper, we learned that Goldberger first used the name Orbit perhaps
as far back as 1964 to refer to a method, due to Orcutt, for estimating a Tobit model subject
to sample selection. See Kiefer (1989) for a reference.
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the parameters of the Tobit model, and then use these estimates to recover an
estimate of the function Λ at points of interest.

Let (Y1, X1), . . . , (Yn, Xn) denote a sample of n independent observations
from the model defined by assumptions (1) through (3) from the last section.
Write Zi for (Yi, Xi) and z ≡ (y, x) for an element of SZ , the support of Zi.
Write θ for (β, σ), θ0 for (β0, σ0), and Θ for a compact subset of IRk ⊗ IR+. For
each t > 0, z in SZ , λ > 0, and θ in Θ, define

ft(z, λ, θ) = {y = 0} log Φ
(
−x
′β

σ

)
+ {0 < y ≤ t} log

[
Φ
(
λ− x′β

σ

)
− Φ

(
−x
′β

σ

)]
+ {y > t} log

[
1− Φ

(
λ− x′β

σ

)]
where Φ denotes the cumulative distribution function of a standard normal
random variable. Write Pn for the empirical measure that places mass 1

n at
each Zi, and note that Pnfs(·, s, θ) defines a log-likelihood function for the
data. Define

θ̂(s) = argmax
Θ

Pnfs(·, s, θ) .

We call θ̂(s) an Orbit maximum likelihood estimator of θ0. Standard arguments
sketched out in Section 6 show that θ̂(s) is

√
n-consistent for θ0 and asymptot-

ically normally distributed.
For each t > 0, let Λt denote a compact subset of IR+ containing Λ(t). We

estimate Λ(t) with
Λ̂(t; s) = argmax

Λt

Pnft(·, λ, θ̂(s)) . (4)

Straightforward arguments show that Λ(t) maximizes IEft(·, λ, θ0), the function
to which Pnft(·, λ, θ̂(s)) converges uniformly. It then readily follows that Λ̂(t; s)
consistently estimates Λ(t). We call Λ̂(t; s) an Orbit estimator of Λ(t) and the
2-stage procedure which produces both θ̂(s) and Λ̂(t; s), the Orbit procedure.

Note that Λ̂(Yi; s) is a natural estimate of Qi, the actual demand of the ith
individual in the sample. Repeating this calculation for each of the reported
quantities yields estimates of actual quantities.

Remark 1. The Orbit procedure separates parameter estimation from es-
timating the function Λ. For this reason, the computational burden involved
in using (4) to recover estimates of actual demand is slight. Even if Λ̂(Y ; s) is
computed for each positive value of Y in the sample, each of these optimizations
is over a single variable, and so can be performed very quickly. For example,
using the MAXLIK routine in GAUSS on a 486DX2/66 PC, we did 500 such
optimizations well within an hour. Moreover, for some applications, even if the
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sample size is large, the number of distinct positive Y values in the sample may
be quite small. In this situation, the procedure is extremely fast. For example,
the sample size for the application considered in Section 5 is around 1000, but
because of rounding, the number of distinct positive Y values is around 20. We
produced the corresponding estimates of actual demand in less than a minute.

Remark 2. There are at least two other ways to estimate the function Λ.3

The first applies only when there are no explanatory variables in the model. It
is based on the observation that

Λ(t) = α0 + σ0 Φ−1(IP{Y ≤ t})

where α0 is the intercept in the model. An estimate of Λ(t) can be obtained by
substituting Orbit estimates for α0 and σ0, and substituting the corresponding
sample proportion for IP [Y ≤ t]. Since the sample proportion can be viewed
as a (nonparametric) maximum likelihood estimator of IP [Y ≤ t], it readily
follows that this estimator is equivalent to the Orbit estimator. However, since
no second-stage optimization is required, this alternative method is easier and
faster to implement than Orbit.

The second method applies when explanatory variables are in the model and
involves simultaneously estimating Λ at all the points of interest, say, t1, . . . , tk,
rather than one at a time. The underlying model is:

Z = j if tj−1 < Y ≤ tj j = 0, 1, . . . , k + 1

where t−1 = −∞, t0 = 0, and tk+1 =∞ and

IP [Z = j] = Φ
(

Λ(tj)−X ′β0

σ0

)
− Φ

(
Λ(tj−1)−X ′β0

σ0

)
.

After substituting Orbit estimates for β0 and σ0, estimates of the Λ(tj) are ob-
tained through the usual maximum likelihood procedure for ordered qualitative
response models.

