



# Calibration and Monitoring PWO Crystal ECAL

#### **Ren-Yuan Zhu**

#### **California Institute of Technology**

**November 1, 2023** 

Presented in the ePIC Calorimeter Working Group Meeting

### **Crystals Used in HEP Calorimeters**



| Crystal                                                                                          | Nal:TI       | Csl:Tl                                     | Csl                                       | BaF <sub>2</sub> | BGO         | LYSO:Ce                                           | PWO                          | PbF <sub>2</sub> |
|--------------------------------------------------------------------------------------------------|--------------|--------------------------------------------|-------------------------------------------|------------------|-------------|---------------------------------------------------|------------------------------|------------------|
| Density (g/cm <sup>3</sup> )                                                                     | 3.67         | 4.51                                       | 4.51                                      | 4.89             | 7.13        | 7.40                                              | 8.3                          | 7.77             |
| Melting Point (°C)                                                                               | 651          | 621                                        | 621                                       | 1280             | 1050        | 2050                                              | 1123                         | 824              |
| Radiation Length (cm)                                                                            | 2.59         | 1.86                                       | 1.86                                      | 2.03             | 1.12        | 1.14                                              | 0.89                         | 0.93             |
| Molière Radius (cm)                                                                              | 4.13         | 3.57                                       | 3.57                                      | 3.10             | 2.23        | 2.07                                              | 2.00                         | 2.21             |
| Interaction Length (cm)                                                                          | 42.9         | 39.3                                       | 39.3                                      | 30.7             | 22.8        | 20.9                                              | 20.7                         | 21.0             |
| Refractive Index <sup>a</sup>                                                                    | 1.85         | 1.79                                       | 1.95                                      | 1.50             | 2.15        | 1.82                                              | 2.20                         | 1.82             |
| Hygroscopicity                                                                                   | Yes          | Slight                                     | Slight                                    | No               | No          | No                                                | No                           | No               |
| Luminescence <sup>b</sup> (nm) (at peak)                                                         | 410          | 550                                        | 420<br>310                                | 300<br>220       | 480         | 402                                               | 425<br>420                   | -                |
| Decay Time <sup>b</sup> (ns)                                                                     | 245          | 1220                                       | 30<br>6                                   | 650<br>0.9       | 300         | 40                                                | 30<br>10                     | -                |
| Light Yield <sup>b,c</sup> (photons/MeV)                                                         | 38,000       | 63,000                                     | 1,400<br>420                              | 13,680<br>1,560  | 8,000       | 32,000                                            | 114<br>40                    | -                |
| d(LY)/dT⁵ (%/ ºC)                                                                                | -0.2         | 0.4                                        | -1.4                                      | -1.9<br>0.1      | -0.9        | -0.2                                              | -2.5                         | -                |
| Experiment                                                                                       | Crystal Ball | BaBar<br>BELLE<br>BES III<br>p/low row: sl | KTeV<br>Mu2e<br>S. BELLE<br>ow/fast.compo | TAPS<br>Mu2e-II  | L3<br>BELLE | COMET<br>CMS BTL<br>PIONEER<br>It device taken ou | CMS<br>ALICE<br>PANDA<br>EIC | A4<br>G-2        |
| a. at emission peak; b. up/low row: slow/fast component; c. with QE of readout device taken out. |              |                                            |                                           |                  |             |                                                   | l                            |                  |

11/1/2023



Presented by Ren-Yuan Zhu, Caltech, in the ePIC Calorimeter Working Group Meeting



### **Crystal Samples for Calorimetry**



LaBr<sub>3</sub> Nal(TI) CsI(TI) Csl Csl(Na) LaBr3(Ce) LSO/LYSO LYSO CeF<sub>3</sub> PWO BGO LSO BaF, LaCl<sub>3</sub>(Ce) 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 BaBar CsI(TI) L3 BGO **CMS PWO** 

1.5 X<sub>0</sub> Samples:

Hygroscopic: Sealed

Surfaces: Polished

**ECAL Crystals:** 

BaBar CsI(TI): 16 X<sub>0</sub>

L3 BGO: 22 X<sub>0</sub>

CMS PWO(Y): 25 X<sub>0</sub>

#### **Transmittance and Absorption**





HITACHI U3210 UV/VIS and PerkinElmer Lambda 950 UV/VIS/NIR spectrophotometer with large sample compartment to measure transmittance and absorption

Typical Precision: 0.2 to 0.3%

Watch out: Birefringence, sample surface and scattering centers



#### LAL and Birefringence





Light attenuation length (LAL), or inverse of its light absorption coefficient, extracted from transmittance

