Crystal Technologies for LC

Ren-yuan Zhu Caltech

International Workshop on Linear Collider Sitges, Barcelona, Spain May 3, 1999

- Design Considerations for Calorimeter at LC.
- What Can Crystal Calorimetry Offer?
- Possible Crystal Technologies for LC:
 - Oxides: from BGO to PbWO₄;
 - Halides: from CsI to PbF₂.

Design Considerations for Calorimetry at LC

- Precision measurement of electrons and photons: e/γ related physics.
 - Electromagnetic energy resolutions;
 - Position and photon angular resolutions;
 - e/γ identification and reconstruction efficiency.
- Good missing energy resolutions: ν /SUSY related physics.
 - Hermeticity.
- Good jet energy resolution: jet related physics.
 - Achievable jet resolution and intrinsic limitation;
 - Dead material (coil?) in the middle of a calorimeter;
 - Jet resolution improvement by using other detector components;
 - Jet resolution improvement by using kinetic constraints: Z mass and center of mass.
- Dense absorber: a compact and cost effective calorimeter.

Discovery Power of Precision e & γ

 Study quarkonium system through inclusive photons by Crystal Ball and CLEO.

Searches for excited leptons in composite models and a SUSY breaking model with gravitino G̃ as LSP at LEP II.
e⁺e⁻ → ℓ^{*}ℓ^{*} or ℓ^{*}ℓ, ℓ^{*} → ℓγ, e⁺e⁻ → χ̃⁰₁ x̃⁰₁ or χ̃⁰₁ G̃, χ̃⁰₁ → G̃γ

Higgs Searches by L3 at LEP II

The Higgs background is suppressed by b-tagging and neural network analysis. Kinetic constraints improve mass resolution to \sim 3% for 87 GeV Higgs.

 $e^+e^- \rightarrow H^0Z, \ H^0 \rightarrow b\bar{b} \ and \ Z^0 \rightarrow q\bar{q}$

What Can Crystal Calorimetry Offer?

- Good electromagnetic energy resolution because of total absorption: 0.6% is achievable for isolated e or γ , $\sigma = 2\%/\sqrt{E} \oplus 0.5\% \oplus c/E$.
- Good **position resolution** because of its fine segmentation: 0.3 mm is achievable for cell size and Molière radius of 2 cm, $\sigma = 2/\sqrt{E} \oplus 0.29$ mm.
- Good **photon angular resolution** because of no ambiguity in primary event vertex in LC bunch length 0.2 mm.
- Good e and γ identification and reconstruction efficiency because of fine granularity and pointing geometry: e/π discrimination better than 10⁻³ is achievable for e ID efficiency of 95%.
- Good **missing energy resolution** together with HCAL because of hermeticity.
- Good jet energy resolution by using information from other detector components: L3 achieved 7% for hadronic Z decays.
- Can be rather compact by using heavy crystals of less than 1 cm radiation length (PbWO₄ and PbF₂).

KTeV CsI Calorimeter & Measured Resolution

Bhabha Electron Energy Resolution with L3 BGO

Contribution	"Radiative"+Intrinsic	Temperature	Calibration	Overall
Barrel	0.8%	0.5%	0.5%	1.07%
Endcaps	0.6%	0.5%	0.4%	0.88%

0.5% Calibration Achieved in situ with RFQ

RFQ Installation in L3 Experiment

y863col

Improvement of L3 Jet Mass Resolution Using Information from other Detector Components

CMS PbWO₄ ECAL and Resolution

Crystal Position Resolution

 $2/\sqrt{E} \oplus 0.29 \text{ mm}$ for $R_{Moliere}$ = 2 cm

Possible Choices of Crystal Technology

- Oxides:
 - BGO is a mature and dense crystal (ρ = 7.13 g/cc, X₀ = 1.12 cm, R_{Molière} = 2.3 cm), but has a slow scintillation (300 ns) and not cost effective (\$7/cc) due to expensive raw material (GeO₂).
 - PbWO₄ is a mature and dense crystal ($\rho = 8.28$ g/cc, $X_0 = 0.89$ cm, $R_{Moli\mbox{ere}} = 2.0$ cm). It is a fast and cost effective crystal (\$2.5/cc). Its low light yield is overcome by using Si avalanche photodiode. $\sigma = 4.1\%/\sqrt{E} \oplus 0.37\% \oplus 0.15/E$ has been achieved with 25 mm² APD readout in beam test. It is possible to develop a brighter PbWO₄ crystal.
- Halides:
 - CsI is a mature and cost effective crystal (\$2/cc), but has low density ($\rho = 4.5$ g/cc, X₀ = 1.85 cm, R_{Molière} = 3.5 cm). In addition, CsI(TI or Na) is too slow (~1 µs) and CsI is less bright.
 - PbF₂ is a mature and dense crystal (ρ = 7.77 g/cc, X₀ = 0.93 cm, R_{Molière} = 2.1 cm). It is also cost effective (less than PbWO₄). However, it is not yet a scintillator, but being used as a Čerenkov radiator. A scintillating PbF₂ crystal may be developed by selected doping.

