

Inorganic Scintillators for Future High Energy Physics Experiments

Ren-Yuan Zhu California Institute of Technology November 30, 2023

arXiv: 2203.06731 and arXiv: 2203.06788

- Precision e/γ enhance physics discovery potential.
- Performance of total absorption ECAL is well understood for e/ γ and jets:
 - Energy resolution achieved: $2\%/\sqrt{E} \oplus 1\%$
 - Position resolution: sub-mm can be achieved;
 - Good identification and reconstruction efficiency;
 - Excellent jet mass resolution with dual readout: C/S light or S/L gate.
- On-going Development in Caltech Crystal Lab:
 - Rad-hard LYSO:Ce crystals and LuAG:Ce ceramics (RADiCAL) for HL-LHC and FCC-hh;
 - Ultrafast BaF₂:Y and Lu₂O₃:Yb for future ultrafast calorimetry and time of flight;
 - Cost-effective ABS and DSB glasses for Higgs factory (Calvision) and HHCAL.

Precision e/ γ **Physics in HEP**

Charmonium system observed by CB through Inclusive photons

CB Nal(Tl)

Higgs -> $\gamma\gamma$ by CMS through reconstructing photon pairs

Crystals Used in HEP Calorimeters

Crystal	Nal:TI	Csl:Tl	Csl	BaF ₂	BGO	LYSO:Ce	PWO	PbF ₂
Density (g/cm ³)	3.67	4.51	4.51	4.89	7.13	7.40	8.3	7.77
Melting Point (°C)	651	621	621	1280	1050	2050	1123	824
Radiation Length (cm)	2.59	1.86	1.86	2.03	1.12	1.14	0.89	0.93
Molière Radius (cm)	4.13	3.57	3.57	3.10	2.23	2.07	2.00	2.21
Interaction Length (cm)	42.9	39.3	39.3	30.7	22.8	20.9	20.7	21.0
Refractive Index ^a	1.85	1.79	1.95	1.50	2.15	1.82	2.20	1.82
Hygroscopicity	Yes	Slight	Slight	No	No	No	No	No
Luminescence ^b (nm) (at peak)	410	550	420 310	300 220	480	402	425 420	-
Decay Time ^b (ns)	245	1220	30 6	650 0.9	300	40	30 10	-
Light Yield ^{b,c} (photons/MeV)	38,000	63,000	1,400 420	13,680 1,560	8,000	32,000	114 40	-
d(LY)/dT⁵ (%/ ºC)	-0.2	0.4	-1.4	-1.9 0.1	-0.9	-0.2	-2.5	-
Experiment	Crystal Ball	BaBar BELLE BES III p/low row: sl	KTeV Mu2e S. BELLE ow/fast.compo	TAPS Mu2e-II?	L3 BELLE	COMET CMS BTL PIONEER ut device taken ou	CMS ALICE PANDA EIC	A4 G-2

11/30/2023

11/30/2023

Presented by Ren-Yuan Zhu, Caltech, in RMD Inc., Boston

PROBINE CONTRACTOR

Dose Rate Dependent Damage in PWO

PWO light reached an equilibrium under a dose rate, showing a dose rate dependent damage Damage/recovery requires continuous light monitoring to maintain PWO energy resolution

Damage/recovery observed in early lab investigation: IEEE Trans. Nucl. Sci., Vol. 44 (1997) 458-476

 $dD = \sum_{i=1}^{n} \{-a_i D_i dt + (D_i^{all} - D_i) b_i R dt\}$

$$D = \sum_{i=1}^{n} \{ \frac{b_i R D_i^{all}}{a_i + b_i R} \left[1 - e^{-(a_i + b_i R)t} \right] + D_i^0 e^{-(a_i + b_i R)t} \}$$

- *D_i*: color center density in units of m⁻¹;
- D_i^0 : initial color center density;
- D_i^{all} is the total density of trap related to the color center in the crystal;
- a_i : recovery costant in units of hr⁻¹;

11/30/2023

- b_i : damage contant in units of kRad⁻¹;
- *R*: the radiation dose rate in units of kRad/hr.

 $D_{eq} = \sum_{i=1}^{n} \frac{b_i R D_i^{all}}{a_i + b_i R}$

Effect of Multiple Color Centers

AIP Conference Proceedings 867 (2006) 252

Presented by Ren-Yuan Zhu, Caltech, in RMD Inc., Boston

10

Radiation Damage Mechanism

SIMS analysis revealed that damage in alkali halides was caused by the oxygen and/or hydroxyl contamination. Localized stoichiometry analysis by TEM/EDS revealed that damage in oxides was caused by stoichiometry-related defects, e.g. oxygen vacancies.

