

Inorganic Scintillators for Future HEP and NP Experiments

Ren-Yuan Zhu

California Institute of Technology

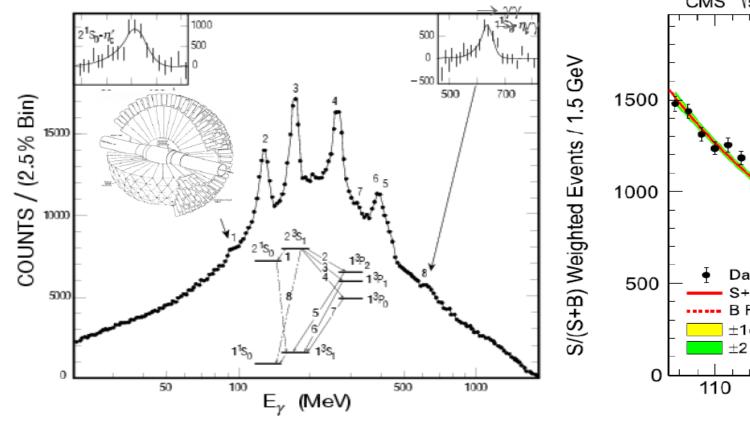
November 28, 2023

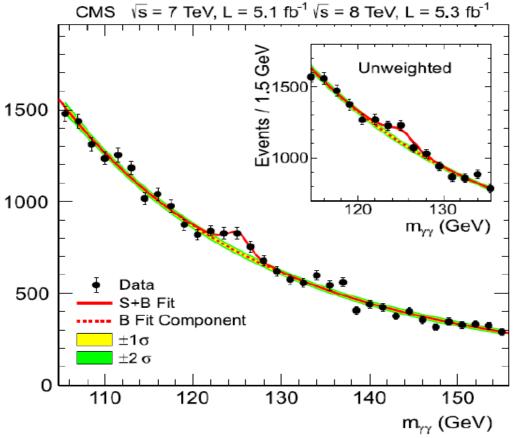
Why Inorganic Scintillators?

arXiv: 2203.06731 and arXiv: 2203.06788

- Precision e/ γ enhance physics discovery potential.
- Performance of total absorption ECAL is well understood for e/γ and jets:
 - Energy resolution achieved: $2\%/\sqrt{E} \oplus 1\%$
 - Position resolution: sub-mm can be achieved;
 - Good identification and reconstruction efficiency;
 - Excellent jet mass resolution with dual readout: C/S light or S/L gate.
- On-going Development in Caltech Crystal Lab:
 - Rad-hard LYSO:Ce crystals and LuAG:Ce ceramics (RADiCAL) for HL-LHC and FCC-hh;
 - Ultrafast BaF₂:Y and Lu₂O₃:Yb for future ultrafast calorimetry and time of flight;
 - Cost-effective ABS and DSB glasses for Higgs factory (Calvision) and HHCAL.

Precision e/γ Physics in HEP

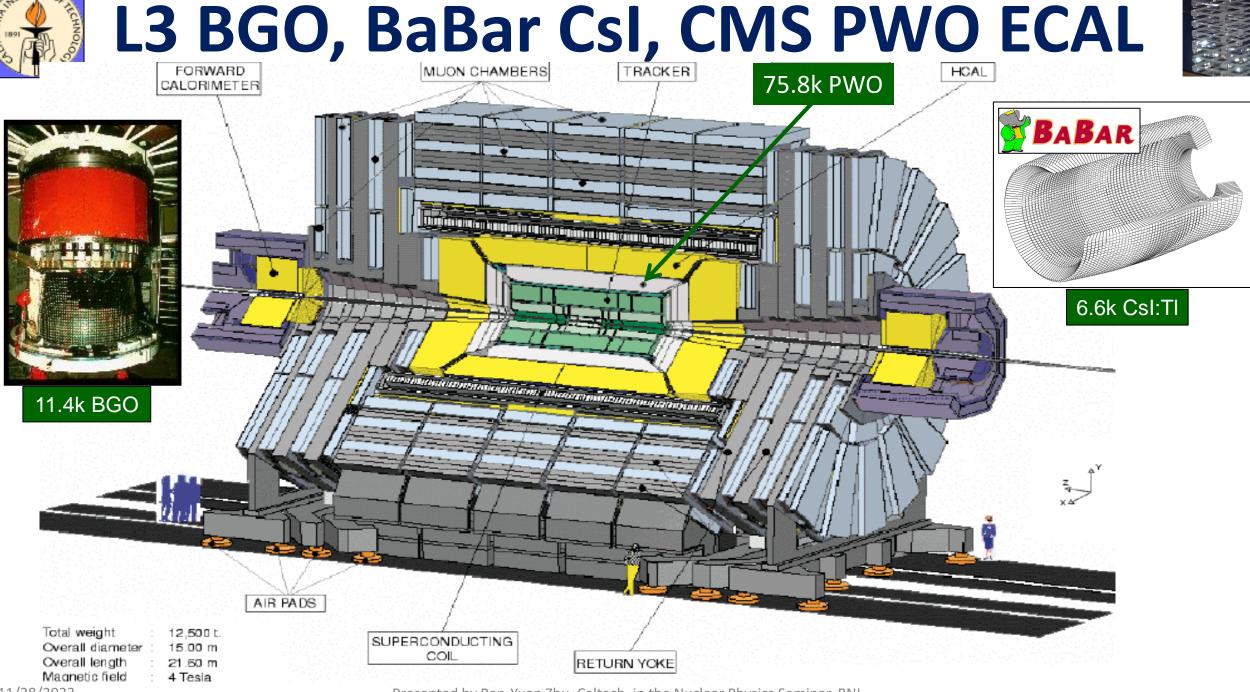



Charmonium system observed by CB through Inclusive photons

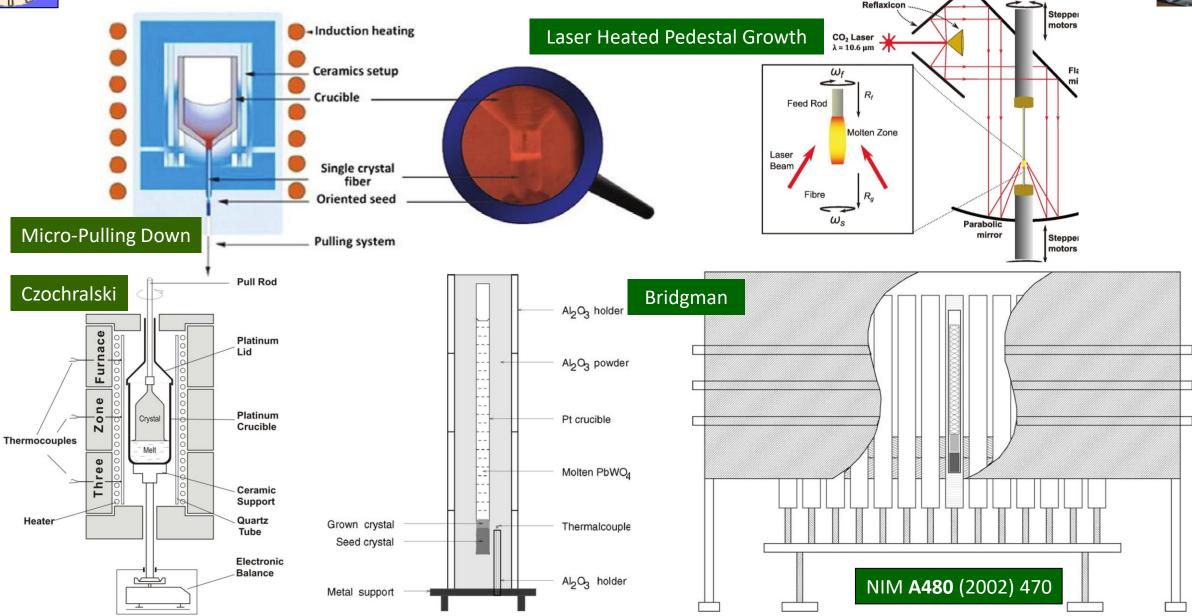
CB NaI(TI)