Like the first alternative, this method is equivalent to the Orbit procedure
when only an intercept is fit. When explanatory variables are in the model,
this second method is different from Orbit. While we have yet to determine
the relative efficiencies of this second method and Orbit,4 there is evidence that
the Orbit procedure provides a significant computational edge, especially when
the number of tj values is large. In one simulation, Orbit estimated 15 Λ(tj)
values in about 30 seconds using the GAUSS MAXLIK routine running on a
486DX2/66 machine. Using the Orbit estimates as starting values, the second
method required over 45 minutes to converge, even though the final estimates
were close to the Orbit estimates.

3We are grateful to two referees for suggesting these alternative methods.
4The most efficient procedure would involve simultaneously estimating β0, σ0, and Λ at

points of interest. Such a method, however, would be computationally burdensome.
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When the Λ(t)’s are estimated sequentially rather than simultaneously, the
natural starting value for estimating Λ(t(k)) is the estimate of Λ(t(k−1)), where
t(k) is the kth largest of the tj ’s. When Λ(t(k)) and Λ(t(k−1)) are close, the kth
maximization in the second stage of Orbit is very fast.

Remark 3. Λ̂(s; s) is constrained to equal s. To see this, for t > 0, z ∈ SZ ,
µ > 0, and γ ∈ IRk, define

gt(z, µ, γ) = {y = 0} log Φ(−x′γ)
+ {0 < y ≤ t} log [Φ(µ− x′γ)− Φ(−x′γ)]
+ {y > t} log [1− Φ(µ− x′γ)] .

Note that gt(·, λ/σ, β/σ) = ft(·, λ, θ). Since Pnfs(·, s, θ) is maximized at θ̂(s),
Pngs(·, µ, β̂(s)/σ̂(s)) is maximized at µ = s/σ̂(s). Consequently, Pnfs(·, λ, θ̂(s))
is maximized at λ = s.

Remark 4. We show in Section 6 that if Λ(t) = t in a neighborhood of a safety
point s, then it is possible to replace s with any consistent estimator without
affecting the asymptotic distributions of the Orbit estimators. For example,
one may be willing to assume a priori that Λ(t) = t in a neighborhood of a
specified population quantile q of the marginal distribution of Y . The result
says that θ̂(q) and Λ̂(t; q) have the same respective asymptotic distributions as
θ̂(q̂) and Λ̂(t; q̂) where q̂ is the sample quantile corresponding to q. This result
is also useful when applying a test of the safety point assumption developed in
Section 4.

Remark 5. After applying the Orbit procedure, one may find accurate re-
porting over an entire range of Y values. A likelihood-based procedure that
exploits this extra information will yield a more efficient estimator of θ0, which,
in turn, will lead to a more efficient estimator of Λ(t) in the second stage of the
Orbit procedure. For example, after applying Orbit one may find that an inter-
val of the form [0, s′] is safe. In this case, one may then estimate a truncated
Tobit model to obtain a more efficient estimate of θ0. However, to minimize
assumptions on Λ, we chose not to assume a priori the existence of a safety
interval.

Remark 6. For positive t values less than the minimum positive Y value
in the sample, there are no observations for which 0 < Y ≤ t. Similarly, for
t values greater than or equal to the maximum Y value in the sample, there
are no observations for which Y > t. For such t values, the objective function
Pnft(·, λ, θ̂(s)) degenerates in the sense that it is maximized at ±∞. As a result,
it is not possible to produce corresponding Orbit estimates of Λ(t).

3. Simulation Results
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In this section, we discuss the results of several simulations exploring various
aspects of the estimator Λ̂ defined in (4). The designs were chosen to facilitate
comparison with results obtained for the application presented in Section 4.

For each of the simulations, the sample size is 1000 and

Q = (2 + 2X + 2u){2 + 2X + 2u > 0} (5)

where X and u are independent, each having a standard normal distribution.
Thus, β0 = (2, 2), σ0 = 2, and the distribution of Q is a mixture of a point mass
at zero and a N(2, 8) distribution truncated at zero. There are about 25% zeros
in a typical sample from this mixture distribution. Also, for each simulation, we
let the interval [0, 4] be an “accuracy region” – a region of accurate reporting.
The point 4 corresponds to about the 65th to 70th percentile of the positive Q
values. This setup corresponds roughly to what we observed in the application
in Section 4.