As	grown	sampl	e
	0		

Element	Black spot	Peripheral	Matrix ₁	Matrix ₂
0	1.5	15.8	60.8	63.2
W	50.8	44.3	19.6	18.4
Pb	47.7	39.9	19.6	18.4

The same sample after oxygen compensation

Element	Point ₁	Point ₂	Point ₃	Point ₄
0	59.0	66.4	57.4	66.7
W	21.0	16.5	21.3	16.8
Pb	20.0	17.1	21.3	16.5

EWRIAC vs. Ionization Dose Rate

Large spread observed for both BTCP and SIC PWO with EWRIAC fit to 2nd order polynomials of dose rate. IEEE Trans. Nucl. Sci. NS-51 (2004) 1777

CMS PWO ECAL Laser Monitoring

Runs 24/7 providing 600 laser pulses/crystal at 100 Hz every 30 min

11

CMS Laser Monitoring Hardware

Lamp Pumped Lases: 2002 to 2012

Diode Pumped Lases: since 2012

CMS ECAL Performance at LHC

CMS H -> γγ and PWO Damage

T. Dimova, TIPP2023, light monitoring data

PWO Damage by Ionization & Neutrons

RIAC in PWO = $1.4 \times 10^{-14} \times 1$ MeV n_{eq} Fluence

γ-ray and hadron induced absorption explains CMS PWO monitoring data http://www.its.caltech.edu/~rzhu/talks/ryz_161028_PWO_mon.pdf & Trans. NS. 67 (2020) 1086-1092

11/30/2023

Presented by Ren-Yuan Zhu, Caltech, in RMD Inc., Boston

PROBATING CONTRACTION OF CONTRACTION

Comparison: ePIC and BTL at HL-LHC

The ionization dose rate and neutron flux of the ePIC PWO ECAL are two to three orders of magnitude lower than that of the CMS BTL (LYSO:Ce+SiPM) at the HL-LHC The expected RIAC values are small. QC is needed for mass-produced PWO crystals

Radiation	EIC / Year	EIC*	CMS BTL** / 4000 fb-1 (η= 0-1.45)	CMS BTL** (η= 0-1.45)
Ionization Dose	3 Krad	1.3 rad/h	2.7-4.8 Mrad	110-190 rad/h
1 MeV eq. Neutrons	10 ¹⁰ /cm ²	1.2×10 ³ /cm²/s	(2.5~2.9)×10 ¹⁴ /cm ²	(2.8~3.2)×10 ⁶ /cm²/s
Charged Hadrons			(2.2~2.5)×10 ¹³ /cm ²	(2.4~2.8)×10 ⁵ /cm²/s

*Estimated by assuming 100 days operation per year.

** IEEE Trans. Nucl. Sci. NS-68 (2021) 1244-1250

2019 DOE Basic Research Needs Study Priority Research Directions for Calorimetry

- Enhance calorimetry energy resolution for precision electroweak mass and missing-energy measurements;
- Advance calorimetry with spatial and timing resolution and radiation hardness to master high-rate environments;
- Develop ultrafast media to improve background rejection in calorimeters and particle identication detectors.

DOE 2019: <u>https://www.osti.gov/servlets/purl/1659761</u> ECFA 2021: <u>https://cds.cern.ch/record/2784893</u> Snowmass 2021: <u>https://arxiv.org/abs/2209.14111</u> Fast/ultrafast, radiation hard and cost-effective inorganic scintillators

LYSO:Ce Radiation Hardness

IEEE TNS 63 (2016) 612-619

CMS BTL LYSO spec: RIAC < 3 m⁻¹ after 4.8 Mrad, 2.5 x 10^{13} p/cm² and 3.2 x 10^{14} n_{eq}/cm²

Damage induced by protons is larger than that from neutrons Due to ionization energy loss in addition to displacement and nuclear breakup

LYSO:Ce for CMS MIP Timing Detector

MTD performance goal: 30-40 ps at the start degrading to < 60 ps at 3000 fb⁻¹ Barrel Timing Layer: arrays of LYSO crystal bars connected to SiPMs at both ends and readout by TOFHIR Ultrafast inorganic scintillators would help to break the pico-second time barrier BTL: LYSO bars + SiPM read-out CMS ► TK / ECAL interface ~ 45 mm thick $|\eta| < 1.45$ and $p_T > 0.7$ GeV ► Active area ~ 38 m² ; 332k channels ► Fluence at 3 ab⁻¹: 2×10¹⁴ n_{eq}/cm² ETL: Si with internal gain (LGAD) ▷ On the HGC nose ~ 65 mm thick ► 1.6 < |η| < 3.0 ► Active area ~ 14 m²; ~ 8.5M channels ► Fluence at 3 ab⁻¹: up to 2×10¹⁵ n_{ea}/cm² LYSO + SiPM with Thermal Electric Cooler (TEC) for CMS Barrel Timing Layer (BTL) in construction Mockup 01-0021 SiPM array prototypes from FBK