 $LAL\left(\lambda\right)$ 

$$= \frac{l}{\ln\left\{\left[T\left(\lambda\right)\left(1-T_{s}\left(\lambda\right)\right)^{2}\right]/\left[\sqrt{4T_{s}^{4}\left(\lambda\right)+T^{2}\left(\lambda\right)\left(1-T_{s}^{2}\left(\lambda\right)\right)^{2}-2T_{s}^{2}\left(\lambda\right)}\right]\right\}}$$
(2)

where  $T(\lambda)$  is the longitudinal transmittance measured along crystal length *l*, and  $T_s(\lambda)$  is the theoretical transmittance assuming multiple bouncings between two crystal ends and without internal absorption:

$$T_{s}(\lambda) = (1 - R(\lambda))^{2} + R^{2}(\lambda)(1 - R(\lambda))^{2} + \dots = (1 - R(\lambda)) / (1 + R(\lambda))$$
(3)

and

$$R(\lambda) = \frac{\left(n_{\text{crystal}}(\lambda) - n_{\text{air}}(\lambda)\right)^{2}}{\left(n_{\text{crystal}}(\lambda) + n_{\text{air}}(\lambda)\right)^{2}}$$
(4)

where  $n_{\text{crystal}}(\lambda)$  and  $n_{\text{air}}(\lambda)$  are the refractive indices for crystal and air, respectively.

11/1/2023



### **PWO Birefringence**



Attention to be paid to the crystal orientation vs. optical axis





## LY, LO, LCE and LRU



Crystal light yield (LY) in photons/MeV energy deposition:  $\beta E_g$  is the energy required for an e-h pair, S is energy transferred to the luminescence center and Q is its quantum efficiency.

Measured light output (LO) in photoelectrons/MeV depends on crystal LY, light collection efficiency (LCE) and the quantum efficiency of the photodetector used for the measurement. LCE is sample dependent

 $LY = 10^6 S \cdot Q / (\beta \cdot E_q)$  $LO = LY \cdot LCE \cdot QE$ 

#### Light Response Uniformity (LRU) CMS Specification



### **CMS H -> γγ and PWO Damage**







Resolution maintained by calibration and continuous monitoring



#### **CMS ECAL Calibration and Monitoring**



Calibration *in situ* at LHC by combining the following processes:

- Equalizing response of crystals in the same η ring.
- $\pi^0/\eta$ ->  $\gamma\gamma$ : Equalizing measured  $\pi^0/\eta$  peaks for individual crystals.
- **E/p ratio:** Isolated electrons from W measured in tracker and ECAL.
- **Z** -> e<sup>+</sup>e<sup>-</sup>: invariant mass measured in ECAL for global scale corrections.
- A laser-based light monitoring system injects 600 pulses at 100 Hz to each crystal every 30 minutes in 3 μs beam abort gaps in 89 μs beam cycle to correct PWO radiation damage at 0.1%. Correction data are delivered within 48 h.

## The combination of ionization dose and hadron-induced damage in PWO crystals complicates the overall correction precision.



11/1/2023

#### **CMS PWO ECAL Laser Monitoring**



Runs 24/7 providing 600 laser pulses/crystal at 100 Hz every 30 min



11



11/1/2023

#### **CMS Laser Monitoring Hardware**



#### Lamp Pumped Lases: 2002 to 2012



#### Diode Pumped Lases: since 2012













#### **CMS ECAL Intercalibration Precision**

T. Dimova, TIPP2023

Precision of 0.5% in barrel and 1% in endcaps achieved by combining monitoring and all physics calibration channels



#### **CMS ECAL Performance in Run 2**





Presented by Ren-Yuan Zhu, Caltech, in the ePIC Calorimeter Working Group Meeting

Time (month/year)



## **Radiation Damage Effects**



NIM A413 (1998) 297, https://doi.org/10.1007/978-3-319-47999-6\_22-2

- Scintillation mechanism damage: reduced LY and LO and maybe also LRU;
- Radiation-induced phosphorescence (afterglow): increase dark current, dark counting rate and readout noise;
- Radiation-induced absorption (color centers): reduced light attenuation length, LO and maybe also LRU.

