

Comments on Linear Collider Calorimetry Case for Precision ECAL?

Ren-yuan Zhu California Institute of Technology

Introduction

- While all recent built HEP detectors have precision ECAL, LC calorimetry community pursues precision jet calorimetry. A sexy solution is the **energy flow**, which requires "particle reconstruction in jets" and thus calorimeter with fine segmentations.
- Jet and jet-jet mass measurements suffer from systematic uncertainties from physics (QCD and fragmentation), algorithm (jet definition) and detector (resolution and leakage).
- While the limit to the precision ECAL is well understood, the limit to the jet measurement at LC is yet to be fully investigated.

What is Energy Flow

• Jet energy is not well measured by calorimeter.

- At LC energies, energy of isolated charged calorimeter cluster may be replaced by better measured matching tracker momentum.
- For overlapping clusters,
 classical energy flow
 subtracts average response:
 30% improvement.

• Modern energy flow tries to subtract exact deposition.

Proceedings of Sitges Workshop, p.1058, 1999

- Classical energy flow improves Z mass resolution by 30%.
- Similar improvement observed in all 4 LEP experiments. See papers in Calor2002 Proceedings.
 This distribution
- shows only effect of detector, not QCD physics and jet definition algorithm.

Energy Flow in ALEPH: Z->qqγ

$\sigma(E)=(0.59+-0.03)\sqrt{E+(0.6+-0.3)} GeV: 6.3 GeV @ Z$

Calo: no corrections; 1: simple average; 2: shower library; 3: library, track-cluster match, out cone track; 4: out cone track only.

W Mass with 2 jets by L3: 3%

Higgs with 2 jets at LEP: 3%

4C Fit using Jet direction: Free from QCD, Algorithm & Cal. resolution.

Comparison of Stochastic Term "a"

	L3	CDF	CMS
Calorimeter	97%	83%	107-120%
Energy Flow	65%	64%	63-80%
4C Fit	26%		

Jet Energy Measurement

$$E_{jet} = \sum_{i=1}^{n} E_i$$

Assuming calorimeter resolution:

$$\frac{\delta E_i}{E_i} = \frac{a}{\sqrt{E_i}} \oplus b$$

Neglecting the constant term b,

$$\frac{\delta E_{jet}}{E_{jet}} = \frac{a}{\sqrt{E_{jet}}}$$

Jet-Jet Mass Measurement

$$M = 2\sqrt{E_1 E_2} \sin\frac{\theta}{2}$$

$$\frac{\delta M}{M} = \frac{1}{2} \sqrt{\left(\frac{\delta E_1}{E_1}\right)^2 + \left(\frac{\delta E_2}{E_2}\right)^2 + \left(ctg\frac{\theta}{2}\delta\theta\right)^2}$$

If
$$\theta = \pi$$
 and $E_1 = E_2$,

$$\frac{\delta M}{M} = \frac{a}{\sqrt{M}}$$

Aug. 27, 2002 International Workshop on Linear Collider, Jeju, Korea, Ren-yuan Zhu, Caltech

b

"Theoretical Limit" of Energy Flow?

V. Morgunov, Paper in Calor2002 Proceedings

 E_{jet} consists, in average, 30% γ , 60% charged hadron (c.h.) and 10% neutral hadron (n.h.) Assuming calorimeter resolutions:

$$\frac{\delta E_{\gamma}}{E_{\gamma}} = \frac{11\%}{\sqrt{E_{\gamma}}}$$
 and

$$\frac{\delta E_{n.h}}{E_{n.h}} = \frac{40\%}{\sqrt{E_{n.h}}}$$

Assuming 100% charged track replacement,

$$\frac{\delta E_{c.h}}{E_{c.h}} = 10^{-4} E_{c.h},$$

which is negligible, modern energy flow has

$$\frac{\delta E_{jet}}{E_{jet}} = \frac{\sqrt{0.00363 + 0.016}}{\sqrt{E_{jet}}} = \frac{14\%}{\sqrt{E_{jet}}}.$$

Comments:

 100% charged track replacement is impossible because of shower overlap.

 Additional uncertainty due to QCD physics and jet definition.

Shower Overlap is Unavoidable

R. Wigmans, Paper in Calor2002 Proceedings

4 typical 100 GeV quark jets in "Tesla" detector. Dark dots are EM shower with Moliere radius of 1 cm. Open circles are hadron showers with interaction length of 10 cm.

Attempt by CDF and CMS indicates that shower library and particle ID with shower maximum does not help.

Partial Effect of Fragmentation & Algorithm

R. Wigmans, Paper in Calor2002 Proceedings

Jet energy fluctuation in a cone of R= 0.3 and 0.5: 5% at 100 GeV.

