# Precision Crystal Calorimetry in Particle Physics

Ren-yuan Zhu Caltech

IEEE NPSS Lecture: Precision Calorimetry Snowmass, Colorado July 16, 2001

- Crystal Calorimeters in Particle Physics.
- Issues Crucial to Crystal Precision.
  - Light Response Uniformity.
  - Calibration *in situ*.
  - Crystal Radiation Damage.
- Future Crystal Technologies for Particle Physics.

| Experiment                             | C. Ball | L3              | CLEO II | C. Barrel              |
|----------------------------------------|---------|-----------------|---------|------------------------|
| Accelerator                            | SPEAR   | LEP             | CESR    | LEAR                   |
| Crystal Type                           | Nal(TI) | BGO             | CsI(TI) | CsI(TI)                |
| B-Field (T)                            | -       | 0.5             | 1.5     | 1.5                    |
| r <sub>inner</sub> (m)                 | 0.254   | 0.55            | 1.0     | 0.27                   |
| # of Crystals                          | 672     | 11,400          | 7,800   | 1,400                  |
| Depth ( $X_0$ )                        | 16      | 22              | 16      | 16                     |
| Volume (m <sup>3</sup> )               | 1       | 1.5             | 7       | 1                      |
| L.O. (p.e./MeV)                        | 350     | 1,400           | 5,000   | 2,000                  |
| Photosensor                            | PMT     | Si PD           | Si PD   | WS <sup>a</sup> +Si PD |
| Gain of P.S.                           | Large   | 1               | 1       | 1                      |
| $\sigma_N$ /Chan. (MeV)                | 0.05    | 0.8             | 0.5     | 0.2                    |
| Dynamic Range                          | 104     | 10 <sup>5</sup> | 104     | 104                    |
| <b>a</b> <sub>0</sub> <sup>b</sup> (%) | 0.02    | 0.3             | 0.2     | 0.06                   |
| $\mathbf{a}_{1}{}^{c}$ (%)             | 0.2     | 0.1             | 0.05    | 0.07                   |

# **Crystal Calorimeters in Particle Physics (I)**

a Wavelength Shifter.

b Noise contribution to the energy resolution (at 1 GeV).

c Photoelectron statistics contribution at 1 GeV.

# **3D Cut-away View of L3 Detector**



# L3 BGO Calorimeter under Construction

First Half Barrel



### L3 BGO Calorimeter under Construction

Second Half Barrel



| Experiment                       | KTeV            | BaBar      | BELLE   | CMS               |
|----------------------------------|-----------------|------------|---------|-------------------|
| Laboratory                       | FNAL            | SLAC       | KEK     | CERN              |
| Crystal Type                     | Csl             | CsI(TI)    | CsI(TI) | PbWO <sub>4</sub> |
| B-Field (T)                      | -               | 1.5        | 1.0     | 4.0               |
| Inner Radius (m)                 | -               | 1.0        | 1.25    | 1.29              |
| Number of Crystals               | 3,300           | 6,580      | 8,800   | 83,300            |
| Crystal Depth (X <sub>0</sub> )  | 27              | 16 to 17.5 | 16.2    | 25                |
| Crystal Volume (m <sup>3</sup> ) | 2               | 5.9        | 9.5     | 11                |
| Light Yield. (p.e./MeV)          | 40              | 5,000      | 5,000   | 2                 |
| Photosensor                      | PMT             | Si PD      | Si PD   | $APD^a$           |
| Gain of Photosensor              | 4,000           | 1          | 1       | 50                |
| Noise/Channel (MeV)              | small           | 0.15       | 0.2     | 30                |
| Dynamic Range                    | 10 <sup>4</sup> | 104        | 104     | 10 <sup>5</sup>   |

# **Crystal Calorimeters in Particle Physics (II)**

a Avalanche photodiode.