In the first simulation, we investigate the performance of the estimator when
there is linear exaggeration beyond the point 4. Write M for the function Λ−1.
We take

Y = M(Q) = Q{Q ≤ 4}+ (2Q− 4){Q > 4} . (6)

Results of this simulation appear in Figures 2 and 3. The plots in Figure 2
illustrate the performance of the estimator when the safety point, s, falls within
the accuracy region at the 50th percentile, or median, of the positive Y values.
The corresponding plots in Figure 3 illustrate performance when s falls outside
the accuracy region, at the 90th percentile of the positive Y values.

Turn to Figure 2. In the upper left-hand corner, three quantities are plotted
against the estimated quantities Q̂ = Λ̂(Y ; s) where Y comes from equation (6)
and the safety point s is approximately equal to 3: the points plot Y vs. Q̂,
giving an estimate of the function M ; the piecewise-linear dashed curve is a
plot of M(Q̂) vs. Q̂; the straight dashed line is the reference line Q̂ vs. Q̂. The
vertical line indicates the position of the safety point, s. Notice the close corre-
spondence between M(Q̂) and Y values, with only a slight increase in variation
associated with reported quantities in the extreme tails of the Y distribution.
In the upper right-hand corner we see the point plot of Q̂ vs. Q superimposed
over the dashed reference plot of Q vs. Q, where Q comes from equation (5).
We see that estimated quantities very accurately track actual quantities. In the
lower left-hand corner we show a plot of centered first differences of Y vs. Q̂.
This plot gives an estimate of the derivative of the function M in equation (6).
Notice that the estimated derivative at the safety point is very close to unity,
as it should be. Finally, for each t > 0, define

σ̂(t) ≡ σ̂(s)
Λ̂(t; s)

· t (7)

and note that σ̂(t) should be close to σ0 in a neighborhood of s if there is an
accuracy region about s. This is confirmed by the simulation: the plot of σ̂(Y )
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vs. Y in the lower right-hand corner of Figure 2 shows a region of relative
constancy about s, and this constant value is very close to σ0 = 2.

Figure 3 shows what can happen when the safety point lies outside the
accuracy region. The 4 plots have the same format as in Figure 2, and are
based on the same simulated data. The only difference is that the point s is
chosen to be the 90th percentile of the positive Y values - approximately equal
to 8. The plot in the upper right-hand corner shows that Q̂ overestimates Q
everywhere. We see the corresponding problem in the upper left-hand plot.
Notice, however, that the two diagnostic plots on the bottom of the page alert
us that something is wrong. In the lower left-hand plot the estimate of the
derivative at s is far from unity, suggesting that we select another s from a
region where the derivative estimates appear roughly constant. Similarly, the
lack of relative constancy about σ̂(s) in the lower right-hand plot suggests a
similar course of action.

We performed a second simulation following exactly the same pattern as the
first but with quadratic exaggeration beyond the point 4. Specifically, we took

Y = M(Q) = Q{Q ≤ 4}+ (Q2 − 12){Q > 4} . (8)

The diagnostic plots told the same story as their counterparts in Figures 2
and 3: M(Q̂) and Q̂ did a very good job of estimating Y and Q, respectively,
when s was chosen correctly. The plots clearly signaled a problem when s was
misspecified. In another simulation of the same model, we considered the case
of no exaggeration, namely,

Y = Q .

Once again, Q̂ accurately tracked Q, with minor deviations in the extreme
tails of the Y distribution. Because of the similarity of the results with linear
exaggeration, the plots associated with quadratic and no exaggeration are not
reproduced in this paper.

4. Safety Point Tests

Assumptions (1), (2), and (3) are sufficient to estimate β0, σ0, and Λ. How-
ever, since Λ̂(s; s) is constrained to equal s (Remark 3 in Section 2), it is im-
possible to test the assumption Λ(s) = s without more information. This is
a critical assumption, since the asymptotic bias incurred from estimating Λ(t)
with (4) can be shown to equal

Λ(t) [1− s/Λ(s)] .

This bias is zero when Λ(s) = s, but can be substantial if Λ(s) is not close to s.
In order to test Λ(s) = s we add the following condition to assumption (2):

Λ(t) = t on an interval containing s.
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Since the procedure used to estimate Λ̂(t; s) imposes no constraints on points
near s, departures from the above condition can be easily diagnosed, both graph-
ically, as in the last section, and with a formal statistical test. We present a
formal test in this section.

Recall the definition of σ̂(t) given in (7). For each t > 0 define σ(t) = σ0· t
Λ(t) .

Let a and b be positive real numbers with a < b. We say that the interval [a, b]
is a safety interval if the following conditions hold:

(A) Λ(t) = t on [a, b].

(B) Λ′(t) = 1 on (a, b).