Comments:

Fragmentation effect is underestimated because of the independent jet fragmentation model used.
QCD effect of FSR, i.e. gluon bremsstrahlung, is not included in simulation.
Lower limit of jet energy resolution: "a" = 50%!!

Energy Flow Summary

- Classical energy flow improves jet energy resolution by 30%, to ~60% stochastic term. Further improvement must also address the physics limitations.
- Energy flow is less effective at high energies: tracker resolution & shower overlap.
- Jet direction is better measured. Less than 30% stochastic term is already achieved by using 4C fit, which is also available free at LC.
- Before spending tax payer's money in calorimeter segmentation, full simulation and verification with test beam are required to understand limitations to the jet measurement.

Why Precision ECAL at LC

- Photons and electrons are fundamental particles for SM and new physics.
- Performance of precision ECAL, such as crystals, well understood:
 - Good energy, position and photon angular resolution;
 - Good e/photon identification and reconstruction efficiency;
 - Good missing energy resolutions;
 - Good jet energy resolution with energy flow.

SM Physics in Precision ECAL

Charmonium System Observed Through Inclusive Photons

Charmed Meson in Z Decay

 $\chi_{c1} \to J/\psi\gamma$

The CDF event: 2 e + 2 γ **+ E**_T^{miss} **SM expectation (WW** $\gamma\gamma$) ~ **10⁻⁶ (PR D59 1999) Possible SUSY explanation** $\mathbf{q}\overline{\mathbf{q}} \rightarrow \widetilde{\mathbf{e}}^{+}\widetilde{\mathbf{e}}^{-} \rightarrow \mathbf{e}\mathbf{e}\widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0} \rightarrow \mathbf{e}\mathbf{e}\gamma\gamma\widetilde{\mathbf{G}}\widetilde{\mathbf{G}}$

L3 should be able to observe $\mathbf{e}^{+}\mathbf{e}^{-} \rightarrow \widetilde{\mathbf{\chi}}_{1}^{0}\widetilde{\mathbf{\chi}}_{1}^{0} \rightarrow \gamma\gamma\widetilde{\mathbf{G}}\widetilde{\mathbf{G}}$ Another possible channel $\mathbf{e}^{+}\mathbf{e}^{-} \rightarrow \widetilde{\mathbf{\chi}}_{2}^{0}\widetilde{\mathbf{\chi}}_{2}^{0} \rightarrow \gamma\gamma\widetilde{\mathbf{\chi}}_{1}^{0}\widetilde{\mathbf{\chi}}_{1}^{0}$

BaBar CsI(TI) Resolution

Crystal Calorimetry at Low Energies

Good light yield of CsI(TI) provides excellent energy resolution at B factory energies

L3 BGO Resolution

Properties of Crystal Scintillators

Crystal	Nal(TI)	CsI(TI)	Csl	BaF ₂	BGO	PbWO ₄	LSO(Ce)	GSO(Ce)
Density (g/cm ³)	3.67	4.51	4.51	4.89	7.13	8.3	7.40	6.71
Melting Point (°C)	651	621	621	1280	1050	1123	2050	1950
Radiation Length (cm)	2.59	1.85	1.85	2.06	1.12	0.9	1.14	1.37
Molière Radius (cm)	4.8	3.5	3.5	3.4	2.3	2.0	2.3	2.37
Interaction Length (cm)	41.4	37.0	37.0	29.9	21.8	18	21	22
Refractive Index ^a	1.85	1.79	1.95	1.50	2.15	2.2	1.82	1.85
Hygroscopicity	Yes	Slight	Slight	No	No	No	No	No
Luminescence ^b (nm)	410	560	420	300	480	560	420	440
(at peak)			310	220		420		
Decay Time ^b (ns)	230	1300	35	630	300	50	40	60
			6	0.9		10		
Light Yield ^{b,c} (%)	100	45	5.6	21	9	0.1	75	30
			2.3	2.7		0.6		
d(LY)/dT ^b (%/ ºC)	~0	0.3	-0.6	-2	-1.6	-1.9	?	?
				~0				
Experiment	Crystal	CLEO	KTeV	(L*)	L3	CMS	-	-
	Ball	BaBar BELLE		(GEM) TAPS	BELLE	ALICE BTeV		

a. at peak of emission; b. up/low row: slow/fast component; c. measured by PMT of bi-alkali cathode.

Scintillation Light of 6 Samples

PWO Samples from SIC

Emission Spectra

New PWO has green emission peaked at 560 nm

Decay Kinetics

QE of PMT and Emission

Taking into account of PMT QE, new PWO has 10 X LY

- To maximize physics reach, calorimetry for LC should have precision measurement on electrons, photons and jets.
- Crystal calorimetry provides the best achievable EM resolution, good missing energy and jet resolution.
- Some heavy crystal scintillator, such as PWO, may provide a cost effective precision EM calorimeter solution.