### A PWO Crystal ECAL is under Design by BTeV.



# **CMS PbWO<sub>4</sub> ECAL and Resolution**





|                                 | Nal(Tl) | CsI(TI) | Csl     | $BaF_2$    | CeF <sub>3</sub> | BGO  | PbWO <sub>4</sub> |
|---------------------------------|---------|---------|---------|------------|------------------|------|-------------------|
| $\rho$ (g/cm <sup>3</sup> )     | 3.67    | 4.51    | 4.51    | 4.89       | 6.16             | 7.13 | 8.28              |
| $t_{Melting}$ (°C)              | 651     | 621     | 621     | 1280       | 1460             | 1050 | 1123              |
| $X_{rad}$ (cm)                  | 2.59    | 1.85    | 1.85    | 2.06       | 1.68             | 1.12 | 0.89              |
| $R_{Moli \grave{e} re}$ (cm)    | 4.8     | 3.5     | 3.5     | 3.4        | 2.6              | 2.3  | 2.0               |
| $X_{int}$ (cm)                  | 41.4    | 37.0    | 37.0    | 29.9       | 26.2             | 21.8 | 18                |
| n <sup>a</sup>                  | 1.85    | 1.79    | 1.95    | 1.50       | 1.62             | 2.15 | 2.2               |
| Hygroscopic                     | Yes     | slight  | slight  | No         | No               | No   | No                |
| $\lambda_{Lum} \ (nm)^b$        | 410     | 560     | 420     | 300        | 340<br>200       | 480  | 420/500           |
| (al Peak)                       | 000     | 4050    | 310     | 220        | 300              | 200  | (00               |
| $	au_{Decay}$ (ns) $^{\circ}$   | 230     | 1250    | 35<br>6 | 630<br>0.9 | 30<br>9          | 300  | <30               |
| Relative $LY^{b,c}$             | 100     | 45      | 5.6     | 21         | 6.6              | 9    | 1                 |
|                                 |         |         | 2.3     | 2.7        | 2.0              |      |                   |
| d(LY)/dT <sup>d</sup><br>(%/°C) | ~0      | 0.3     | -0.6    | -2/~0      | 0.14             | -1.6 | -1.9              |
| Price (\$/cc)                   | 1–2     | 2       | 2.5     | 2.5        | $3^{e}$          | 7    | $2^f$             |

### **Properties of Crystal Scintillators**

a At the wavelength of the emission maximum.

b Top line: slow component, bottom line: fast component.

c Measured with a PMT with a bialkali cathode.

d At Room temperature.

e Not mass produced yet, expected price.

f CMS mass-production price.

### **Crystal Samples of 1.5 Radiation Length**



# Full Size Samples for BaBar, L3 and CMS





### Scintillation Pulse of 6 Crystal Scintillators Measured with HP54111D DS

# Light Yield of 6 Crystal Scintillators Measured with Hamamatsu R2059 PMT



# Transmittance of 6 Crystal Scintillators Measured with Hitachi U-3210 SPM



# Why Crystal Calorimetry?

- Good electromagnetic energy resolution because of total absorption: 0.6% is achievable for isolated e or  $\gamma$ ,  $\sigma = 2\%/\sqrt{E} \oplus 0.5\% \oplus c/E$ .
- Good **position resolution** because of its fine segmentation: 0.3 mm is achievable for cell size and Molière radius of 2 cm,  $\sigma = 2/\sqrt{E} \oplus 0.29$  mm.
- Good **photon angular resolution** by using primary event vertex.
- Good **e** and  $\gamma$  identification and reconstruction efficiency because of fine granularity and pointing geometry:  $e/\pi$  discrimination better than  $10^{-3}$  is achievable for e ID efficiency of 95%.
- Good **missing energy resolution** together with HCAL because of hermeticity.
- Good **jet energy resolution** by using information from other detector components: L3 achieved 7% for hadronic Z decays.
- Can be rather compact by using heavy crystals of ~1 cm radiation length (BGO and PbWO<sub>4</sub>).

#### Discovery Power of Precision e & $\gamma$

 Study quarkonium system through inclusive photons by Crystal Ball and CLEO.



• Searches for excited leptons in composite models and a SUSY breaking model with gravitino  $\tilde{G}$  as LSP at LEP II.





# Discovery Power of Precision Photons $H \rightarrow \gamma \gamma$ Searches with PWO ECAL by CMS at LHC



# Improvement of L3 Jet Mass Resolution Using Information from other Detector Components



# **Definition of Light Response Uniformity**

 $Y = Y_{mid} \left[ 1 + \delta(x/x_{mid} - 1) \right]$ 



### **Effect of Light Response Uniformity**

GEANT Simulation: NIM A340 442 (1994)

Not Recoverable Resolution Degradation



### **Effect of Light Response Uniformity**

D. Graham & C. Seez, CMS Note 1996-002

• Minimize contributions to the constant term of energy resolution, caused by light response non-uniformity.