(C) σ(t) = σ0 on [a, b].

Of course, condition (A) implies (B) and is equivalent to (C). Still, because of
the constraint on Λ̂(s; s), it is useful to separate these conditions.

We start by assuming that the point s and a set of neighboring points all lie in
a safety interval. We then develop a χ2 test of an implication of this assumption.
For ease of exposition, we construct a statistic that tests an implication of
condition (C). Simple functions of this statistic can be used to test corresponding
implications of conditions (A) and (B).

Let S ≡ (s1, . . . , sk)′ be a vector of positive real numbers hypothesized to
be in a safety interval containing s. We exclude s from S. We wish to test the
following hypothesis:

H0 : σ(s) = σ(s1) = · · · = σ(sk) .

Note that H0 is implied by condition (C) with [a, b] containing s and all the si’s.
However, H0 is not equivalent to (C) since H0 can hold without (C) holding.
However, if H0 does not hold, then (C) is violated.

Write σ̂(S) = (1/σ̂(s1), . . . , 1/σ̂(sk))′ and 1 for a column vector of k ones.
Consider the statistic

Cn =
√
n[σ̂(s) · σ̂(S)− 1] .

If s and the components of S all lie in a safety interval, then there exists a
nonsingular matrix Ω such that

Cn =⇒ N(0,Ω)

where the symbol =⇒ denotes convergence in distribution and 0 denotes the
zero vector in IRk. A proof of this result, exhibiting the explicit form of Ω, is
given in Section 6. A consistent estimator of Ω, denoted Ω̂, is also presented
there. Deduce that

C ′nΩ̂−1Cn =⇒ χ2
k .

The statistic C ′nΩ̂−1Cn can be used to test H0.
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Turn to Figure 5, and consider the upper right-hand plot. The data is a
replication of a simulation of quadratic exaggeration defined in (8) in Section 3.
For this data, we plot the square root of the test statistic CnΩ̂−1Cn against Orbit
estimates of actual quantities, denoted Q̂. That is, the ordinate of the ith point
in this plot is the square root of CnΩ̂−1Cn where S is the single point Λ̂(Yi; s).
The dotted vertical line corresponds to the safety point s, approximately equal
to 3. The dotted horizontal line is the line y = 1.96 and corresponds to the 95th
percentile of the distribution of the square root of a χ2

1 random variable.
As expected, the values of the test statistic for points within the accuracy

region [0, 4] are generally not significant at the 5% level, but are highly significant
at this level for points much greater than 4.5 Choosing S = (1, 2, 4)′, we get
a test value of 1.57 for CnΩ̂−1Cn. This value is the 33rd percentile of the
distribution of a χ2

3 random variable.
Some care must be exercised in interpreting the results of a test based on

CnΩ̂−1Cn. As noted above, if one rejects H0 then one must reject condition
(C). However, if one accepts H0 one need not accept (C). This follows from the
fact that having σ(t) constant on an interval is necessary but not sufficient for
that interval to be safe. To see this, consider M(t) = t{t ≤ 4} + 2t{t > 4}.
The function σ(t) will equal σ0 on [0, 4] and 2σ0 on (4,∞). At this point, the
practitioner must judge, based on knowledge of the application, whether an
apparent region of constancy actually corresponds to a safety interval.

Finally, note that one can view the hypothesized safety points s1, . . . , sk
as population quantiles of the unconditional distribution of Y . At the end of
Section 6 we show that the si’s can be replaced by the corresponding sample
quantiles (or any consistent estimators) without affecting the asymptotic dis-
tribution of the χ2 test. We use this fact in the next section when we test the
safety point assumption in the context of survey data.

5. An Application

In this section, we present the results of applying the Orbit procedure de-
veloped in Section 2 to the survey data on demand for a potential new video
product described in the introduction. Because of the proprietary nature of the
data, we cannot, at present, identify either the new product or the exogenous
variables entering the demand model.

In this survey, respondents are asked to estimate the average number of
times per month they would use the product if it were offered, and there is a
charge for each use. They report nonnegative integer values.

Let Y ∗ denote average projected monthly demand and let Q denote aver-
age actual monthly demand. We assume that there exists a strictly increasing
function Λ such that

Λ(Y ∗) = Q .

5This statement is made informally. We make no claims about the asymptotic distribution
of the maximum of the individual test statistics.