Higgs -> γγ by CMS through reconstructing photon pairs

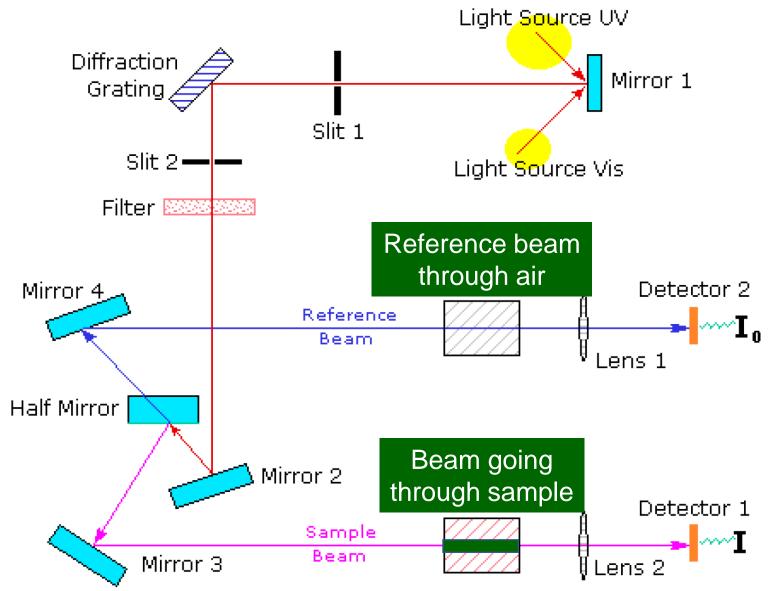
CMS PWO



Crystals Used in HEP Calorimeters


Nal:Tl	CsI:TI	Csl	BaF ₂	BGO	LYSO:Ce	PWO	PbF ₂
3.67	4.51	4.51	4.89	7.13	7.40	8.3	7.77
651	621	621	1280	1050	2050	1123	824
2.59	1.86	1.86	2.03	1.12	1.14	0.89	0.93
4.13	3.57	3.57	3.10	2.23	2.07	2.00	2.21
42.9	39.3	39.3	30.7	22.8	20.9	20.7	21.0
1.85	1.79	1.95	1.50	2.15	1.82	2.20	1.82
Yes	Slight	Slight	No	No	No	No	No
410	550	420 310	300 220	480	402	425 420	-
245	1220	30 6	650 0.9	300	40	30 10	-
38,000	63,000	1,400 420	13,680 1,560	8,000	32,000	114 40	-
-0.2	0.4	-1.4	-1.9 0.1	-0.9	-0.2	-2.5	-
Crystal Ball	BaBar BELLE BES III	KTeV Mu2e S. BELLE	TAPS Mu2e-II?	L3 BELLE	COMET CMS BTL PIONEER	CMS ALICE PANDA	A4 G-2
	3.67 651 2.59 4.13 42.9 1.85 Yes 410 245 38,000	3.67 4.51 651 621 2.59 1.86 4.13 3.57 42.9 39.3 1.85 1.79 Yes Slight 410 550 245 1220 38,000 63,000 -0.2 0.4 Crystal Ball BaBar BELLE	3.67 4.51 4.51 651 621 621 2.59 1.86 1.86 4.13 3.57 3.57 42.9 39.3 39.3 1.85 1.79 1.95 Yes Slight Slight 410 550 420 310 310 245 1220 30 6 38,000 63,000 1,400 420 -0.2 0.4 -1.4 Crystal Ball BaBar BELLE BELLE Mu2e KTeV Mu2e	3.67	3.67	3.67	3.67 4.51 4.51 4.89 7.13 7.40 8.3 651 621 621 1280 1050 2050 1123 2.59 1.86 1.86 2.03 1.12 1.14 0.89 4.13 3.57 3.57 3.10 2.23 2.07 2.00 42.9 39.3 39.3 30.7 22.8 20.9 20.7 1.85 1.79 1.95 1.50 2.15 1.82 2.20 Yes Slight Slight No No No No No No No No No 310 220 425 420 245 1220 30 650 300 480 402 425 420 245 1220 30 650 300 40 30 30 40 30 30 40 30 40 30 40 30 40 30 40 40 40 40 40 40 40 40 40 40 40 40 40

Crystal Growth Techniques



Transmittance and Absorption

PerkinElmer Lambda 950
UV/VIS/NIR
spectrophotometer with
large sample compartment
to measure transmittance
and absorption

Typical Precision: 0.2 to 0.3%

Watch out:
Birefringence, sample
surface and scattering
centers

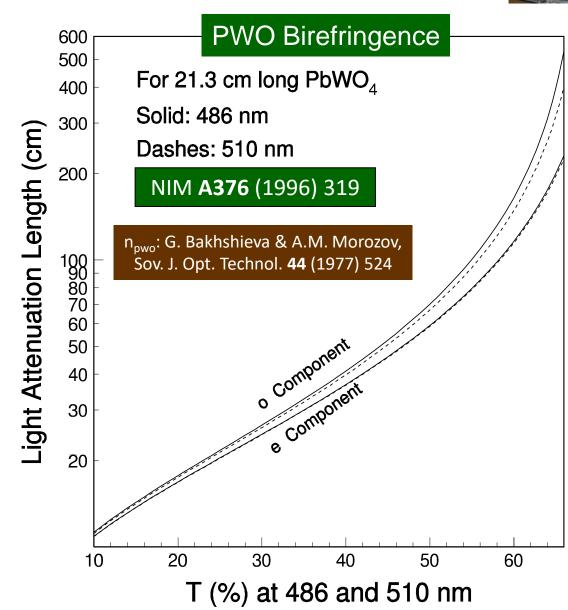
LAL and Birefringence

Light attenuation length (LAL), or inverse of its light absorption coefficient, extracted from transmittance

 $LAL(\lambda)$

$$= \frac{l}{\ln\left\{\left[T\left(\lambda\right)\left(1 - T_{s}\left(\lambda\right)\right)^{2}\right] / \left[\sqrt{4T_{s}^{4}\left(\lambda\right) + T^{2}\left(\lambda\right)\left(1 - T_{s}^{2}\left(\lambda\right)\right)^{2}} - 2T_{s}^{2}\left(\lambda\right)\right]\right\}}$$
(2)

where $T(\lambda)$ is the longitudinal transmittance measured along crystal length l, and $T_s(\lambda)$ is the theoretical transmittance assuming multiple bouncings between two crystal ends and without internal absorption:

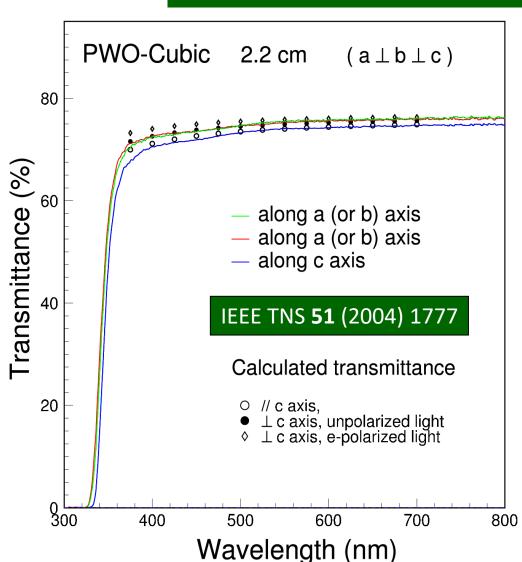

$$T_s(\lambda) = (1 - R(\lambda))^2 + R^2(\lambda)(1 - R(\lambda))^2 + \dots = (1 - R(\lambda))/(1 + R(\lambda))$$
(3)

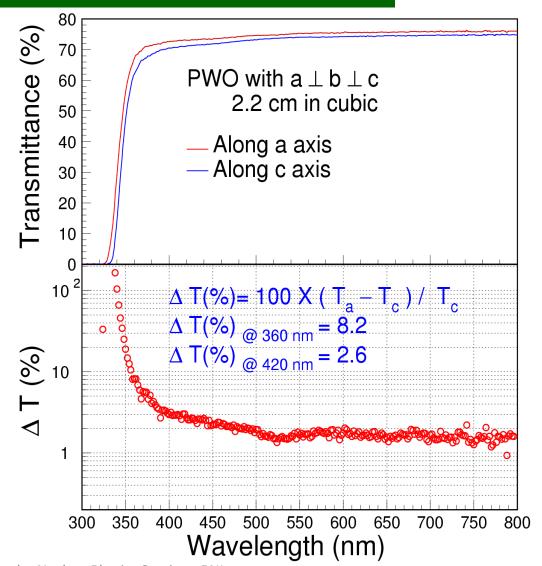
and

NIM **A333** (1993) 422

$$R(\lambda) = \frac{\left(n_{\text{crystal}}(\lambda) - n_{\text{air}}(\lambda)\right)^{2}}{\left(n_{\text{crystal}}(\lambda) + n_{\text{air}}(\lambda)\right)^{2}} \tag{4}$$

where n_{crystal} (λ) and n_{air} (λ) are the refractive indices for crystal and air, respectively.

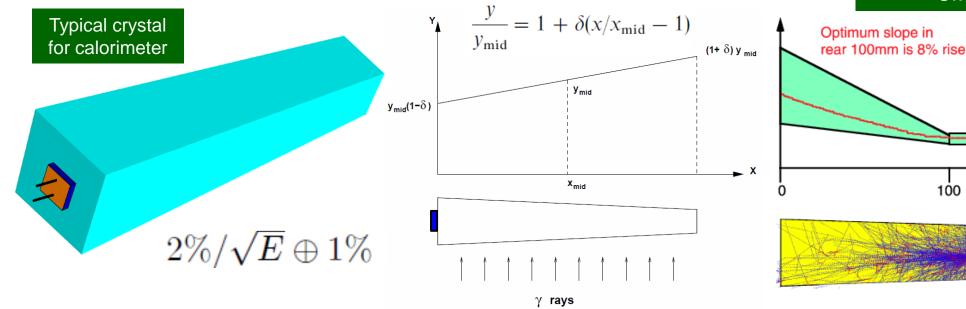


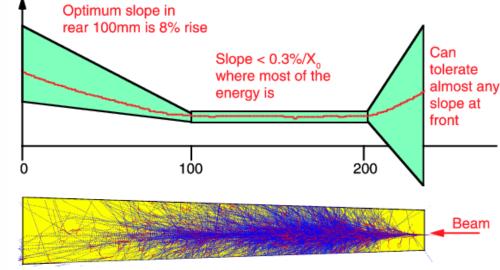


PWO Birefringence

Attention to be paid to the crystal orientation vs. optical axis

LY, LO, LCE and LRU


Crystal light yield (LY) in photons/MeV energy deposition: βE_g is the energy required for an e-h pair, S is energy transferred to the luminescence center and Q is its quantum efficiency.


Measured light output (LO) in photoelectrons/MeV depends on crystal LY, light collection efficiency (LCE) and the quantum efficiency of the photodetector used for the measurement.