|                             | CsI:TI | Csl | BaF <sub>2</sub> | BGO | PWO | LSO/LYSO |
|-----------------------------|--------|-----|------------------|-----|-----|----------|
| Scintillation mechanism     | No     | No  | No               | No  | No  | No       |
| Phosphorescence (afterglow) | Yes    | Yes | Yes              | Yes | Yes | Yes      |
| Absorption (color centers)  | Yes    | Yes | Yes              | Yes | Yes | Yes      |
| Recovery                    | slow   | No  | No               | Yes | Yes | No       |
| Dose rate dependence        | No     | No  | No               | Yes | Yes | No       |
| Thermal Annealing           | No     | No  | Yes              | Yes | Yes | Yes      |
| Optical Bleaching           | No     | No  | Yes              | Yes | Yes | Yes      |



#### **Scintillation Mechanism and Afterglow**



https://doi.org/10.1007/978-3-319-47999-6\_22-2

Crystal's scintillation mechanism is not damaged by  $\gamma$ -rays, neutrons and charged hadrons, as shown in no variation in the emission spectra measured before and after irradiations. Radiation-induced phosphorescence is measured as the photo-current after radiation, which is at a level of 10<sup>-5</sup> for BGO and PWO and 3 × 10<sup>-4</sup> for LYSO, and 2 × 10<sup>-3</sup> for LSO.



Presented by Ren-Yuan Zhu, Caltech, in the ePIC Calorimeter Working Group Meeting

#### **Radiation-Induced Color Centers**

![](_page_16_Picture_1.jpeg)

![](_page_16_Figure_2.jpeg)

https://doi.org/10.1007/978-3-319-47999-6\_22-2

$$EWLT = \frac{\int LT(\lambda) Em(\lambda) d\lambda}{\int Em(\lambda) d\lambda}$$

*RIAC* (
$$\lambda$$
) or  $D(\lambda) = 1/LAL_{after}(\lambda) - 1/LAL_{before}(\lambda)$ 

$$RIAC(\lambda) = \frac{1}{l} \ln \frac{T_0(\lambda)}{T(\lambda)}$$

$$EWRIAC = \frac{\int RIAC(\lambda) Em(\lambda) d\lambda}{\int Em(\lambda) d\lambda}$$

$$RIAC(\lambda) = \sum_{i=1}^{n} A_i e^{-\frac{(E(\lambda) - E_i)^2}{2\sigma_i^2}}$$

NIM A**302** (1991) 69, NIM A**376** (1996) 319

TISTITUTEO

## PROBING CONNECTION

#### **Dose Rate Dependent Damage in PWO**

![](_page_17_Picture_2.jpeg)

Damage and recovery observed

PWO light reached an equilibrium under a dose rate, showing a dose rate dependent damage Damage/recovery requires continuous light monitoring to maintain PWO energy resolution

Damage/recovery observed in early lab investigation: IEEE Trans. Nucl. Sci., Vol. 44 (1997) 458-476

 $dD = \sum_{i=1}^{n} \{-a_i D_i dt + (D_i^{all} - D_i) b_i R dt\}$ 

$$D = \sum_{i=1}^{n} \{ \frac{b_i R D_i^{all}}{a_i + b_i R} \left[ 1 - e^{-(a_i + b_i R)t} \right] + D_i^0 e^{-(a_i + b_i R)t} \}$$

- *D<sub>i</sub>*: color center density in units of m<sup>-1</sup>;
- $D_i^0$ : initial color center density;
- $D_i^{all}$  is the total density of trap related to the color center in the crystal;
- $a_i$ : recovery costant in units of hr<sup>-1</sup>;

11/1/2023

- $b_i$ : damage contant in units of kRad<sup>-1</sup>;
- *R*: the radiation dose rate in units of kRad/hr.

 $D_{eq} = \sum_{i=1}^{n} \frac{b_i R D_i^{all}}{a_i + b_i R}$ 

![](_page_17_Figure_14.jpeg)

![](_page_18_Picture_0.jpeg)

#### **Effect of Multiple Color Centers**

![](_page_18_Picture_2.jpeg)

![](_page_18_Figure_3.jpeg)

AIP Conference Proceedings 867 (2006) 252

![](_page_18_Figure_5.jpeg)

![](_page_19_Picture_0.jpeg)

#### **EWRIAC vs. Ionization Dose Rate**

Large spread observed for both BTCP and SIC PWO with EWRIAC fit to 2<sup>nd</sup> order polynomials of dose rate. IEEE Trans. Nucl. Sci. NS-51 (2004) 1777

![](_page_19_Figure_3.jpeg)

![](_page_20_Picture_0.jpeg)

#### **Ionization Dose Induced Damage in PWO**

![](_page_20_Picture_2.jpeg)