12



As before, we assume that

Q = (X ′β0 + u){X ′β0 + u > 0}

where X is a vector of explanatory variables, β0 is a vector of unknown param-
eters, and the random variable u is normally distributed with mean zero and
unknown variance σ2

0 , and is independent of X.
Since Y ∗ is an average, we assume that its positive part is continuously

distributed. Therefore, we do not observe Y ∗, but rather a rounded version of
it, denoted Y . As a matter of convenience, we shall assume that respondents
round their Y ∗’s up to the nearest integer.6 It follows that for each positive
integer k,

Y ≤ k ⇐⇒ Y ∗ ≤ k ⇐⇒ Q ≤ Λ(k) .

Therefore, with Λ(Y ) = Λ(Y ∗) on the support of Y , we can proceed to estimate
quantities of interest under assumptions (1), (2), and (3).

Table 1 gives Orbit estimates and t-ratios. The safety point for the masked
quantities (reported quantities divided by their median) is chosen to be unity,
corresponding to the median of the positive reported quantities. The results are
based on a sample of the form (Y1, X1), . . . , (Yn, Xn) where n = 922.

We experimented with adding other pertinent variables to the model but the
improvement in fit was negligible. In addition, we tried fitting appropriately
transformed variables, certain interaction terms, and higher order polynomial
effects but with largely the same result. None of the alternative models we
estimated led to a noticeable change in the estimate of Λ.

Given the inherent coarseness of the data (σ̂(1) = 2.39), we feel that this final
main effects model is a reasonable one. The fact that the signs of the estimated
parameters as well as the correlation matrix for the estimated parameters are
believable also supports this claim.

So, with the Orbit estimator θ̂(1) in hand, we now apply (4) from the last
section to estimate Q. The results appear in Figure 4. In the upper left-hand
corner is a point plot of Y vs. Q̂ superimposed over the dashed reference line
Q̂ vs. Q̂, where Y stands for reported demand and Q̂ stands for estimates of
actual demand obtained from applying (4) to the Y values. The position of the
safety point, s = 1, is indicated with a vertical line. This plot suggests that
reported estimates of average usage are reliable from zero to around the point
1.3 or possibly 1.7 (about the 75th percentile of the Y values), but then begin
to take off. The diagnostic plots also seem to confirm that unity is a proper
choice of safety point. The estimate of M ′(1) in the upper right-hand plot is
very close to one, and there appears to be stability about unity in the plot of
σ̂(Y ) vs. Y .

6We find that the choice of rounding scheme has little effect on estimation. Therefore, in
framing our assumptions, we are guided by convenience: we assume respondents round up.
By adopting this convention, we avoid having to make any changes in assumptions, objective
functions, or interpretation of results from the last section. Very small, but annoying, changes
have to be made for other rounding schemes.
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The lower right-hand plot is a histogram of Q̂ values where the range of
the horizontal axis is the range of the corresponding Y values. The difference
in ranges is striking. It is also interesting to compare the other three plots in
this figure with the corresponding plots from the simulations in Section 3. In a
rough, qualitative sense, it would appear that the type of exaggeration present
in this data is somewhere between linear and quadratic beyond the point 1.7.

Finally, refer to Figure 5. In the lower left-hand corner, we plot the square
root of the test statistic AnΣ̂−1An against Orbit estimates of actual quantities.
The dotted vertical line indicates the point s, equal to unity. The dotted hori-
zontal line indicates the 95th percentile of the distribution of the square root of
a χ2

1 random variable.
Write (s−−, s−) for the points adjacent to unity from below and (s+, s++)

for the points adjacent from above. That is, s−− < s− < 1 < s+ < s++. At
the 5% level, the points s−−, s+, and s++ individually and jointly pass the
corresponding χ2 tests. However, s−, the point just below unity, fails the χ2

1

test at the 5% level. Consequently, there is some doubt about unity as a safety
point.

To further probe the matter, we repeat the entire Orbit procedure, this time
taking the point s+ as a new potential safety point. The corresponding χ2

1 test
results appear in the lower right-hand plot of Figure 5. The vector S = (1, s++)
passes the χ2

2 test at the 5% level with a p-value of .82. We conclude that there
is not enough evidence to reject the hypothesis that

σ(1) = σ(s+) = σ(s++) .

Notice that there are no other apparent intervals of constancy in the lower left-
hand plot in Figure 4. This and properties of the application suggest that it
is reasonable to view the interval [1, s++] as a safety interval. That unity is a
reasonable safety point is further supported by a p-value of .46 for its associated
χ2

1 test value.