### CMS PbWO<sub>4</sub> ECAL Beam Test Resolution of 280 GeV Electrons

$$\frac{\delta E}{E} = \frac{4.1\%}{\sqrt{E}} \oplus 0.37\% \oplus 0.15/E = 0.45\%$$



# **RFQ Installation in L3 Experiment**



y863col

### Bhabha Electron Energy Resolution with L3 BGO

| Contribution | "Radiative"+Intrinsic | Temperature | Calibration | Overall |
|--------------|-----------------------|-------------|-------------|---------|
| Barrel       | 0.8%                  | 0.5%        | 0.5%        | 1.07%   |
| Endcaps      | 0.6%                  | 0.5%        | 0.4%        | 0.88%   |

0.5% Calibration Achieved in situ with RFQ





# **PbWO<sub>4</sub> Radiation Environment**



# **Possible Effects of Radiation on Crystals**

- 1. Induced absorption caused by color center formation:
  - Reduce light attenuation length and thus light output, and maybe
  - Degrade of light response uniformity.
- 2. Induced phosphorescence:
  - Increase readout noise.
- 3. Reduced scintillation light yield:
  - Reduce light output and degrade light response uniformity.

| Item                 | CsI(TI) | Csl    | $BaF_2$ | BGO | PbWO <sub>4</sub> |
|----------------------|---------|--------|---------|-----|-------------------|
| Color Centers        | Yes     | Yes    | Yes     | Yes | Yes               |
| Fluorescence         | Yes     | Yes    | Yes     | Yes | Yes               |
| Scintillation        | No      | No     | No      | No  | No                |
| Recover @RT          | Slow    | Slow   | No      | Yes | Yes               |
| Dose Rate Dependence | No      | No     | No      | Yes | Yes               |
| Thermall Annealing   | No/Yes  | No/Yes | Yes     | Yes | Yes               |
| Optical Bleaching    | No/Yes  | No/Yes | Yes     | Yes | Yes               |

### **CsI(TI)** Longitudinal Transmittance

Measured with Hitachi U-3210 Photospectrometer Three Full Size Samples

Proc. of VI ICCHEP, Frascati Physics Series, (1996) 589



# **CsI(TI)** Photoluminescence

Measured with ORIEL 77250 Monochromator Three Full Size Samples

Proc. of VI ICCHEP, Frascati Physics Series, (1996) 589







### Effect of LAL on Light Response Uniformity

Ray-Tracing Simulation for CMS PbWO<sub>4</sub> Crystals

No Change in Uniformity with LAL longer 3.5 crystal length

The **light collection efficiency** ( $\eta$ ), fit to a linear function of distance to the small end of the crystal (x), was determined with two parameters:  $\eta_m$  — the light collection efficiency at the middle of the crystal ( $X_m$ ), and  $\delta$  — the **uniformity**.

$$\eta(x)/\eta_m = 1 + \delta(x-x_m)/x_m$$

| LAL (cm)                                            | 20                                                 | 40             | 60             | 80      | 200           |  |  |  |  |
|-----------------------------------------------------|----------------------------------------------------|----------------|----------------|---------|---------------|--|--|--|--|
| Large                                               | Large Area Photo Detector, covering 100% back face |                |                |         |               |  |  |  |  |
| $\eta_m$ (%)                                        | 9.5±.2                                             | $15.7 {\pm}.4$ | $19.2 {\pm}.5$ | 21.6±.6 | $26.9 \pm .7$ |  |  |  |  |
| δ (%)                                               | 23±1                                               | -4.6±.8        | -11±1          | -15±1   | -15±1         |  |  |  |  |
| $\phi$ 5 mm Photo Detector, covering 3.7% back face |                                                    |                |                |         |               |  |  |  |  |
| $\eta_m$ (%)                                        | .38±.04                                            | .74±.08        | 1.1±.1         | 1.4±.2  | 3.0±.3        |  |  |  |  |
| δ (%)                                               | 23±4                                               | -3.5±4         | -12±4          | -16±4   | -17±3         |  |  |  |  |
| $rac{\eta_m(\phi 5mm)}{\eta_m(Full)}$ (%)          | 4.0                                                | 4.7            | 5.7            | 6.5     | 11            |  |  |  |  |