#### Dose rate from CMS BRIL Simulation

<u>https://cms-project-fluka-flux-map.web.cern.ch/cms-project-fluka-flux-map</u> Run I: CMS\_pp\_4.0TeV\_2012\_FLUKA, Run II: CMS\_pp\_7TeV\_v3.0.0.0\_FLUKA

| CMS ECAL                                    | η=0   | η=0.5 | η=1.0 | η=1.478 | η=1.5 | η=1.7 | η=2.0 | η=2.3 | η=2.6 | η=2.9 |
|---------------------------------------------|-------|-------|-------|---------|-------|-------|-------|-------|-------|-------|
| Run I Dose rate<br>(rad/hr)                 | 10    | 11    | 14    | 17      | 6     | 35    | 86    | 211   | 329   | 433   |
| Run l μ <sub>440nm</sub> (m <sup>-1</sup> ) | 0.125 | 0.133 | 0.152 | 0.175   | 0.089 | 0.254 | 0.378 | 0.527 | 0.610 | 0.664 |
| Run II Dose rate<br>(rad/hr)                | 25    | 27    | 34    | 42      | 16    | 63    | 167   | 385   | 706   | 1170  |
| Run II µ₄₄₀ոՠ (m⁻¹)                         | 0.216 | 0.223 | 0.250 | 0.276   | 0.165 | 0.332 | 0.486 | 0.640 | 0.765 | 0.877 |

![](_page_21_Picture_0.jpeg)

### Hadron-Induced Damage in PWO

![](_page_21_Picture_2.jpeg)

γ-ray induced absorption alone can not explain monitoring loss, Charged and neutral hadrons also damage PWO crystals <a href="http://www.its.caltech.edu/~rzhu/talks/ryz\_161028\_PWO\_mon.pdf">http://www.its.caltech.edu/~rzhu/talks/ryz\_161028\_PWO\_mon.pdf</a>

![](_page_21_Figure_4.jpeg)

![](_page_22_Figure_0.jpeg)

![](_page_23_Picture_0.jpeg)

### Hadron-Induced Damage in PWO

![](_page_23_Picture_2.jpeg)

Monitoring data explained by damage induced by ionization and neutrons Ionization dose includes charged hadrons of 10% of neutron fluence

![](_page_23_Figure_4.jpeg)

Laser Monitoring Response

# PROBATING CONTRACTION OF CONTRACTION

#### **Comparison: ePIC and BTL at HL-LHC**

![](_page_24_Picture_2.jpeg)

The ionization dose rate and neutron flux of the ePIC PWO ECAL are two to three orders of magnitude lower than that of the CMS BTL (LYSO:Ce+SiPM) at the HL-LHC The expected RIAC values are small. QC is needed for mass-produced PWO crystals

| Radiation          | EIC<br>/ Year                     | EIC*                          | CMS BTL**<br>/ 4000 fb-1<br>(η= 0-1.45)        | CMS BTL**<br>(η= 0-1.45)            |  |
|--------------------|-----------------------------------|-------------------------------|------------------------------------------------|-------------------------------------|--|
| Ionization Dose    | 3 Krad                            | 1.3 rad/h                     | 2.7-4.8 Mrad                                   | 110-190 rad/h                       |  |
| 1 MeV eq. Neutrons | 10 <sup>10</sup> /cm <sup>2</sup> | 1.2×10 <sup>3</sup><br>/cm²/s | (2.5~2.9)×10 <sup>14</sup><br>/cm <sup>2</sup> | (2.8~3.2)×10 <sup>6</sup><br>/cm²/s |  |
| Charged Hadrons    |                                   |                               | (2.2~2.5)×10 <sup>13</sup><br>/cm <sup>2</sup> | (2.4~2.8)×10 <sup>5</sup><br>/cm²/s |  |

\*Estimated by assuming 100 days operation per year.

\*\* IEEE Trans. Nucl. Sci. NS-68 (2021) 1244-1250

![](_page_25_Picture_0.jpeg)

## Summary

![](_page_25_Picture_2.jpeg)

Total absorption crystal ECAL provides the best energy resolution for HEP experiments. Radiation damage induced by ionization dose and hadrons presents a serious challenge for maintaining crystal precision *in situ*.

PWO crystals suffer from damage recovery *in situ*. Continuous monitoring in 24/7 is crucial for maintaining calibration precision. Use crystals without recovery, such as BaF<sub>2</sub>, CsI and LYSO:Ce, would reduce the workload.

The expected ePIC ionization dose of up to 3 krad/year and neutron flux of up to  $10^{10}/\text{cm}^2/\text{year}$  are several orders of magnitudes smaller than CMS. Rigorous QC is required because of the diverse radiation hardness of mass-produced PWO crystals.

#### Acknowledgements: DOE HEP Award DE-SC0011925