LCE is sample dependent

$$LY = 10^6 S \cdot Q / (\beta \cdot E_g)$$
$$LO = LY \cdot LCE \cdot QE$$

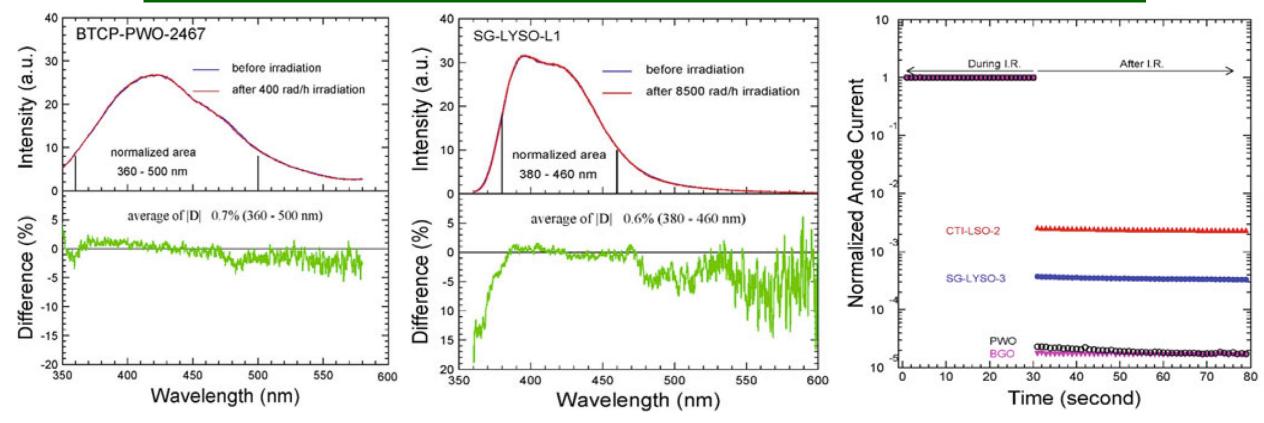
Light Response Uniformity (LRU)
CMS Specification

Radiation Damage Effects

NIM A413 (1998) 297, https://doi.org/10.1007/978-3-319-47999-6_22-2

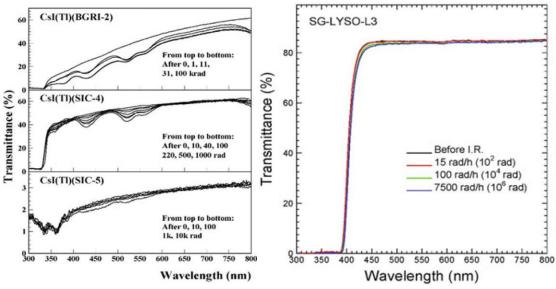
- Scintillation mechanism damage: reduced LY and LO and maybe also LRU;
- Radiation-induced phosphorescence (afterglow): increase dark current, dark counting rate and readout noise;
- Radiation-induced absorption (color centers): reduced light attenuation length,
 LO and maybe also LRU.

	CsI:Tl	CsI	BaF ₂	BGO	PWO	LSO/LYSO
Scintillation mechanism	No	No	No	No	No	No
Phosphorescence (afterglow)	Yes	Yes	Yes	Yes	Yes	Yes
Absorption (color centers)	Yes	Yes	Yes	Yes	Yes	Yes
Recovery	slow	No	No	Yes	Yes	No
Dose rate dependence	No	No	No	Yes	Yes	No
Thermal Annealing	No	No	Yes	Yes	Yes	Yes
Optical Bleaching	No	No	Yes	Yes	Yes	Yes



Scintillation Mechanism and Afterglow

https://doi.org/10.1007/978-3-319-47999-6_22-2


Crystal's scintillation mechanism is not damaged by γ -rays, neutrons and charged hadrons, as shown in no variation in the emission spectra measured before and after irradiations. Radiation-induced phosphorescence is measured as the photo-current after radiation, which is at a level of 10^{-5} for BGO and PWO and 3×10^{-4} for LYSO, and 2×10^{-3} for LSO.

Radiation-Induced Color Centers

b) BGO: Mn

d) BGO: Cr

Energy (eV)

BTCP-2376 Rad-induced absorption coefficient (m⁻¹) BTCP-2376 SIC-616 C 0.15 A₁ = 0.36 E₁₁ = 2.32 σ₁ = 0.20 SIC-616 A, = 1.26 E, = 3.15 d, = 0.76

Photon energy (eV)

https://doi.org/10.1007/978-3-319-47999-6_22-2

$$EWLT = \frac{\int LT(\lambda) Em(\lambda) d\lambda}{\int Em(\lambda) d\lambda}$$

 $RIAC(\lambda) \ or \ D(\lambda) = 1/LAL_{after}(\lambda) - 1/LAL_{before}(\lambda)$

$$RIAC(\lambda) = \frac{1}{l} \ln \frac{T_0(\lambda)}{T(\lambda)}$$

$$EWRIAC = \frac{\int RIAC(\lambda) Em(\lambda) d\lambda}{\int Em(\lambda) d\lambda}$$

$$RIAC(\lambda) = \sum_{i=1}^{n} A_i e^{-\frac{(E(\lambda) - E_i)^2}{2\sigma_i^2}}$$

NIM A**302** (1991) 69, NIM A**376** (1996) 319

0.2

Absorbance Difference (cm⁻¹)

0.05

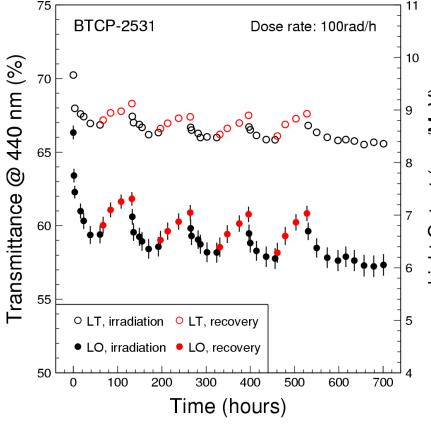
a) BGO: Ca

c) BGO: Pb(1)

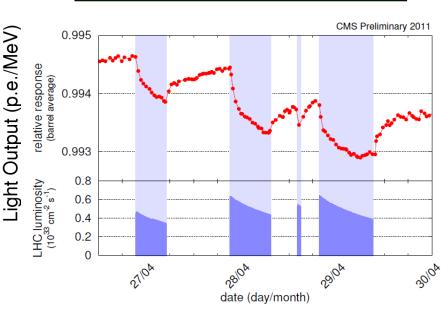
2.5

Dose Rate Dependent Damage in PWO

PWO light reached an equilibrium under a dose rate, showing a dose rate dependent damage Damage/recovery requires continuous light monitoring to maintain PWO energy resolution


Damage/recovery observed in early lab investigation: IEEE Trans. Nucl. Sci., Vol. 44 (1997) 458-476

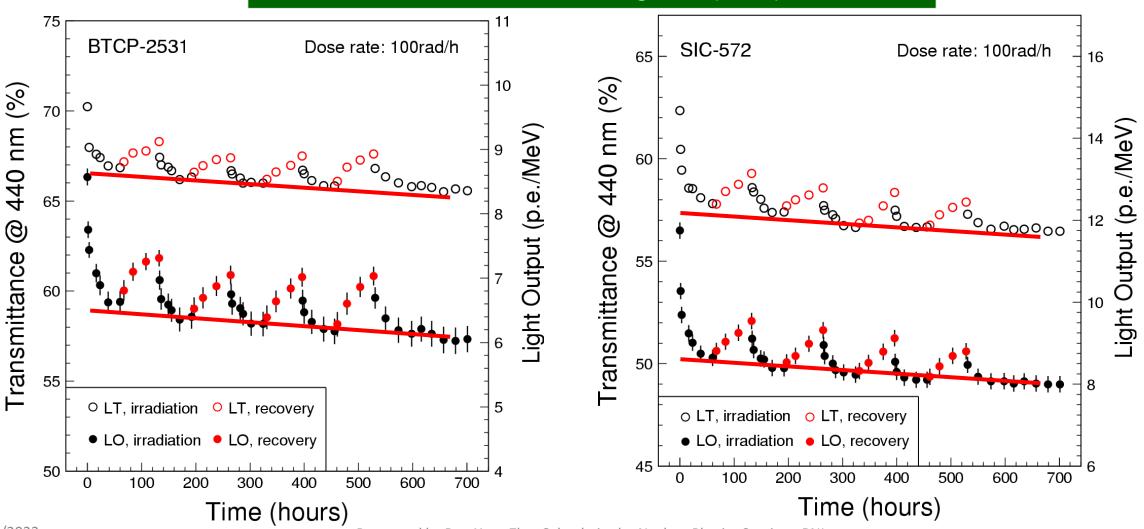
$$dD = \sum_{i=1}^{n} \{-a_i D_i dt + (D_i^{all} - D_i) b_i R dt\}$$


$$D = \sum_{i=1}^{n} \left\{ \frac{b_i R D_i^{all}}{a_i + b_i R} \left[1 - e^{-(a_i + b_i R)t} \right] + D_i^0 e^{-(a_i + b_i R)t} \right\}$$

- D_i : color center density in units of m⁻¹;
- D_i⁰: initial color center density;
- D_i^{all} is the total density of trap related to the color center in the crystal;
- a_i : recovery costant in units of hr⁻¹;
- b_i : damage contant in units of kRad⁻¹;
- R: the radiation dose rate in units of kRad/hr.

$$D_{eq} = \sum_{i=1}^{n} \frac{b_i R D_i^{all}}{a_i + b_i R}$$

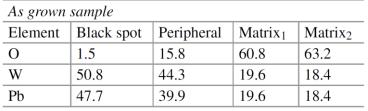
Damage and recovery observed in situ at the LHC by the CMS light monitoring system