### **PbWO<sub>4</sub> Light Response Uniformity**

Measured with R2059 PMT, 200 ns 20 cm SIC-85 under High Rate Lateral Irradiation

 $LY/LY_{mid} = 1 + \delta(x - x_{mid})/x_{mid}$ 

IEEE Trans. Nucl. Sci. NS-44 468 (1997)



# **No Scintillation Damage** Light Response Uniformity 20 cm PbWO<sub>4</sub> SIC-60



### CsI(TI) Light Response Uniformity

Measured with  $2 \times S2744-08$  Si Diode,  $2 \mu s$ Full Size Sample SIC-8 under Front Irradiation

 $LY/LY_{mid} = 1 + \delta(x - x_{mid})/x_{mid}$ 



# **Monitoring System Design**



### **Correlation: Monitoring & Beam Signals**

#### PbWO<sub>4</sub> Sample 1283, up to 650 rad

CERN EP/98-020 (1998)



### **Energy Resolution (Uniformity) Not Damaged**

PbWO<sub>4</sub> Sample 1283, before & after 650 rad

CERN EP/98-020 (1998)



### **Monitoring Light Source & High Level Distribution**

Two Laser Systems, Switch, Monitor and Control



# Nd:YLF and Ti:S Monitoring Lasers



# Color Center Kinetics Annihilation (Recover) and Creation (Damage)

NIM A332 (1993) 113, NIM A356 (1993) 113

$$dD = \sum_{i=1}^{n} \{-a_i D_i dt + (D_i^{all} - D_i) b_i R dt\}$$

$$D = \sum_{i=1}^{n} \left\{ \frac{b_i R D_i^{all}}{a_i + b_i R} \left[ 1 - e^{-(a_i + b_i R)t} \right] + D_i^0 e^{-(a_i + b_i R)t} \right\}$$

- $D_i$ : color center density in units of m<sup>-1</sup>;
- $D_i^0$ : initial color center density;
- $D_i^{all}$  is the total density of trap related to the color center in the crystal;
- $a_i$ : recovery costant in units of hr<sup>-1</sup>;
- $b_i$ : damage contant in units of kRad<sup>-1</sup>;
- *R*: the radiation dose rate in units of kRad/hr.

$$D_{eq} = \sum_{i=1}^{n} \frac{b_i R D_i^{all}}{a_i + b_i R}$$

**PbWO<sub>4</sub>: Dose Rate Dependence** 

Measured with R2059 PMT

5 cm Sample SIC 115-1



#### **BaF**<sub>2</sub>: No Dose Rate Dependence

the Same Crystal with Identical Wrapping

Nucl. Instr. and Meth. A340 (1994) 442



### CsI(TI) Damage Mechanism

**Oxygen Contamination** is known to cause radiation damage for other alkali halide scintillators. In  $BaF_2$ , for example, hydroxyl (OH<sup>-</sup>) may be introduced into crystal through a hydrolysis process, and latter decomposed to interstitial and substitutional centers by radiation through a radiolysis process,

$$OH^- \to H_i^0 + O_s^- \text{ or } H_s^- + O_i^0$$

where subscript *i* and *s* refer to interstitial and substitutional centers respectively, as discussed in *Nucl. Instr. and Meth.* **A340** 442 (1994).

Possible means for trace oxygen identification: (1) Secondary Ionization Mass Spectroscopy (SIMS); (2) Gas Fusion (LEGO); and (3) Energy Dispersive x-Ray (EDX).

### **Depth Profile of Oxygen in Csl(Tl)**

Secondary Ion Mass Spectrometry Analysis by Charles Evana & Associates



### **CsI(TI)** Radiation Hardness Progress

Measured with  $2 \times 2744$ -08 Si PD and  $2\mu$ s Shaping Full Size CsI(TI) Samples from SIC



### **PbWO<sub>4</sub> Damage Mechanism**

**Crystal defects, such as Oxygen Vacancy,** are known to cause radiation damage for other oxide scintillators. In BGO, for example, three common radiation induced absorption bands at 2.3, 3.0 and 3.8 eV were found in a series of 24 doped samples, as discussed in *Nucl. Instr. and Meth.* **A302** 69 (1991), indicating defect-related color centers.