6. Asymptotic Properties

In this section, we establish some asymptotic properties of the Orbit esti-
mates and the safety point tests. In particular, we show that the estimates of
θ0 and Λ(t) are

√
n-consistent and asymptotically normally distributed, that

the estimate of Λ converges uniformly on compact intervals at rate n1/2−δ for
any δ > 0, and that

√
n(Λ̂− Λ) converges in distribution to a mean-zero Gaus-

sian process on compact intervals. We first present results for the case where
the safety point s is known. Subsequently, we will slightly strengthen our as-
sumptions to include a small safe interval about an unknown, but consistently
estimable point s. For example, s might be chosen a priori to be the median
of the marginal distribution of the positive Y values, as in the application in
Section 5. For this case, we show that we may replace s with any consistent
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estimator without affecting the asymptotic properties of the Orbit estimates and
safety point tests.

We begin with the case where the safety point s is known. Review the
notation introduced at the beginning of Section 2. The following assumptions
are sufficient for the consistency and asymptotic normality results:

A1. Z1, . . . , Zn is a sample of independent observations from the model de-
scribed by assumptions (1), (2), and (3) in the introduction.

A2. The support of X, the vector of explanatory variables in (3), is bounded.
A3. θ0 is an interior point of Θ, a compact subset of IRk ⊗ IR+.
A4. Λ(t) is an interior point of Λt, a compact subset of IR+.

Assumption A1 describes the data and the model. Assumption A2 is made
solely for convenience, and guarantees that probabilities that are arguments
of the log function stay bounded away from zero. A3 and A4 are standard
assumptions, ensuring consistency and a limiting normal distribution for the
estimators.

If A1 through A3 hold, then standard arguments show that θ̂(s) converges in
probability to θ0. For example, a simple piece of calculus shows that IEfs(·, s, θ)
is uniquely maximized at θ0. Andrews (1987) shows that Pnfs(·, s, θ) con-
verges uniformly in probability to IEfs(·, s, θ). Consistency then follows from
Amemiya (1985, pp.106–107).

Let λ denote a positive real number. Define the following derivative opera-
tors: ∇λ ≡ ∂

∂λ ; ∇θ ≡ ∂
∂θ ; ∇λθ ≡ ∇θ[∇λ]; ∇θθ ≡ ∇θ[∇θ]; ∇λλ ≡ ∇λ[∇λ].

Theorem 1: If A1 through A3 hold, then
√
n(θ̂(s)− θ0) =

√
nPngs(·, θ0) + op(1)

where
gs(z, θ) = −[Hs(θ)]−1∇θfs(z, s, θ)

and
Hs(θ) = IE∇θθfs(·, s, θ) .

Theorem 1 follows from standard Taylor expansion arguments. See, for
example, Amemiya (1985, pp.111–114). Write 0 for the zero vector in IRk. The
symbol =⇒ denotes convergence in distribution.

Corollary: If A1 through A3 hold, then
√
n[θ̂(s)− θ0] =⇒ N(0,−[Hs(θ0)]−1) .
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Turn to Λ̂(t; s). If A1 through A4 hold, then straightforward arguments,
similar to those referred to in relation to θ̂(s), show that for each t > 0, Λ̂(t; s)
converges in probability to Λ(t).

For each t > 0, λ in Λt, and θ in Θ, define

mt(λ, θ) = IE∇λθft(·, λ, θ)

and
Ht(λ, θ) = IE∇λλft(·, λ, θ) .

Theorem 2: If A1 through A4 hold, then for each t > 0,
√
n[Λ̂(t; s)− Λ(t)] =

√
nPnh

s
t (·,Λ(t), θ0) + op(1)

where

hst (z, λ, θ) = −[∇λft(z, λ, θ) + [gs(z, θ)]′mt(λ, θ)]/Ht(λ, θ) .

Theorem 2 follows from standard Taylor expansion arguments. The term
gs(z, θ0)]′mt(Λ(t), θ0) corrects the variance of Λ̂(t; s) for the fact that θ0 is known
with error.

We can use Theorem 2 to derive the distribution of the test statistic C ′nΩ̂−1Cn
defined in Section 4. Note that for each t > 0,

[σ̂(s)/σ̂(t)− 1] = [Λ(t; s)− t] /t .

Recall from Section 4 that S denotes the set of k points under test. Let D
denote the diagonal matrix with the components of S along the diagonal.

Corollary 2.1: Suppose A1 through A4 hold. If the components of S lie
within a safety interval, then

Cn =⇒ N(0,Ω)

where
Ω = D−1ΣD−1

and the ijth element of Σ is given by

IEhssi(·,Λ(si), θ0)hssj (·,Λ(sj), θ0) .