SiPM arrays mockup for TECs testing

LuAG:Ce Ceramics Radiation Hardness

IEEE TNS 69 (2022) 181-186

LuAG:Ce ceramics show a factor of two smaller RIAC values than LYSO:Ce up to $6.7 \times 10^{15} n_{eq}$ /cm² and $1.2 \times 10^{15} p$ /cm², promising for FCC-hh

R&D on slow component suppression by Ca co-doping, and radiation hardness by $\gamma/p/n$

RADiCAL: LYSO/LuAG Shashlik ECAL

arXiv: 2203.12806

RADiation hard CALorimetry Reducing light path length to mitigate radiation damage effect Using radiation hard materials: LuAG:Ce ceramics excitation matches LYSO:Ce emission

W (2.5 mm)

LuAG:Ce fiber

Monitoring

LYSO:Ce (1.5 mm)

Presented by Ren-Yuan Zhu, Caltech, in RMD Inc., Boston

114 mm

QD glass or polysiloxane)

Light Output and Response Uniformity

10.1109/NSS/MIC44867.2021.9875908

Excellent longitudinal uniformity observed for a Φ0.6 ×120 mm³ LuAG:Ce ceramic excited by a 420 nm LED at different location, with a solid coupling to a quartz fiber, mimicking its application in RADiCAL

Ultrafast BaF₂:Y Calorimeter for Mu2e-II

CsI+SiPM

Use ultrafast material to mitigate pile-up

Energy resolution	σ < 5% (FWHM/2.36) @ 100 MeV
 Time resolution 	σ < 500 ps
 Position resolution 	σ < 10 mm
 Radiation hardness Crystals Photosensors 	1 kGy/yr and a total of 10 ¹² <i>n</i> _1 MeV equivalent/cm ² total 3 x 10 ¹¹ <i>n</i> _1 MeV equivalent/cm ² total

Mu2e-I: 1,348 CsI of 34 x 34 x 200 mm³

Mu2e-II: 1,940 BaF₂:Y

Mu2e-II: arXiv:2203.07596

PIP-II/Mu2e-II: higher rates (~x3) and duty factor from and correspondingly higher ionizing radiation (10 kGy/yr) and neutron levels (10¹³ n_1 MeV equiv/cm² total), which are particularly important at the inner radius of disk 1

11/30/2023

BaF₂:Y for Calorimetry & Imaging

Increased F/S ratio observed in BGRI BaF₂:Y crystals: Proc. SPIE 10392 (2017)

Presented by Ren-Yuan Zhu, Caltech, in RMD Inc., Boston

FWI T

300 nm

89.9%

89.5%

87.1%

88.4%

88.3%

450

400

300

305

X-ray bunches with 2.83 ns spacing in septuplet are clearly resolved by ultrafast BaF_2 : Y and BaF_2 crystals: for GHz Hard X-ray Imaging NIMA 240 (2019) 223-239

PDE of UV SiPM for BaF₂ and BaF₂:Y

IEEE TNS 69 (2022) 958-964

Photodetector	EWPDE _{fast} (%)	EWPDE _{slow} (%)	Relative F/S _{BaF}	Relative F/S _{BaF:Y}
Hamamatsu MPPC	10.5	9.8	1/4.8	1/1.5
FBK SiPM 2021	17.8	12.7	1/3.6	1/1.1
FBK SiPM 2023-1	14.8	4.6	1/1.6	1/0.5
FBK SiPM 2023-2	14.8	5.0	1/1.7	1/0.5

γ-ray induced readout noise is reduced by BaF₂:Y slow suppression & solar-blind PDE

Novel Lu₂O₃:Yb Ceramics

Presented in the NSS2022 conference https://www.its.caltech.edu/~rzhu/talks/NSS22_N21-03.pdf

Lu_2O_3 : Yb ceramic of 9.4 g/cc shows an ultrafast decay time of **1.1 ns** by Am-241 with negligible slow component observed in integrated light output measurement

CalVision: Segmented Crystal ECAL

arXiv: 2203.04312

Followed by the IDEA DR HCAL, aiming at both EM and jet resolution

The HHCAL Concept

A. Para, H. Wenzel and S. McGill in Callor2012 Proceedings and
A. Benaglia *et al.*, IEEE TNS **63** (2016)
574-579: a jet energy resolution at a level of 20%/√E by HHCAL with dual readout of S/C or dual gate.
M. Demarteau, 2021 CPAD Workshop