Possible means for oxygen vacancy identification: (1) Electron Paramagnetic Resonance (ESR) and Electron-Nuclear Double Resonance (ENDOR); (2) Transmission Electron Microscopy (TEM)/Energy Dispersion Spectrometry (EDS); and (3) a pragmatic way: Oxygen Compensation by Post-Growing Annealing in Oxygen Rich Atmosphere.

# TEM Study on PbWO<sub>4</sub> Crystals TOPCON-002B Scope, 200 kV, 10 $\mu$ A Scale: 1 cm (-----) $\Rightarrow$ 20 nm $\phi$ 5–10 nm Black Spots Identified



### **TEM/EDS Study on PbWO<sub>4</sub> Crystals**

JEOL JEM-2010 Scope and Link ISIS EDS

Localized ( $\phi$ 0.5 nm) Stoichiometry Analysis

Z.W. Yin et al., in SCINT97, Shanghai (9/97)

**Oxygen Vacancies Identified** 

Atomic Fraction (%) in PbWO<sub>4</sub>

| _       |            |            |            |                     |
|---------|------------|------------|------------|---------------------|
| Element | Black Spot | Peripheral | $Matrix_1$ | Matrix <sub>2</sub> |
|         |            | -          |            |                     |
| 0       | 1.5        | 15.8       | 60.8       | 63.2                |
|         |            |            |            |                     |
| W       | 50.8       | 44.3       | 19.6       | 18.4                |
|         |            |            |            |                     |
| Pb      | 47.7       | 39.9       | 19.6       | 18.4                |
|         |            |            |            |                     |

#### As Grown Sample

The Same Sample after Oxygen Compensation

| Element | $Point_1$ | Point <sub>2</sub> | Point <sub>3</sub> | Point <sub>4</sub> |
|---------|-----------|--------------------|--------------------|--------------------|
| 0       | 59.0      | 66.4               | 57.4               | 66.7               |
| W       | 21.0      | 16.5               | 21.3               | 16.8               |
| Pb      | 20.0      | 17.1               | 21.3               | 16.5               |

### **PbWO<sub>4</sub> Normalized Light Output**

Measured with R2059 PMT (200 ns)



**PbWO<sub>4</sub> Light Output Degradation** 

Measured with R2059 PMT (200 ns)

5 cm Sample SIC-153



### **Progress of PbWO<sub>4</sub> Radiation Hardness**

Normalized Light Output Measured with R2059 PMT, 200 ns Full Size (23 cm) Samples



# **Progress of PbWO<sub>4</sub> Longitudinal Transmittance**

Measured with Hitachi U-3210 SPM

Full Size (23 cm) Samples



### **Possible Choices of Crystal Technology**

- Oxides:
  - BGO is a mature and dense crystal ( $\rho$  = 7.13 g/cc, X<sub>0</sub> = 1.12 cm, R<sub>Molière</sub> = 2.3 cm), but has a slow scintillation (300 ns) and not cost effective (\$7/cc) due to expensive raw material (GeO<sub>2</sub>).
  - PbWO<sub>4</sub> is a mature and dense crystal ( $\rho = 8.28$  g/cc,  $X_0 = 0.89$  cm,  $R_{Moliere} = 2.0$  cm). It is a fast and cost effective crystal (\$2.5/cc). Its low light yield is overcome by using Si avalanche photodiode.  $\sigma = 4.1\%/\sqrt{E} \oplus 0.37\% \oplus 0.15/E$  has been achieved with 25 mm<sup>2</sup> APD readout in beam test. It is possible to develop a brighter PbWO<sub>4</sub> crystal.
- Halides:
  - CsI is a mature and cost effective crystal (\$2/cc), but has low density ( $\rho = 4.5$  g/cc, X<sub>0</sub> = 1.85 cm, R<sub>Molière</sub> = 3.5 cm). In addition, CsI(TI or Na) is too slow (~1  $\mu$ s) and CsI is less bright.
  - PbF<sub>2</sub> is a mature and dense crystal ( $\rho = 7.77$  g/cc, X<sub>0</sub> = 0.93 cm, R<sub>Molière</sub> = 2.1 cm). It is also cost effective (less than PbWO<sub>4</sub>). However, it is not yet a scintillator, but being used as a Čerenkov radiator. A scintillating PbF<sub>2</sub> crystal may be developed by selected doping.