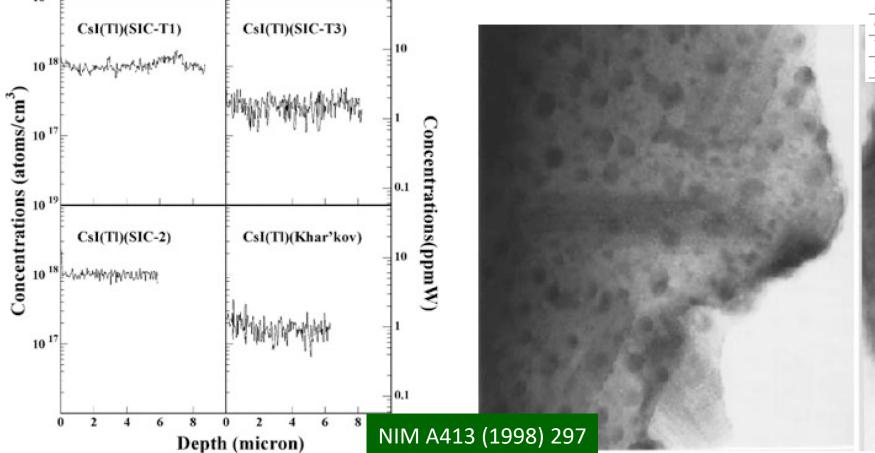
Effect of Multiple Color Centers

BTCP & SIC PWO @ 100 rad/h and recovery

AIP Conference Proceedings 867 (2006) 252



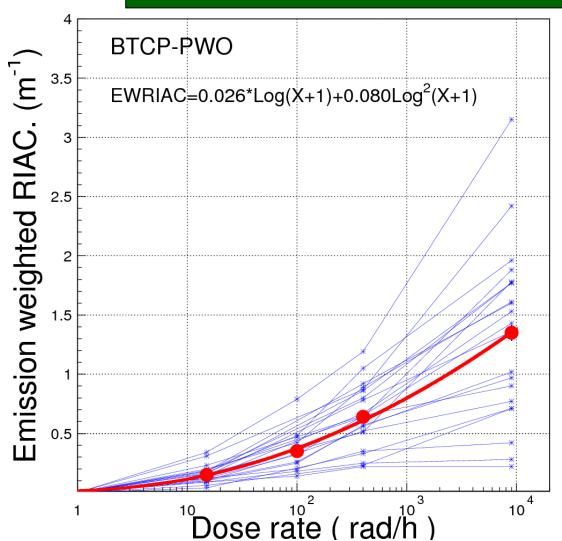
Radiation Damage Mechanism

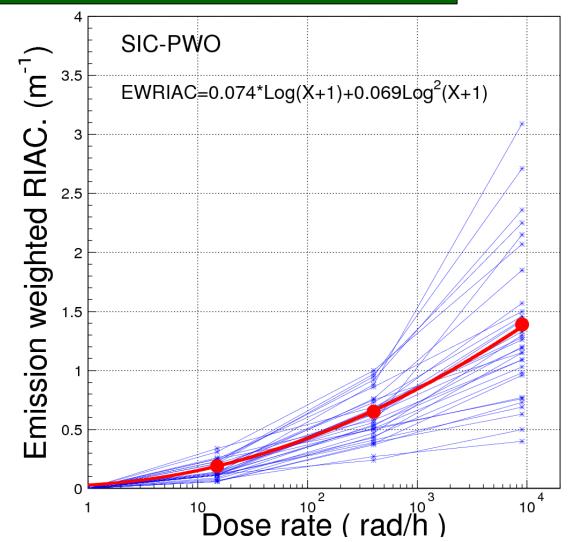



SIMS analysis revealed that damage in alkali halides was caused by the oxygen and/or hydroxyl contamination. Localized stoichiometry analysis by TEM/EDS revealed that damage in oxides was caused by stoichiometry-related defects, e.g. oxygen vacancies.

	The same	sample	after	oxygen	compensation
--	----------	--------	-------	--------	--------------

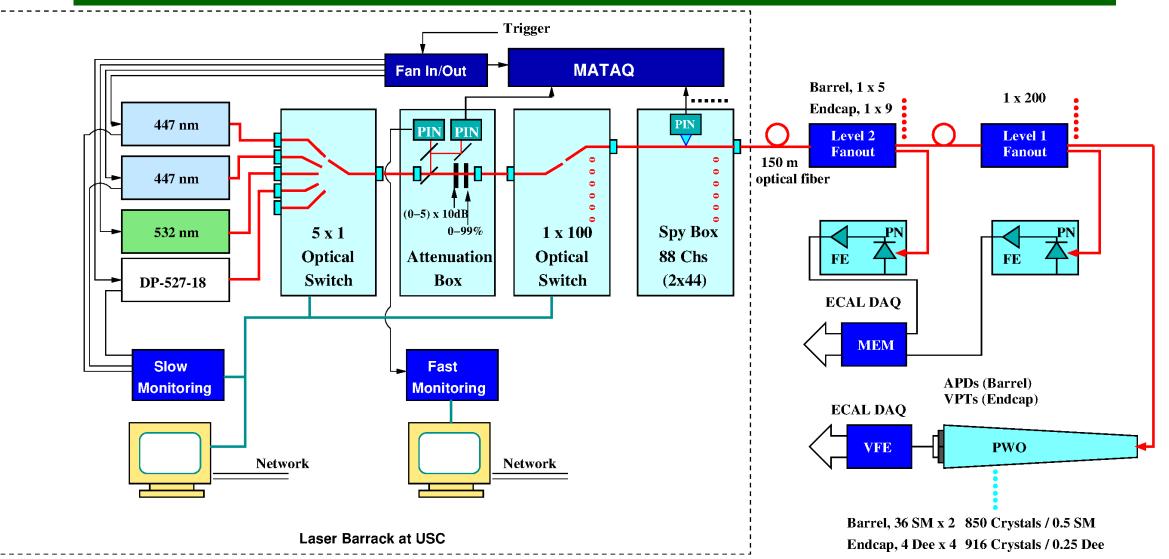
Element	Point ₁	Point ₂	Point ₃	Point ₄
О	59.0	66.4	57.4	66.7
W	21.0	16.5	21.3	16.8
Pb	20.0	17.1	21.3	16.5





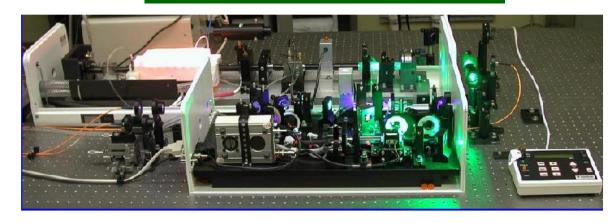
EWRIAC vs. Ionization Dose Rate

Large spread observed for both BTCP and SIC PWO with EWRIAC fit to 2nd order polynomials of dose rate. IEEE Trans. Nucl. Sci. NS-51 (2004) 1777



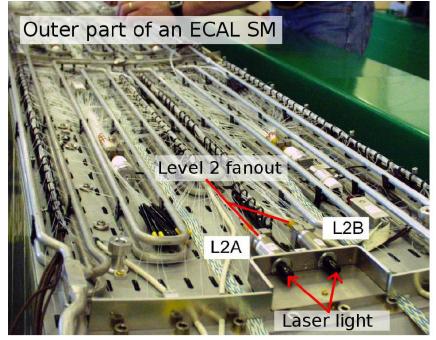
CMS PWO ECAL Laser Monitoring

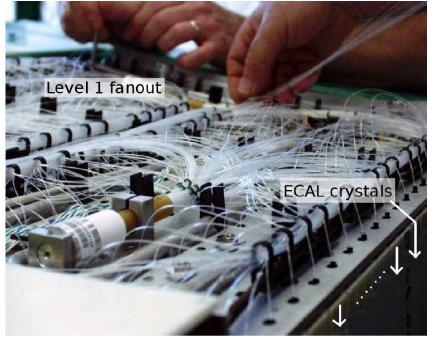
Runs 24/7 providing 600 laser pulses/crystal at 100 Hz every 30 min