CMS PbWO₄ Energy Resolution in Beam Test Stochastic & Constant Terms

$$\frac{\delta E}{E} = \frac{\mathbf{a\%}}{\sqrt{E}} \oplus \mathbf{b\%} \oplus \mathbf{0.15}/E$$

- $\bar{a} = 4.1\% \Leftarrow 1.7 \text{ p.e./MeV}$ in 25 mm² APD. CMS ECAL TDR uses **50 mm**² APD $\Rightarrow \bar{a} = 2.9\%$.
- $\overline{\mathbf{b}}$ = 0.37% \leftarrow a better understanding of the consequence of light response uniformity.

Effect of Light Response Uniformity

D. Graham & C. Seez, CMS Note 1996-002

• Minimize contributions to the constant term of energy resolution, caused by light response non-uniformity.

CMS PbWO₄ ECAL Beam Test Resolution of 280 GeV Electrons

$$\frac{\delta E}{E} = \frac{4.1\%}{\sqrt{E}} \oplus 0.37\% \oplus 0.15/E = 0.45\%$$

PbWO₄ Scintillation Light Output Measured with R2059 PMT

Typical Full Size $2.1^2 \times 23 \times 2.3^2$ PWO

PbWO₄ Scintillation Light Output

Size $2.1^2 \times 10 \times 2.1^2$ PWO

Status of PbF_2 Crystal as a Scintillator

- PbF₂ has been studied in details as a Čerenkov material by D. Anderson and C. Woody *et al.*, *NIM* A290 (1990) 385 and *IEEE Trans. Nucl. Sci.* NS-40 (1993) 546.
- Attempt has been made to produce scintillating PbF₂ through phase transition (cubic to orthorhomic). Positive result reported by N. Klassen *et al.* in *Crystal 2000* (1992) 587 does not agree with observations by S. Derenzo *et al. IEEE Trans. Nucl.Sci.* NS-37 (1990) 206 and D. Anderson *et al. NIM* A342 (1994) 473.
- Observation of fast scintillation in PbF₂(Gd) and PbF₂(Eu) was reported by D. Shen *et al.* (SIC) *Jour. Inor. Mater.* Vol 101 (1995) 11. The scintillation emission of PbF₂(Gd) was confirmed by C. Woody *et al.* in *Delft Conference* (1995), and 6.5 p.e./MeV was observed for a PbF₂(Gd) sample of φ2.1 × 2.2 cm from SIC by using R2059 PMT.
- About 1,000 PbF₂ crystals of 3 × 3 × 18.6 cm (a total of 0.167 m³) are being produced by SIC in 1998 for an experiment at Mainzer Microtron, Germany. They are used as Čerenkov radiator.

X-ray Excited Emission Spectra of PbF₂(Gd)

D. Shen et al., Jour. Inor. Mater. Vol 101 (1995) 11.

X-ray Excited Emission Spectra of PbF₂(Eu)

D. Shen et al., Jour. Inor. Mater. Vol 101 (1995) 11.

γ -ray Excited Emission Spectra of PbF₂(Gd)

C. Woody et al., Delft Conference (1995)

$PbF_2(Gd) (\phi 2.1 \times 2.2 \text{ cm})$ Pulse Height Measured at AGS with 1 GeV/c MIPS by C. Woody *et al.* 6.5 p.e./MeV Observed by R2059 PMT

Longitudinal Transmittance of PbF₂ Measured with Hitachi U-3210 Photospectrometer

Radiation Damage (10 krad) and Annealing $3 \times 3 \times 18.6$ cm PbF₂ Sample from SIC Measured by F. Maas

Summary

- To maximize physics reach, calorimetry for LC should have good measurement on electrons, photons and jets.
- A crystal calorimeter provides the best achievable resolutions for electrons and photons, a good missing energy resolution and an adequate jet resolution.
- Recently developed low cost, heavy crystals offers a cost effective crystal calorimeter solution.
- Feasible crystal technologies:
 - A PbWO₄ calorimeter;
 - A PbF₂ calorimeter following successful R&D.