We assume that the matrix Σ in Corollary 2.1 is invertible. The ijth element
of Σ can be consistently estimated by replacing Λ(t) with Λ̂(t), θ0 with θ̂(s),
and expectations with the corresponding sample averages. Let Σ̂ denote the
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corresponding matrix estimator and write Ω̂ for D−1Σ̂D−1. Since Σ̂ consistently
estimates Σ, we have that

C ′nΩ̂−1Cn =⇒ χ2
k .

This fact justifies the test developed in Section 4.

Corollary 2.2: If A1 through A4 hold, then for each t > 0,
√
n[Λ̂(t; s)− Λ(t)] =⇒ N(0, Vt(Λ(t), θ0; s))

where
Vt(λ, θ; s) = IE[hst (·, λ, θ)]2 .

A simple calculation shows that Vt(Λ(t), θ0; s) is finite for each t > 0. Similar
calculations show that Vt(Λ(t), θ0; s) converges to zero as t converges to zero
and converges to infinity as t goes to infinity. Also, Vs(Λ(s), θ0; s) = 0, since
Λ̂(s; s) = Λ(s) = s. These facts are illustrated in the upper left-hand plot in
Figure 5. The data for the plot come from a simulation replicating quadratic
exaggeration defined in (8) in Section 3. The vertical line indicates the safety
point, approximately equal to 3. The square root of the sample analogue of
VY (Λ(Y ), θ0, ; s) is plotted against Q̂.

The shape of the function Λ(t) defines the nature and extent of misreport-
ing. Our next results concern the uniform convergence of Λ̂(t; s) to Λ(t). Such
uniform results are useful for inferring the shape of Λ(t) from Λ̂(t; s).

A simple calculation shows that for each t > 0,

Λ̂(t; s)− Λ(t) = −Pn∇λft(·,Λ(t), θ̂(s))

Pn∇λλft(·, λn, θ̂(s))

for λn between Λ(t; s) and Λ(t). Fix positive numbers r < ρ. A straightforward
calculation shows that

inf
n,r≤t≤ρ

∣∣∣Pn∇λλft(·, λn, θ̂(s))∣∣∣ > 0

and

Pn∇λft(·,Λ(t), θ̂(s)) = Ht(Λ(t), θ0)Pnhst (·,Λ(t), θ0) (9)
+ Op(1/

√
n)

uniformly over t in the set [r, ρ]. Another straightforward calculation shows that

sup
z∈SZ ,r≤t≤ρ

|Ht(Λ(t), θ0)hst (z,Λ(t), θ0)| <∞ .
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Thus, the average in (9) is of mean-zero, independent, identically distributed,
bounded random variables.

Theorem 3: Fix positive numbers r < ρ. If A1 through A4 hold, then for
each δ > 0,

n1/2−δ sup
r≤t≤ρ

∣∣∣Λ̂(t; s)− Λ(t)
∣∣∣ = op(1) .

The proof of Theorem 3 follows from the preceding remarks together with
Lemma 1 in Appendix A of Klein and Spady (1993). Their Lemma 1 is based
on arguments in Lemma 2 of Bhattacharya (1967).

For each t ≥ 0, write Γn(t; s) for
√
n(Λ̂(t; s)−Λ(t)). Fix positive numbers r <

ρ. Apply Lemma 15 and Theorem 21 in Pollard (1984, Chapter VII) together
with Theorem 2 and Theorem 3 to see that the process {Γn(t; s) : r ≤ t ≤ ρ}
converges in distribution to a Gaussian process {Γ(t; s) : r ≤ t ≤ ρ} satisfying
Γ(s; s) = 0 and having covariance kernel

C(t, τ) = IEhst (·,Λ(t), θ0)hsτ (·,Λ(τ), θ0) .

Finally, suppose we are willing to assume a priori that Λ(t) = t in a neigh-
borhood of, say, a specified population quantile of the marginal distribution of
Y . Let s denote this population quantile and ŝ the corresponding sample quan-
tile. Note that ŝ consistently estimates s. We now show that θ̂(ŝ) has the same
asymptotic distribution as θ̂(s). This, the fact that Λ̂(t; ŝ) depends on ŝ only
through θ̂(ŝ), and standard uniform convergence results will imply that

Λ̂(t; ŝ) = Λ(t)− Pn∇λft(·,Λ(t), θ0) + (θ̂(ŝ)− θ0)mt(Λ(t), θ0)
Ht(Λ(t), θ0)

+ op(
1√
n

) .