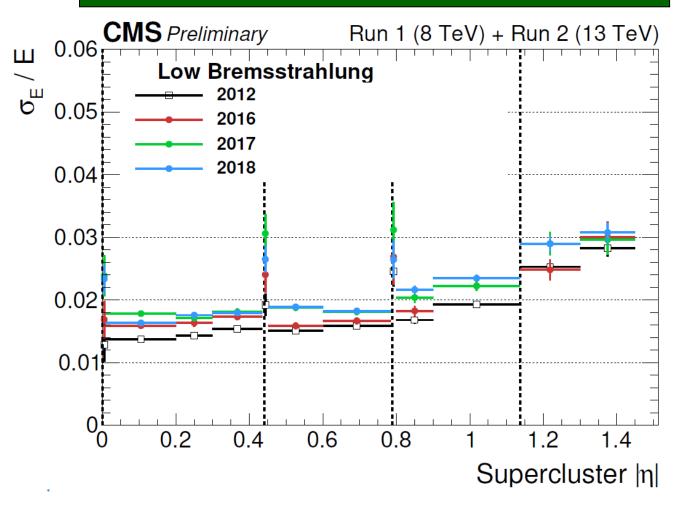
CMS Laser Monitoring Hardware

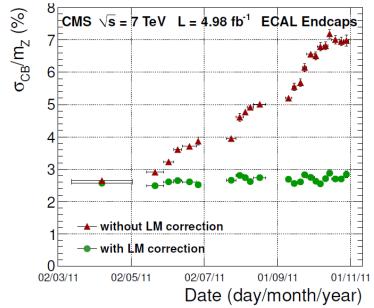
Lamp Pumped Lases: 2002 to 2012

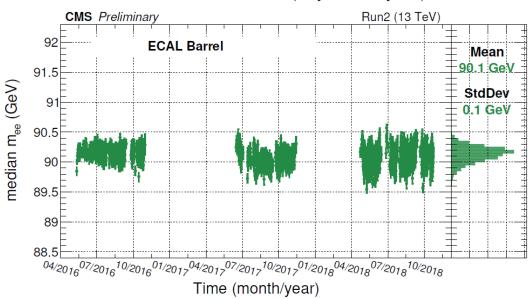

Diode Pumped Lases: since 2012



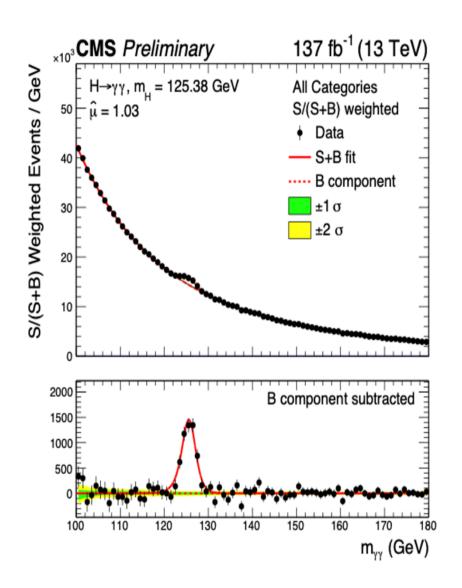
11/28/2023

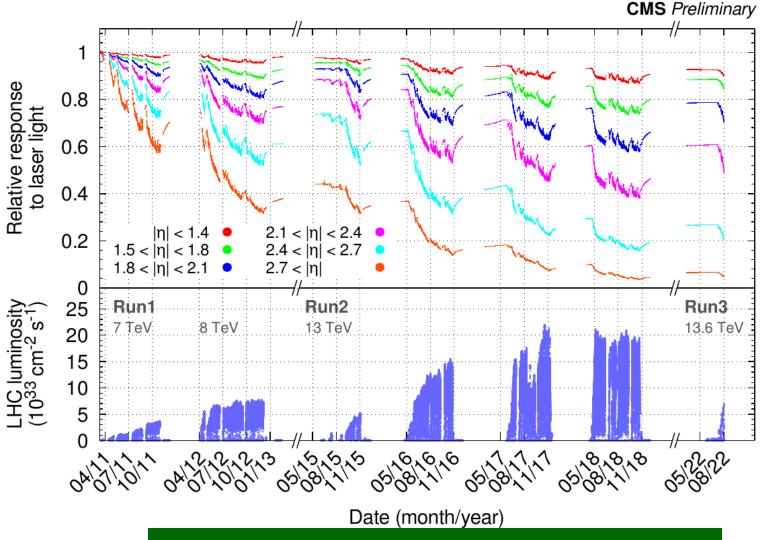

Presented by Ren-Yuan Zhu, Caltech, in the Nuclear Physics Seminar, BNL




CMS ECAL Performance at LHC

Degradation of energy resolution due to radiation damage F. Ferri, presented in Calor 2022, Brighton

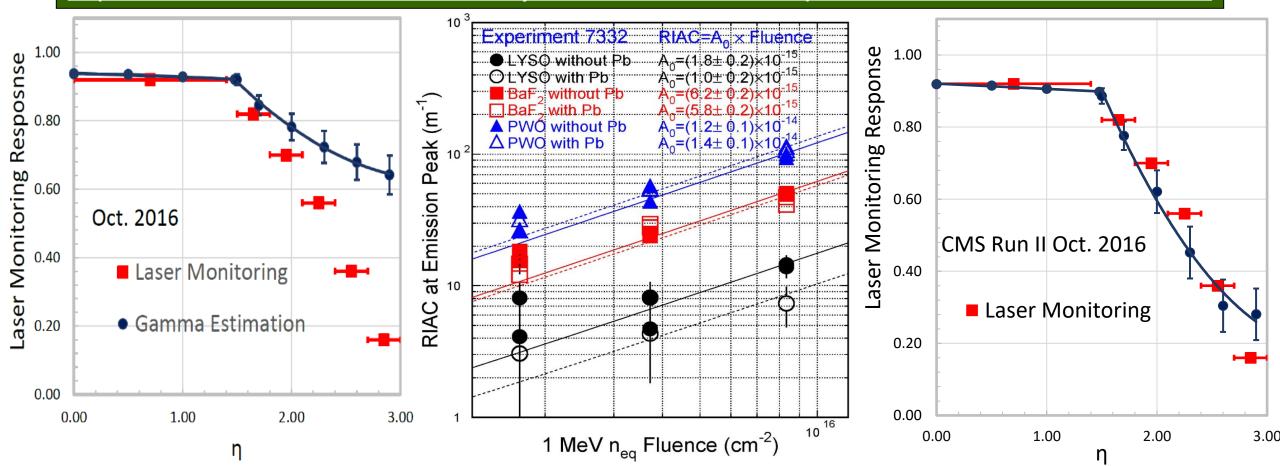




CMS H -> γγ and PWO Damage

T. Dimova, TIPP2023, light monitoring data

PWO damage due to ionization dose and hadrons



PWO Damage by Ionization & Neutrons

RIAC in PWO = $1.4 \times 10^{-14} \times 1$ MeV n_{eq} Fluence

γ-ray and hadron induced absorption explains CMS PWO monitoring data http://www.its.caltech.edu/~rzhu/talks/ryz_161028_PWO_mon.pdf & Trans. NS. 67 (2020) 1086-1092

Comparison: ePIC and BTL at HL-LHC

The ionization dose rate and neutron flux of the ePIC PWO ECAL are two to three orders of magnitude lower than that of the CMS BTL (LYSO:Ce+SiPM) at the HL-LHC The expected RIAC values are small. QC is needed for mass-produced PWO crystals

Radiation	EIC / Year	EIC*	CMS BTL** / 4000 fb-1 (η= 0-1.45)	CMS BTL** (η= 0-1.45)
Ionization Dose	3 Krad	1.3 rad/h	2.7-4.8 Mrad	110-190 rad/h
1 MeV eq. Neutrons	10^{10}/cm^2	1.2×10 ³ /cm ² /s	(2.5~2.9)×10 ¹⁴ /cm ²	(2.8~3.2)×10 ⁶ /cm²/s
Charged Hadrons			(2.2~2.5)×10 ¹³ /cm ²	(2.4~2.8)×10 ⁵ /cm²/s

^{*}Estimated by assuming 100 days operation per year.

^{**} IEEE Trans. Nucl. Sci. NS-68 (2021) 1244-1250

2019 DOE Basic Research Needs Study Priority Research Directions for Calorimetry

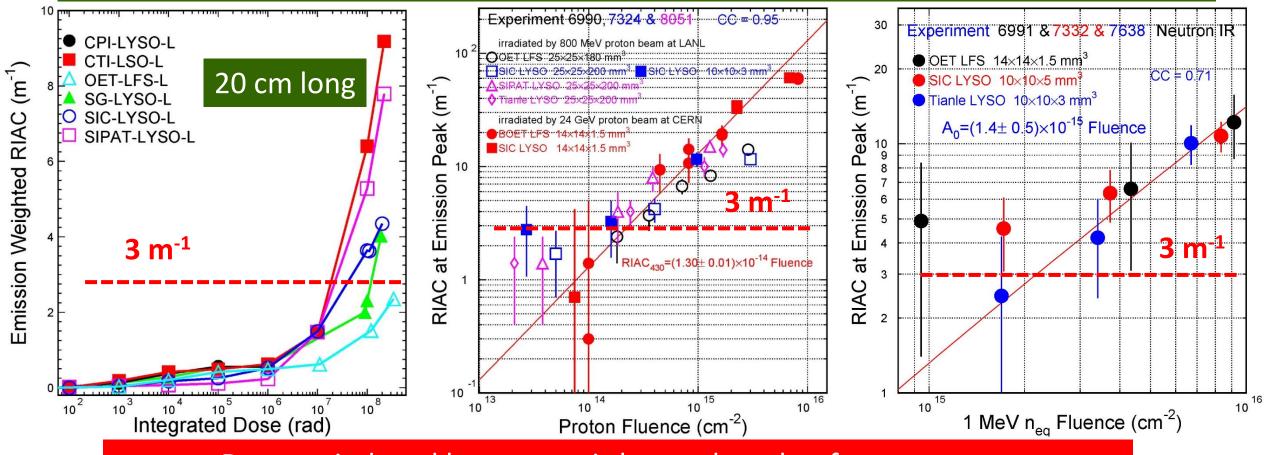
- Enhance calorimetry energy resolution for precision electroweak mass and missing-energy measurements;
- Advance calorimetry with spatial and timing resolution and radiation hardness to master high-rate environments;
- Develop ultrafast media to improve background rejection in calorimeters and particle identication detectors.