Cost-effectiveness scaled with X₀: PWO, BGO, CsI, BSO, BaF₂:Y, LYSO

ltem	Size (R _M xR _M x25 X ₀)	1 m ³	10 m ³	100 m ³	Scaled to X ₀
BGO	22.3×22.3×280 mm	\$8/cc	\$7/cc	\$6/cc	1.23
BaF ₂ :Y	31.0×31.0×507.5 cm	\$12/cc	\$11/cc	\$10/cc	2.28
LYSO:Ce	20.7x20.7x285 mm	\$36/cc	\$34/cc	\$32/cc	1.28
PWO	20x20x223 mm	\$9/cc	\$8/cc	\$7.5/cc	1.00
BSO	22x22x274 mm	\$8.5/cc	\$7.5/cc	\$7.0/cc	1.29
Csl	35.7x35.7x465 mm	\$4.6/cc	\$4.3/cc	\$4.0/cc	2.09

Inorganic Scintillators for HHCAL

Presented in the 9/14/2023 CalVision meeting all samples measured at Caltech

	BGO	BSO	PWO	PbF ₂	PbFCI	Sapphire:Ti	AFO:Ce Glass	DSB:Ce Glass	ABS:Ce Glass
Density (g/cm ³)	7.13	6.8	8.3	7.77	7.11	3.98	4.6	4.3	6.0
Melting point (°C)	1050	1030	1123	824	608	2040	980 ⁷	1550	?
X ₀ (cm)	1.12	1.15	0.89	0.94	1.05	7.02	2.96	2.58	1.56
R _M (cm)	2.23	2.33	2.00	2.18	2.33	2.88	2.90	3.24	2.49
λ _ι (cm)	22.7	23.4	20.7	22.4	24.3	24.2	26.4	30.9	24.2
Z _{eff} value	71.5	73.8	73.6	76.7	74.7	11.1	41.4	49.5	56.6
dE/dX (MeV/cm)	8.99	8.59	10.1	9.42	8.68	6.75	6.84	6.1	8.0
Emission Peak ^a (nm)	480	470	425 420	۸	420	300 750	365	420	400
Refractive Index ^b	2.15	2.68	2.20	1.82	2.15	1.76	?	?	?
LY (ph/MeV)⁰	7,500	1,500	130	λ	150	7,900	450	1,360	1,150
Decay Time ^a (ns)	300	100	30 10	۸	3	300 3200	40	500	740
d(LY)/dT (%/°C) ^c	-0.9	?	-2.5	Υ	?	?	?	0.3	?
Cost (\$/cc)	6.0	7.0	7.5	6.0	?	0.6	2.0	2.0	<1

Summary

The HL-LHC and FCC-hh require fast and radiation hard inorganic scintillator. **RADiCAL** proposes an ultra-compact, fast timing and longitudinally segmented shashlik calorimeter with LuAG:Ce ceramics as wavelength shifter for LYSO:Ce crystals. R&D is on-going to suppress slow components in LuAG:Ce. Mu2e-II considers ultrafast BaF₂:Y calorimeter. R&D is on radiation hardness of BaF₂:Y and solar-blind SiPM. Industry is developing ultrafast Lu₂O₃:Yb ceramics. **CalVision** proposes a dual readout longitudinally segmented crystal ECAL combined with the IDEA HCAL promising excellent EM and Hadronic resolutions for the proposed lepton Higgs factory. Homogeneous HCAL (HHCAL) promises the best jet mass resolution by total

absorption. Novel cost-effective heavy scintillating glass is under development.

Acknowledgements: DOE HEP Award DE-SC0011925

R&D On-going at Caltech

Fast/ultrafast, radiation hard and cost-effective heavy scintillators

- Bright, fast and radiation hard inorganic scintillators for the severe radiation environment expected by the proposed FCC_{hh} . YAG, LuAG, GGAG, GYAG and GLuAG suffer from slow scintillation component.
- Ultrafast inorganic scintillators: Cross-luminescence. Wide gap semiconductorbased scintillators with sub-ns decay time and quantum confinement-based inorganic CsPbX₃ (X = Cl, Br, I, mixed Cl/Br and Br/I), halide perovskite quantum dots may help to break the ps timing barrier for future HEP TOF.
- Dense, UV-transparent, cost-effective heavy inorganic scintillators for the homogeneous hadron calorimeter (HHCAL) concept for the Higgs factory.
- Compact UV sensitive photodetectors with sufficient dynamic range for ultrafast calorimeters.

Presented in the DRC9 round table discussion in 2023 CPAD Workshop, SLAC