### Status of $PbF_2$ Crystal as a Scintillator

- PbF<sub>2</sub> has been studied in details as a Čerenkov material by D. Anderson and C. Woody *et al.*, *NIM* A290 (1990) 385 and *IEEE Trans. Nucl. Sci.* NS-40 (1993) 546.
- Attempt has been made to produce scintillating PbF<sub>2</sub> through phase transition (cubic to orthorhomic). Positive result reported by N. Klassen *et al.* in *Crystal 2000* (1992) 587 does not agree with observations by S. Derenzo *et al. IEEE Trans. Nucl.Sci.* NS-37 (1990) 206 and D. Anderson *et al. NIM* A342 (1994) 473.
- Observation of fast scintillation in PbF<sub>2</sub>(Gd) and PbF<sub>2</sub>(Eu) was reported by D. Shen *et al.* (SIC) *Jour. Inor. Mater.* Vol **10**1 (1995) 11. The scintillation emission of PbF<sub>2</sub>(Gd) was confirmed by C. Woody *et al.* in *Delft Conference* (1995), and **6.5 p.e./MeV** was observed for a PbF<sub>2</sub>(Gd) sample of φ2.1 × 2.2 cm from SIC by using R2059 PMT.
- About 1,000 PbF<sub>2</sub> crystals of 3 × 3 × 18.6 cm (a total of 0.167 m<sup>3</sup>) are being produced by SIC in 1998 for an experiment at Mainzer Microtron, Germany. They are used as Čerenkov radiator.

# Longitudinal Transmittance of $PbF_2$ Measured with Hitachi U-3210 Photospectrometer





### X-ray Excited Emission Spectra of PbF<sub>2</sub>(Gd)

D. Shen et al., Jour. Inor. Mater. Vol 101 (1995) 11.

### X-ray Excited Emission Spectra of PbF<sub>2</sub>(Eu)

D. Shen et al., Jour. Inor. Mater. Vol 101 (1995) 11.

# $\gamma$ -ray Excited Emission Spectra of PbF<sub>2</sub>(Gd)

C. Woody et al., Delft Conference (1995)

 $PbF_2(Gd) (\phi 2.1 \times 2.2 \text{ cm})$  Pulse Height Measured at AGS with 1 GeV/c MIPS by C. Woody *et al.* 6.5 p.e./MeV Observed by R2059 PMT

### **PbWO<sub>4</sub> Crystal Properties**

- Density: 8.28 g/cm<sup>3</sup>
- Radiation/Interaction Length: 0.89/22.4 cm
- Moliere Radius: 2.2 cm
- Index of Refraction: 2.2 2.3
- Light Yield: 50 100 photons/MeV, -2%/°C
- Decay Time: >80% in 50 ns



### **PbWO<sub>4</sub> Scintillation Light Output**

Measured with R2059 PMT

23 cm PbWO<sub>4</sub>: SIC-210 & BTCP-1971:La

NLC Detector Workshop, Keystone (1998)



### Summary

- Precision crystal calorimetry extends physics reach in experimental nuclear and high energy physics because of its best achievable resolutions for electrons and photons.
- An optimized light response uniformity is the key for crystal energy resolution.
- A precision calibration is the key to maintain crystal precision *in situ*.
- Predominant radiation damage effect in crystal scintillators is the radiation induced absorption, or color center formation, not the loss of scintillation light yield.
- The quality of mass produced crystals can be improved by understanding the mechanism of radiation damage. While oxygen and/or hydroxyl contaminations cause damage in halides, stoichiometry related defects, e.g. oxygen vacancies, cause damage in oxides.
- R&D on dense crystals, such as PbF<sub>2</sub> and PbWO<sub>4</sub>, may lead to new type of crystal scintillators for crystal calorimetry in future particle physics experiments.