DOE 2019: https://www.osti.gov/servlets/purl/1659761

ECFA 2021: https://cds.cern.ch/record/2784893

Snowmass 2021: https://arxiv.org/abs/2209.14111

Fast/ultrafast, radiation hard and cost-effective inorganic scintillators



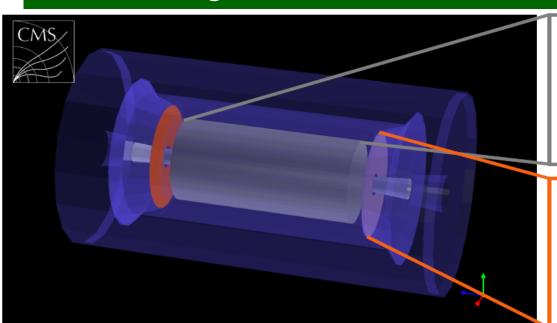
LYSO:Ce Radiation Hardness

IEEE TNS 63 (2016) 612-619

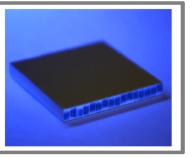
CMS BTL LYSO spec: RIAC < 3 m⁻¹ after 4.8 Mrad, $2.5 \times 10^{13} \text{ p/cm}^2$ and $3.2 \times 10^{14} \text{ n}_{eq}/\text{cm}^2$

Damage induced by protons is larger than that from neutrons

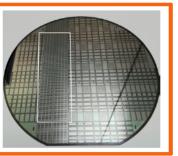
Due to ionization energy loss in addition to displacement and nuclear breakup


LYSO:Ce for CMS MIP Timing Detector

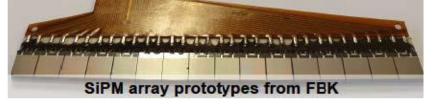
MTD performance goal: 30-40 ps at the start degrading to < 60 ps at 3000 fb⁻¹


Barrel Timing Layer: arrays of LYSO crystal bars connected to SiPMs at both ends and readout by TOFHIR

Ultrafast inorganic scintillators would help to break the pico-second time barrier

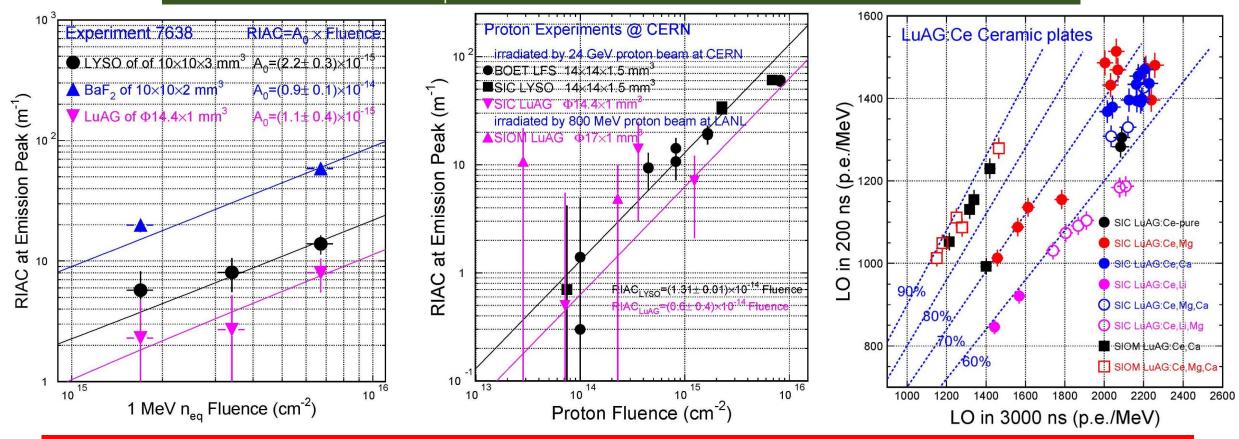

BTL: LYSO bars + SiPM read-out

- ► TK / ECAL interface ~ 45 mm thick
- ightharpoonup | η | < 1.45 and p_T > 0.7 GeV
- ► Active area ~ 38 m²; 332k channels
- ightharpoonup Fluence at 3 ab⁻¹: 2×10^{14} n_{eq}/cm²


ETL: Si with internal gain (LGAD)

- ➤ On the HGC nose ~ 65 mm thick
- ► $1.6 < |\eta| < 3.0$
- ightharpoonup Active area $\sim 14 \text{ m}^2$; $\sim 8.5 \text{M}$ channels
- ightharpoonup Fluence at 3 ab⁻¹: up to 2×10^{15} n_{eq}/cm²

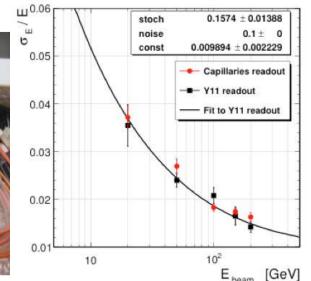
LYSO + SiPM with Thermal Electric Cooler (TEC) for CMS Barrel Timing Layer (BTL) in construction



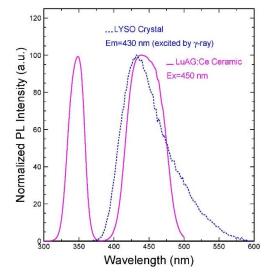
LuAG:Ce Ceramics Radiation Hardness

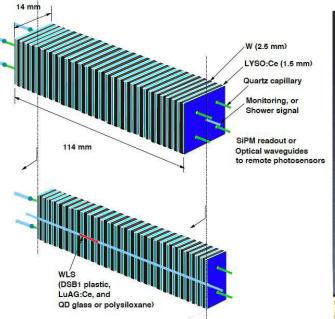
IEEE TNS 69 (2022) 181-186

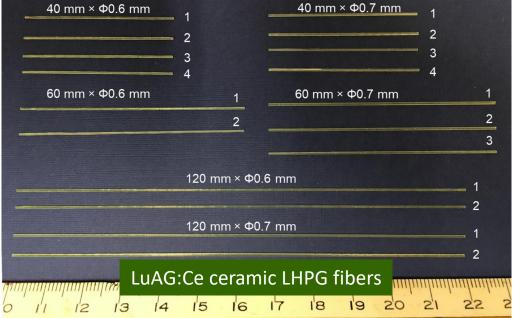
LuAG:Ce ceramics show a factor of two smaller RIAC values than LYSO:Ce up to 6.7×10^{15} n_{eg}/cm² and 1.2×10^{15} p/cm², promising for FCC-hh

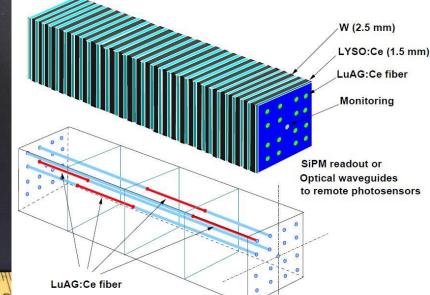

R&D on slow component suppression by Ca co-doping, and radiation hardness by $\gamma/p/n$

RADiCAL: LYSO/LuAG Shashlik ECAL

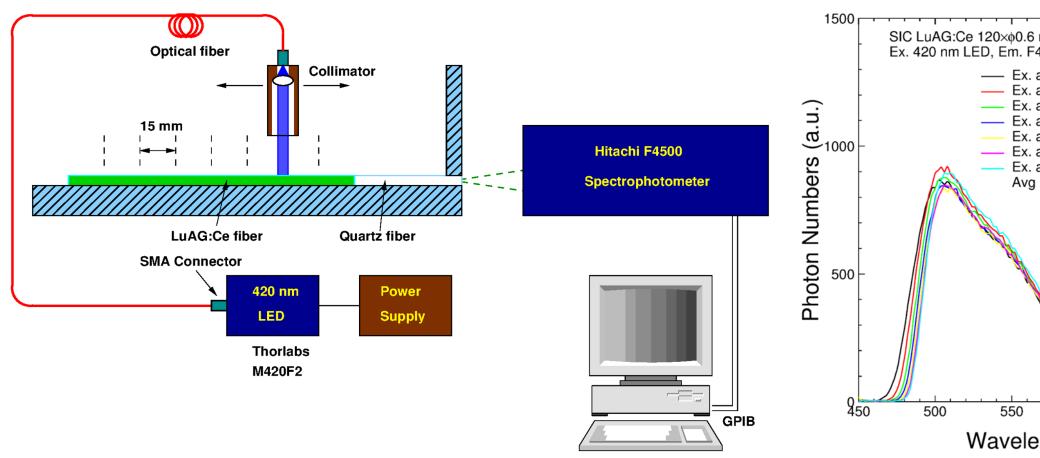


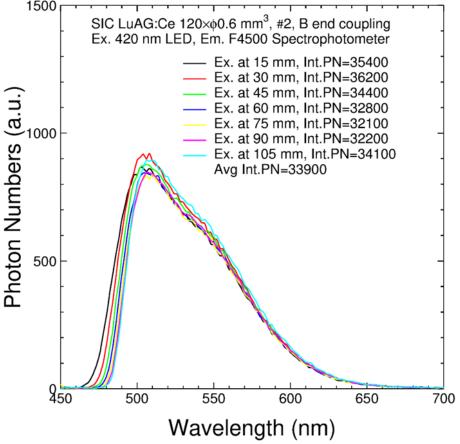





arXiv: 2203.12806

RADiation hard CALorimetry
Reducing light path length to
mitigate radiation damage effect
Using radiation hard materials:
LuAG:Ce ceramics excitation
matches LYSO:Ce emission




Light Output and Response Uniformity

10.1109/NSS/MIC44867.2021.9875908

Excellent longitudinal uniformity observed for a Φ0.6 ×120 mm³ LuAG:Ce ceramic excited by a 420 nm LED at different location, with a solid coupling to a quartz fiber, mimicking its application in RADiCAL

Ultrafast BaF₂:Y Calorimeter for Mu2e-II

Use ultrafast material to mitigate pile-up

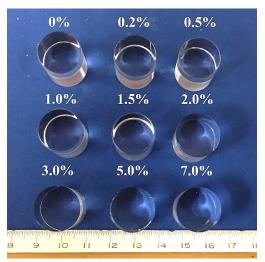
Energy resolution	σ < 5% (FWHM/2.36) @ 100 MeV
Time resolution	σ < 500 ps
Position resolution	σ < 10 mm
Radiation hardnessCrystalsPhotosensors	1 kGy/yr and a total of 10^{12} $n_{-}1$ MeV equivalent/cm ² total 3 x 10^{11} $n_{-}1$ MeV equivalent/cm ² total