The distributional result for θ̂(ŝ) will then imply that Λ̂(t; ŝ) has the same
asymptotic distribution as Λ̂(t; s).

We first show that θ̂(ŝ) converges in probability to θ0. Since ŝ consistently
estimates s, there must exist a sequence {δn} of positive numbers converging to
zero as n tends to infinity for which IP{|ŝ− s| > δn} → 0. It follows that

|θ̂(ŝ)− θ0| ≤ sup
|t−s|≤δn

|θ̂(t)− θ0|+ op(1) .

A simple calculation shows that

θ̂(ŝ)− θ0 = −[Pn∇θθfŝ(·, ŝ, θ∗)]−1Pn∇θfŝ(·, ŝ, θ0)

where θ∗ is between θ̂(ŝ) and θ0. Note that for any point t satisfying Λ(t) = t,

IE∇θft(·, t, θ0) = 0 . (10)
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Since Λ(t) = t near s, eventually Λ(t) = t for all t within δn of s. The Euclidean
property of the class of functions {∇θft(·, t, θ0) : |t−s| ≤ δn} follows easily from
an application of Lemmas 2.4, 2.12, and 2.14 in Pakes and Pollard (1989). It
then follows from their Lemma 2.8 that

sup
|t−s|≤δn

|Pn∇θft(·, t, θ0)| = op(1) .

A similar argument shows that

sup
|t−s|≤δn, θ∈Θ

|Pn∇θθft(·, t, θ)− IE∇θθft(·, t, θ)| = op(1) .

It follows from the continuity of IE∇θθft(·, t, θ) as a function of t that

sup
|t−s|≤δn, θ∈Θ

|IE∇θθft(·, t, θ)− IE∇θθfs(·, s, θ)| = o(1) .

The strict concavity of IEfs(·, s, θ) and the compactness of Θ ensure the bound-
edness of supΘ[IE∇θθfs(·, s, θ)]−1. Deduce that θ̂(ŝ) consistently estimates θ0.

Apply the consistency result to see that
√
n[θ̂(ŝ)− θ̂(s)] equals

−[IE∇θθfs(·, s, θ0)]−1
√
n[Pn∇θfŝ(·, ŝ, θ0)− Pn∇θfs(·, s, θ0)] + op(1) .

Arguing as before, we have
√
n|θ̂(ŝ)− θ̂(s)| ≤ sup

|t−s|≤δn

√
n|θ̂(t)− θ̂(s)|+ op(1) .

Apply (10) once more along with Lemma 2.17 in Pakes and Pollard (1989) to
see that

√
n[θ̂(ŝ)− θ̂(s)] has order op(1).

7. Conclusions

In this paper, we consider the problem of estimating demand for a new
product in the presence of biased demand projections. The form of the bias
is characterized by a strictly increasing function Λ of projected demand. We
develop a two-stage procedure, called Orbit, for estimating (1) the parameters
of a standard Tobit model for actual future demand, and (2) the function,
Λ. We make no parametric assumptions about the functional form of Λ. Nor
do we require that Λ be continuous. The Orbit estimates are

√
n-consistent

and asymptotically normally distributed, the estimate of Λ converges uniformly
on compact sets at rate n1/2−δ for any δ > 0, and

√
n(Λ̂ − Λ) converges in

distribution to a zero-mean Gaussian process on compact intervals. Moreover,
the procedure is computationally tractable.

To apply the Orbit procedure, there must exist a positive safety point at
which reported quantities equal actual quantities. This point must either be
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known a priori, or if unknown, must be consistently estimable and contained in
a safe open interval. We provide graphical and formal tests of this assumption.
When a given safety point is incorrect, the graphical tests can suggest a proper
choice of safety point.

In our simulations, we examine reporting mechanisms for which reported
quantities equal actual quantities on a given interval. Beyond a threshold point,
we let reported quantities overstate actual quantities in a variety of ways. In each
simulation, with a sample size of 1000 observations, Orbit accurately recovers
the the relationship between reported and actual quantities.

We also apply the Orbit procedure to survey data on a potential new video
product. Under our model assumptions, the survey respondents report demand
projections that exaggerate actual future demand beyond 1.7 times the median
level, corresponding to about 25% of the sample. This level of exaggeration falls
somewhere between linear and quadratic exaggeration, as discussed in Section 4.

The standard Tobit model for actual future demand assumes normality of
the model’s error term. It is possible to test this assumption, and when it
fails, to apply a semiparametric version of Orbit that does not require making
any parametric assumptions about the distribution of the error term. We are
currently investigating the theoretical properties of this procedure and its finite
sample performance.
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