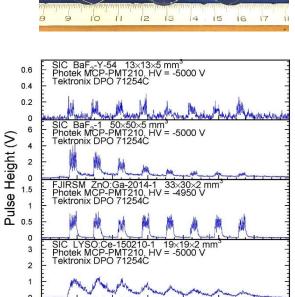
Mu2e-I: 1,348 CsI of 34 x 34 x 200 mm³

CsI+SiPM

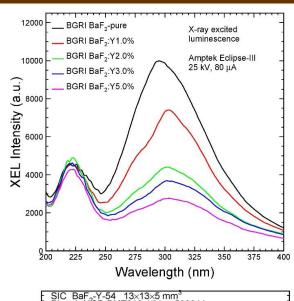
Mu2e-II: 1,940 BaF₂:Y

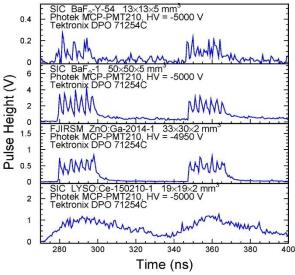
Mu2e-II: arXiv:2203.07596

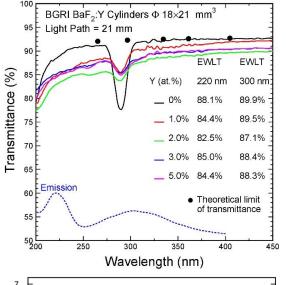

PIP-II/Mu2e-II: higher rates (\sim x3) and duty factor from and correspondingly higher ionizing radiation (10 kGy/yr) and neutron levels (10¹³ n_1 MeV equiv/cm² total), which are particularly important at the inner radius of disk 1

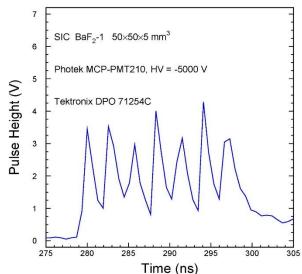


BaF₂:Y for Calorimetry & Imaging




Increased F/S ratio observed in BGRI BaF₂:Y crystals: Proc. SPIE 10392 (2017)

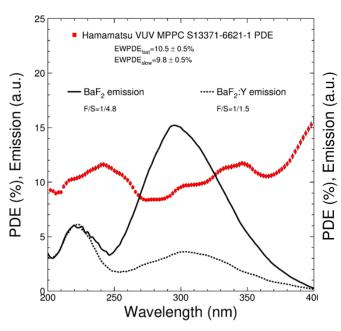


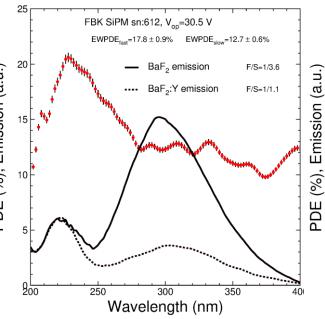


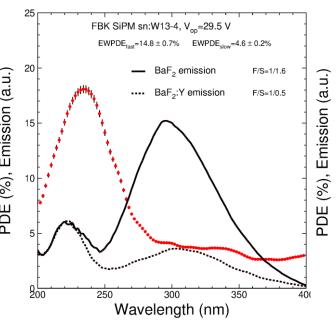
Time (ns)

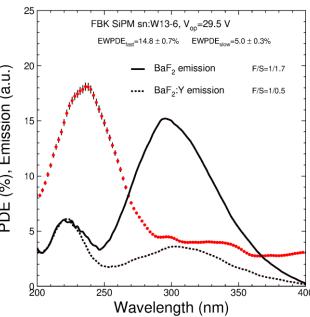
X-ray bunches with 2.83 ns spacing in septuplet are clearly resolved by ultrafast BaF₂:Y and BaF₂ crystals: for GHz Hard X-ray Imaging NIMA 240 (2019) 223-239

Presented by Ren-Yuan Zhu, Caltech, in the Nuclear Physics Seminar, BNL

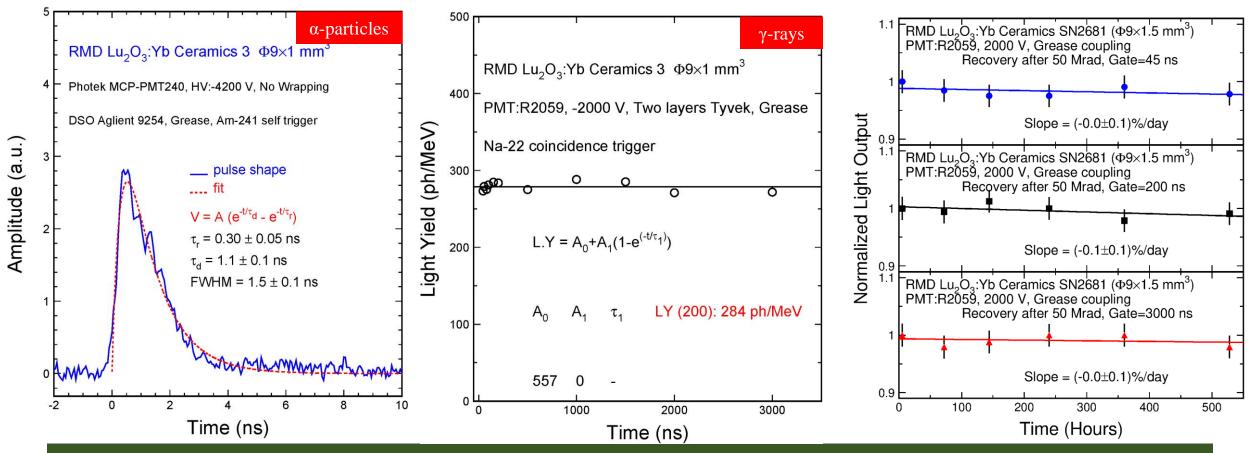

PDE of UV SiPM for BaF₂ and BaF₂:Y

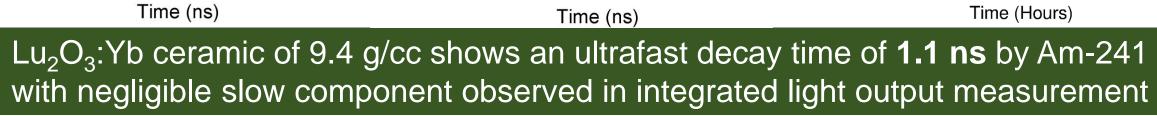



IEEE TNS **69** (2022) 958-964


Photodetector	EWPDE _{fast} (%)	EWPDE _{slow} (%)	Relative F/S _{BaF}	Relative F/S _{BaF:Y}
Hamamatsu MPPC	10.5	9.8	1/4.8	1/1.5
FBK SiPM 2021	17.8	12.7	1/3.6	1/1.1
FBK SiPM 2023-1	14.8	4.6	1/1.6	1/0.5
FBK SiPM 2023-2	14.8	5.0	1/1.7	1/0.5

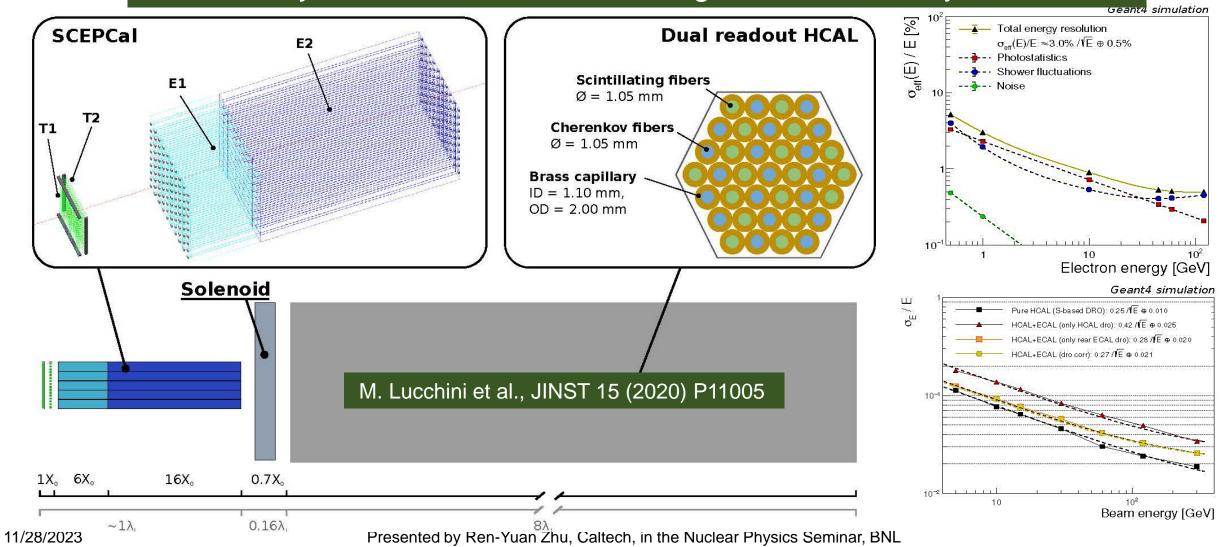
γ-ray induced readout noise is reduced by BaF₂:Y slow suppression & solar-blind PDE


11/28/2023



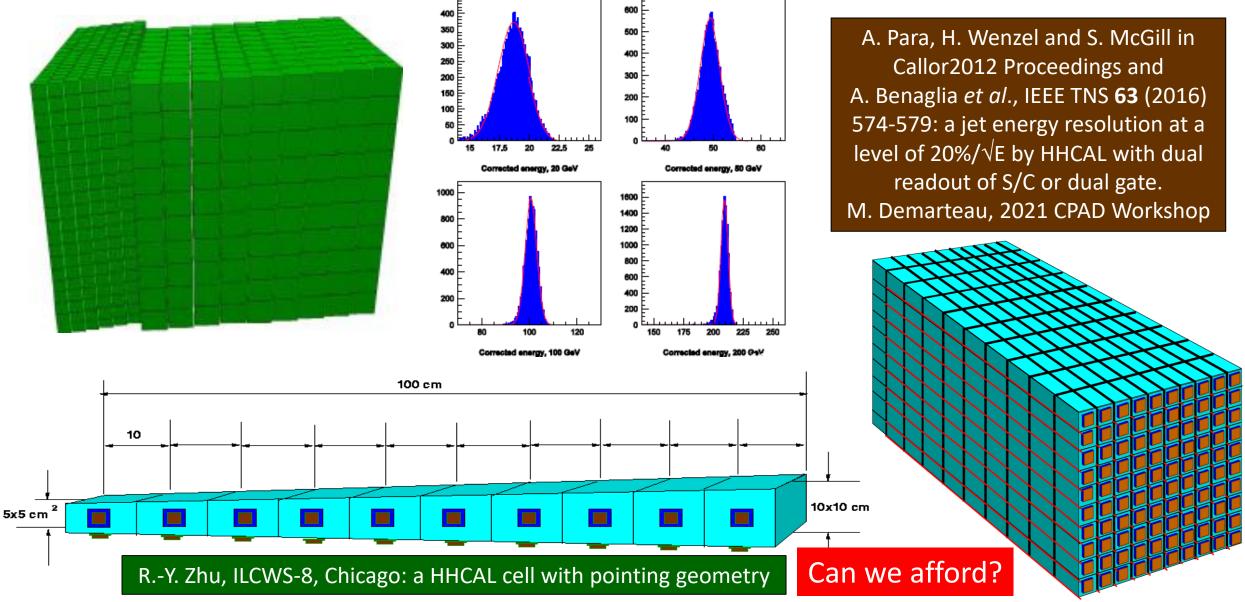
Novel Lu₂O₃:Yb Ceramics

Presented in the NSS2022 conference https://www.its.caltech.edu/~rzhu/talks/NSS22_N21-03.pdf



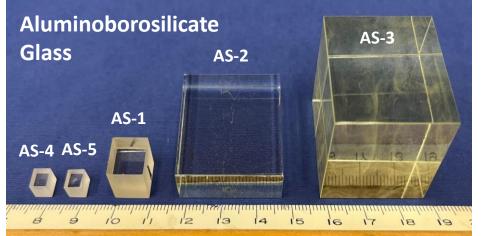
CalVision: Segmented Crystal ECAL

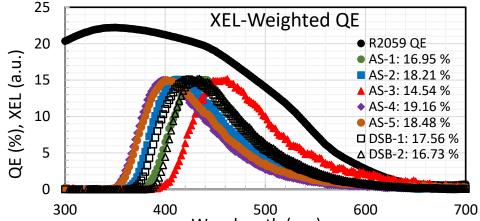
arXiv: 2203.04312

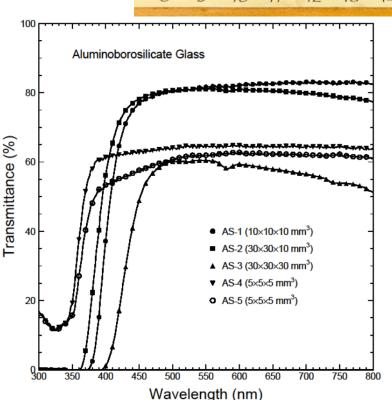

Followed by the IDEA DR HCAL, aiming at both EM and jet resolution

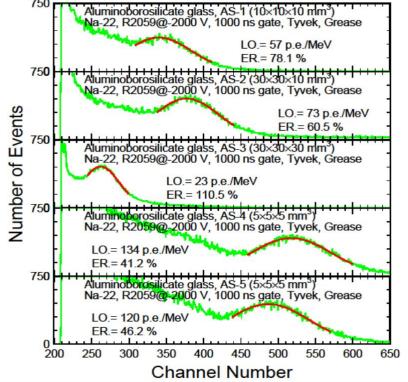
The HHCAL Concept

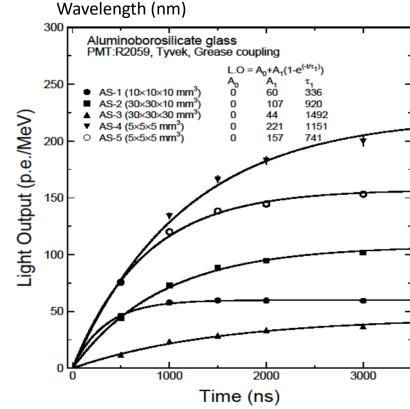
Crystal Cost for CEPC (Mar 2019)


Cost-effectiveness scaled with X₀: PWO, BGO, CsI, BSO, BaF₂:Y, LYSO


Item	Size (R _M xR _M x25 X ₀)	1 m ³	10 m ³	100 m ³	Scaled to X ₀
BGO	22.3×22.3×280 mm	\$8/cc	\$7/cc	\$6/cc	1.23
BaF ₂ :Y	31.0×31.0×507.5 cm	\$12/cc	\$11/cc	\$10/cc	2.28
LYSO:Ce	20.7x20.7x285 mm	\$36/cc	\$34/cc	\$32/cc	1.28
PWO	20x20x223 mm	\$9/cc	\$8/cc	\$7.5/cc	1.00
BSO	22x22x274 mm	\$8.5/cc	\$7.5/cc	\$7.0/cc	1.29
Csl	35.7x35.7x465 mm	\$4.6/cc	\$4.3/cc	\$4.0/cc	2.09




ABS (B₂O₃-SiO₂-Al₂O₃-Gd₂O₃-Ce₂O₃) Glass



Inorganic Scintillators for HHCAL

Presented in the 9/14/2023 CalVision meeting all samples measured at Caltech

	BGO	BSO	PWO	PbF ₂	PbFCI	Sapphire:Ti	AFO:Ce Glass	DSB:Ce Glass	ABS:Ce Glass
Density (g/cm³)	7.13	6.8	8.3	7.77	7.11	3.98	4.6	4.3	6.0
Melting point (°C)	1050	1030	1123	824	608	2040	980 ⁷	1550	?
X ₀ (cm)	1.12	1.15	0.89	0.94	1.05	7.02	2.96	2.58	1.56
R _M (cm)	2.23	2.33	2.00	2.18	2.33	2.88	2.90	3.24	2.49
λ _I (cm)	22.7	23.4	20.7	22.4	24.3	24.2	26.4	30.9	24.2
Z _{eff} value	71.5	73.8	73.6	76.7	74.7	11.1	41.4	49.5	56.6
dE/dX (MeV/cm)	8.99	8.59	10.1	9.42	8.68	6.75	6.84	6.1	8.0
Emission Peaka (nm)	480	470	425 420	١	420	300 750	365	420	400
Refractive Index ^b	2.15	2.68	2.20	1.82	2.15	1.76	?	?	?
LY (ph/MeV) ^c	7,500	1,500	130	1	150	7,900	450	1,360	1,150
Decay Time ^a (ns)	300	100	30 10	١	3	300 3200	40	500	740
d(LY)/dT (%/°C)°	-0.9	?	-2.5	1	?	?	?	0.3	?
Cost (\$/cc)	6.0	7.0	7.5	6.0	?	0.6	2.0	2.0	<1

Summary

The HL-LHC and FCC-hh require fast and radiation hard inorganic scintillator. **RADiCAL** proposes an ultra-compact, fast timing and longitudinally segmented shapplik colorimeter with LuAC. Concerning as a way along the shifter for LYCO. Concerning and shapplik salarimeter with LuAC. Concerning as a way along the shifter for LYCO. Concerning and shapplik salarimeter with LuAC. Concerning as a way along the shifter for LYCO. Concerning and shapplic salarimeters are way along the shifter for LYCO. Concerning the shifter for LYCO. Concerning the shifter for LYCO.

shashlik calorimeter with LuAG:Ce ceramics as wavelength shifter for LYSO:Ce

crystals. R&D is on-going to suppress slow components in LuAG:Ce.

Mu2e-II considers ultrafast BaF_2 :Y calorimeter. R&D is on radiation hardness of BaF_2 :Y and solar-blind SiPM. Industry is developing ultrafast Lu_2O_3 :Yb ceramics.

CalVision proposes a dual readout longitudinally segmented crystal ECAL combined with the IDEA HCAL promising excellent EM and Hadronic resolutions for the proposed lepton Higgs factory.

Homogeneous HCAL (HHCAL) promises the best jet mass resolution by total absorption. Novel cost-effective heavy scintillating glass is under development.

Acknowledgements: DOE HEP Award DE-SC0011925

R&D On-going at Caltech

Fast/ultrafast, radiation hard and cost-effective heavy scintillators

Bright, fast and radiation hard inorganic scintillators for the severe radiation environment expected by the proposed FCC_{hh}. YAG, LuAG, GGAG, GYAG and GLuAG suffer from slow scintillation component.

Ultrafast inorganic scintillators: Cross-luminescence. Wide gap semiconductor-based scintillators with sub-ns decay time and quantum confinement-based inorganic $CsPbX_3$ (X = Cl, Br, I, mixed Cl/Br and Br/I), halide perovskite quantum dots may help to break the ps timing barrier for future HEP TOF.

Dense, UV-transparent, cost-effective heavy inorganic scintillators for the homogeneous hadron calorimeter (HHCAL) concept for the Higgs factory.

Compact UV sensitive photodetectors with sufficient dynamic range for ultrafast calorimeters.

Presented in the DRC9 round table discussion in 2023 CPAD Workshop, SLAC